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Marie Curie, Bâtiment A, 7ème étage, 7 quai St. Bernard, Case 237, FR-
75252 Paris Cedex 05, France;
4. Centre de Etudes Biologiques de Chizé–CNRS, FR-79360 Villiers en
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abstract: Comparative analyses of avian population fluctuations
have shown large interspecific differences in population variability that
have been difficult to relate to variation in general ecological charac-
teristics. Here we show that interspecific variation in demographic
stochasticity, caused by random variation among individuals in their
fitness contributions, can be predicted from a knowledge of the species’
position along a “slow-fast” gradient of life-history variation, ranging
from high reproductive species with short life expectancy at one end
to species that often produce a single offspring but survive well at the
other end of the continuum. The demographic stochasticity decreased
with adult survival rate, age at maturity, and generation time or the
position of the species toward the slow end of the slow-fast life-history
gradient. This relationship between life-history characteristics and de-
mographic stochasticity was related to interspecific differences in the
variation among females in recruitment as well as to differences in the
individual variation in survival. Because reproductive decisions in birds
are often subject to strong natural selection, our results provide strong
evidence for adaptive modifications of reproductive investment
through life-history evolution of the influence of stochastic variation
on avian population dynamics.

Keywords: demographic stochasticity, environmental stochasticity,
life-history variation, stochastic population dynamics, birds.

Stochastic factors strongly affect the population dynamics
of many bird populations (Lebreton 1990; Pimm 1991;
Stacey and Taper 1992; Newton 1998; Bro et al. 2000;
Lande et al. 2003). To answer one of the most central
ecological questions of why there are such large interspe-
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cific differences in population variability (Pimm 1991; Ari-
ño and Pimm 1995; Inchausti and Halley 2002), we must
therefore obtain a proper understanding of how the sep-
arate effects of demographic and environmental stochas-
ticity are related to demographic variation across species.
Theoretical analyses have shown that knowledge of de-
mographic stochasticity is especially important for fluc-
tuations of small populations (May 1973; Leigh 1981;
Lande 1998; Lande et al. 2003) that often are of manage-
ment concern. For instance, important characteristics such
as the expected time to extinction (Lande 1998; Sæther
and Engen 2003) and the presence of stochastic Allee ef-
fects at small population sizes (Lande 1998; Engen et al.
2003) are closely related to the magnitude of the demo-
graphic variance . As a consequence, failure to include2jd

demographic stochasticity in the analyses may result in
severely biased predictions of population viability (Sæther
and Engen 2002a, 2003). However, estimates of are2jd

available only for a few species (Lande et al. 2003).
Here we relate interspecific variation in to avian life-2jd

history characteristics that are easier to collect than long-
term data on individual fitness variation that are necessary
for estimating (Lande et al. 2003). Such information2jd

can therefore be used to get approximate information
about in many rare or endangered species. Furthermore,2jd

recent comparative studies have suggested that in many
taxa, interspecific variation in demographic variables can
be predicted from knowledge of life-history characteristics
because demographic traits such as adult survival or age
at maturity decreases with clutch size (Pfister 1998; Sæther
and Bakke 2000; Gaillard and Yoccoz 2003). Furthermore,
in birds and mammals not only mean values but also
information about variability in demographic traits can be
gained from knowledge of life-history characteristics. For
instance, in birds (Sæther and Bakke 2000) and mammals
(Gaillard and Yoccoz 2003), the relative contribution of
temporal variation in different demographic traits to fluc-
tuations in the population growth rates is dependent on
the life-history characteristics of the species. Such rela-
tionships can be due to life-history-dependent effects of
either density dependence (e.g., Lande et al. 2002) or sto-
chastic variables. Here we examine how the total stochastic
contribution to annual variation in population size de-
pends on the life-history characteristics of the species. We
do this by relating to environmental stochasticity ,2 2j jd e

random variation affecting the whole population or group
of individuals similarly (Lande et al. 2003), obtained from
analysis of time series. The presence of such a relationship
will indicate a link between environmental fluctuations,
life-history variation, and patterns in avian population
dynamics.

Previous analyses have shown that birds can be divided
along a “slow-fast” continuum of life-history variation

(Sæther and Bakke 2000; Bennett and Owens 2002). At
one end of the continuum, we have species that are char-
acterized by an early age at maturity, large clutch sizes,
and high mortality rates. At the opposite end are long-
lived species that produce a few (often a single) offspring
and have a delayed onset of reproduction. Two alternative
hypotheses may explain covariation between and the2jd

position of a species along this slow-fast continuum. Ac-
cording to one hypothesis, is expected to increase with2jd

adult survival rate (and hence to decrease with clutch size)
because very few offspring recruit in short-lived species
with a high first-year mortality. Alternatively, can be2jd

expected to decrease with adult survival rate because life-
history constraints (small reproductive rates, high life ex-
pectancy) generate small variability in fitness among in-
dividuals in long-lived species. Here we examine the
validity of these hypotheses using a data set of individual
variation in fitness contribution of 31 bird species.

Methods

Demographic Variance

The demographic variance was estimated from data on2jd

individual variation among females in their fitness con-
tributions to the following generations (for further dis-
cussion of the rationale behind this definition, see Engen
et al. 1998; Lande et al. 2003). The total contribution of
a female i in year t (Ri ) is the number of female offspring
born during the year that survive for at least 1 year plus
one more if the female survives to the next year (Sæther
et al. 1998). The demographic variance was estimated
(Lande et al. 2003) as the weighted mean across years of

, where is the mean con-2 2j (t) p E[1/(a � 1)] � (R � R) Rd i

tribution of the females, a is the number of recorded con-
tributions in year t, and E denotes the expectation.

The demographic variance can be partitioned (Fox and
Kendall 2002) into components due to variation in fe-
cundity, survival, and interaction between fecundity and
survival. Writing B for the number of offspring produced,

if the mother survives and if she dies, theI p 1 I p 0
demographic variance is the mean over years of the within-
year variance of . This can be split into its com-R p B � I
ponents , whichVar (R) p Var (B) � Var (I) � 2 Cov (B, I)
can be estimated separately by simple sum of squares.

In long-lived species, stochastic variation in age struc-
ture constitutes an important component of demographic
stochasticity (Goodman 1967). For species with a mean
age of maturity older than 3 years, we estimated by the2jd

method of S. Engen, R. Lande, and B.-E. Sæther (unpub-
lished manuscript). Based on the contributions (Bjt, Ijt) for
the different age classes i in year t, we calculate the de-
mographic stochasticity from the projection matrix (Cas-
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well 2001) and separate this into components that are
generated by demographic stochasticity in each vital rate.
Let at denote the individual observations of the number
of female offspring and mother’s survival in year t for age
class i, with . Then the unbiased estimatorsj p 1, 2, … , at

for the component of from fecundity Fi, survival Si,
2jd

and the covariance between Fi and Si (Cov[Fi, Si]) in age
class i are

T ct

2 �1 2ĵ p (C � T) (B � B ) ,��F jt ti
tp1 jp1

T ct

2 �1 2ĵ p (C � T) (I � I ) ,��S jt ti
tp1 jp1

T ct

�1Cov (F , S ) p (C � T) (B � B )(I � I ),��i i jt jtt t
tp1 jp1

where is the total number of individuals in
T

C p � attp1

age class i and T is the number of years. These estimates
were computed separately for each age class to give an
estimator for that is derived from the estimated deter-2jd

ministic Leslie matrix:

2 2
k

1 �r �r �r �r
2 2 2 ˆˆ ˆ ˆj p j � j � 2 Cov(F , S ) .�d F S i ii i[( ) ( ) ]U �F �S �F �Sip0 i i i i i

Here , where is the dominant eigenvalue of ther p ln l l

mean Leslie matrix and (U0, U1, …, Uk) is the stable age
distribution for the deterministic matrix model.

In total, we obtained estimates of for 52 populations2jd

covering 31 species. Following the taxonomy of Sibley and
Ahlquist (1990), we included 15 species from the order
Passeriformes, 11 species from Ciconiiformes, three species
from Strigiformes, and one species from each of the orders
Piciformes and Gruiformes. For species composition, see
table A1 in the online edition of the American Naturalist.

Environmental Variance

To examine the relationship between demographic and
environmental stochasticity, we used long-term (≥10
years) time series of population fluctuations. We included
only time series where the estimates were based on ob-
servations of recognizable individuals or direct nest counts
to reduce the effects of sampling errors in the population
estimates.

Following the approach of Sæther and Engen (2002b),
two different models were used to analyze the time series.
In the time series in which a visual inspection of the time
series suggested an influence of density dependence (see

appendix), we assumed a theta-logistic model of density
regulation (Gilpin and Ayala 1973):

vE(DNFN) p r N[1 � (N/K) ]. (1a)0

Here r0 is the mean specific population growth rate as N
approaches 0, is the change in population size N fromDN
one year to another, K is the carrying capacity, and v

specifies the form of the density regulation. By varying v,
we can describe a wide variety of functions of density
regulation. Equation (1a) can also be written (Sæther et
al. 2000a)

vN � 1
E(DNFN) p r N 1 � , (1b)1 v( )K � 1

where r1 is the mean specific population growth rate at
. Writing and using the first-order ap-N p 1 X p ln N

proximation , we find for small to moderateDX ≈ DN/N
fluctuations in population size that the expected change
in log population size is

r 11 vX 2 �XE(DXFX) p s � (e � 1) � j e , (2)dvK � 1 2

where . Assuming to be known, the other2 2s p r � 1/2j j1 e d

parameters (including ) in equation (2) were estimated2je

by maximum likelihood using the full likelihood function
for the process obtained by assuming that conditionedDX
on X is normally distributed (see Sæther et al. 2000a,
2002b, 2002c). However, in one species (Larus canus), no
satisfactory fit to the theta-logistic model was obtained,
and the estimate of was excluded from the analyses.2je

For steadily increasing or decreasing populations (see
appendix) assumed to be far below K, we fitted a model
with density-independent population growth (including
demographic as well as environmental stochasticity) fol-
lowing the estimation procedures of Dennis et al. (1991)
and Engen et al. (2001).

Life-History Traits

Modal values of clutch size and age at maturity A were
used as estimates of life-history variables. The mean re-
capture rate of individually recognizable breeding females
was used as an estimate of adult survival rate p.

Assuming a stable population, we calculated the gen-
eration time as (Lande et al. 2003). ForT p A � p/(1 � p)
Diomedea exulans and Fulmarus glacoides, P was set equal
to .98 to avoid large effects on T of small uncertainties in
p.

This content downloaded from 129.125.148.019 on November 12, 2018 23:26:45 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



796 The American Naturalist

Figure 1: Distribution of estimates of demographic variance in 522jd

populations of 31 bird species.

Phylogenetic Analysis

We used a generalized least squares approach to control
for phylogeny and to estimate correlations between traits.
The technique employed was suggested by Pagel (1999)
and is outlined in detail by Freckleton et al. (2002). The
approach fits a multivariate normal distribution to data
using the phylogeny and an underlying assumption of
Brownian trait evolution to specify the expected variance
and covariance of traits among species in terms as a func-
tion of the phylogeny. The probability density for this
model is

1 1
T �1p(y) p exp � (y � gG) (S � V) (y � gG) ,

n/2 [ ](2p S � V ) 2F F

(3)

where y is a vector listing each of the k traits for1 # kn
the n species, is the design matrix, is a list ofG g k # 1
the means of the k traits, and S is the variance-k # k
covariance matrix of the traits. The matrix V is the
variance-covariance matrix for the species, derived from
the phylogeny. The elements of this matrix are shared
branch lengths for species, thus measuring phylogenetic
relatedness. Pagel (1999) defined an index t that measures
the degree of phylogenetic dependence. Index t transforms
the variance-covariance matrix V by multiplying the off-
diagonal elements. A value of indicates that traitst p 0
show complete phylogenetic independence, whereas a
value of indicates that traits vary in accordance witht p 1
the Brownian model.

Equation (3) may be used to generate a likelihood func-
tion that solves to yield an estimate of g for a given value
of t:

∗ T �1 T �1g p [G V(t) Y][G V(t)G] .

The elements of the variance-covariance matrix are then
estimated by

1∗ T �1S p (y � aG) V(t) (y � aG),
(n � k)

where the divisor ( ) yields an unbiased (restricted)n � k
maximum likelihood estimate of the variance. The ele-
ments of S, the trait variance-covariance matrix, may be
used to estimate the correlation between traits. Then t is
varied to find the value that maximizes the likelihood for
the whole data set through a direct search algorithm.

In the results below, we report the maximum likelihood
values of trait correlations (derived from S) as well as the
maximum likelihood estimates of t used to estimate these.

Results

The estimates of ranged from 0.007 in one population2jd

of wandering albatross Diomedea exulans to 0.854 in the
population of blue tit Parus caeruleus breeding on the
island of Vlieland in the Netherlands (fig. 1). The mean
value of across populations was 0.358 ( ).2j SD p 0.182d

This shows that the demographic variance in bird popu-
lations is !1, with a majority of estimates in the interval
from to 0.40.2ĵ p 0.20d

We then decomposed the demographic stochasticity into
different components due to random individual variation
in fecundity and in survival. Using mean species-specific
values, the two components of the demographic variance
were positively correlated (fig. 2a, correlation coeffi-

, , ; after removing the effectscient p 0.39 n p 30 P ! .033
of phylogeny, correlation , ,coefficient p 0.28 n p 30

[ ]; removing the outlier represented byP 1 .1 t p 0.34
Larus canus in the lower right-hand quadrant improved
the correlation coefficient to 0.61, , andn p 29 P ! .001
0.41, , [ ] before and after remov-n p 29 P ! .05 t p 0.84
ing the effects of phylogeny, respectively). As expected
from this relationship, interspecific differences in demo-
graphic variance were closely related to the size of both
the fecundity component (fig. 2b, correlation

, , ; phylogenetic cor-coefficient p 0.76 n p 30 P ! .001
relation , , [ ])coefficient p 0.72 n p 30 P ! .001 t p 0.37
and the survival component (fig. 2c, correlation

, , ; phylogenetic cor-coefficient p 0.86 n p 30 P ! .001
relation , , [ ]).coefficient p 0.85 n p 30 P ! .001 t p 0.35

Interspecific differences in demographic stochasticity
were well explained by life-history variation. Larger values
of were found in species at the fast end of the avian2jd
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Figure 2: Relationship between the contribution of fecundity and survival
to the demographic variance of 30 bird species (a), and in relation2 2j jd d

to the contribution from fecundity (b) and survival (c).

life-history continuum (Sæther and Bakke 2000; Bennett
and Owens 2002), that is, in species with large clutch sizes
(fig. 3a, correlation , ,coefficient p 0.50 n p 31 P p

), short life expectancy (fig. 3b, correlation coeffi-.004
, , ), early age at maturitycient p �0.57 n p 31 P p .001

(fig. 3c, correlation , ,coefficient p �0.61 n p 31 P !

) and short generation times (fig. 3d, correlation.001
, , ). However, a largecoefficient p �0.56 n p 31 P p .001

phylogenetic component was present in those relation-
ships (phylogenetic correlation ,coefficient p 0.18 P 1

.05 [ ]; phylogenetic correlationt p 1.10 coefficient p
�0.27, [ ]; phylogenetic correlationP 1 .05 t p 0.82

, [ ]; and phyloge-coefficient p �0.45 P ! .05 t p 0.94
netic correlation , [ ]coefficient p �0.41 P ! .05 t p 1.11
for clutch size, adult survival rate, age at maturity, and
generation time, respectively). The relationship between

and p was best explained by a curvilinear relationship2jd

(fig. 3b, phylogenetic correlation ,coefficient p �0.71
[ ]), which may be explained by a re-P ! .001 t p 0.68

duction in the binomial variance component of from2jd

survival for . The contribution of fecundity toFpF ! 0.5
the demographic variance increased with clutch size (cor-
relation , , ; phyloge-coefficient p 0.65 P ! .001 n p 30
netic correlation , [ ])coefficient p �0.34 P ! .05 t p 1.29
but decreased with adult survival rate (correlation

, , ), age at maturitycoefficient p �0.51 P p .004 n p 30
(correlation , , ), andcoefficient p �0.55 P p .001 n p 30
generation time (correlation ,coefficient p �0.50 n p

, ). However, these latter three relations were30 P p .005
strongly influenced by the phylogenetic relationships (phy-
logenetic correlations were �0.11 [ ], �0.26t p 1.12
[ ], and �0.17 [ ], for adult sur-t p 1.07 t p 1.26 P 1 .05
vival rate, age at maturity, and generation time, respec-
tively). Similarly, the contribution of adult survival de-
creased with adult survival rate (correlation

, , ; phylogenetic cor-coefficient p �0.59 P ! .001 n p 30
relation , [ ]); age atcoefficient p �0.47 P ! .01 t p 0.72
maturity (correlation , ,coefficient p �0.59 P ! .001

; phylogenetic correlation ,n p 30 coefficient p �0.53
[ ]); and generation time (correlationP ! .01 t p 0.73

, , ; phylogenetic cor-coefficient p �0.71 P ! .001 n p 30
relation , [ ]) but in-coefficient p �0.51 P ! .01 t p 0.82
creased with clutch size (correlation ,coefficient p 0.45

, ; not significant after accounting forP p .013 n p 30
phylogeny: phylogenetic correlation ,coefficient p 0.27

[ ]). This supports the hypothesis that theP 1 .05 t p 0.93
level of demographic stochasticity in avian population dy-
namics is subject to life-history constraints on the possible
range of variation in fecundity or survival, resulting in
small values of in long-lived species with small repro-2jd

ductive rates.
Environmental stochasticity is another major stochastic

component influencing avian population dynamics (Le-
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Figure 3: Mean value across species of the demographic variance in relation to clutch size (a), adult survival rate (b), age at maturity (c), and2jd

generation time (d). The equations for the lines of best fit was and in (b) and (d), respectively.2 2 2 �0.08Tj p �1.74p � 1.84p � 0.09 j p �0.42ed d

breton 1990; Sæther et al. 2002a). The environmental var-
iance can be estimated from time series analyses of2je

long-term population fluctuations (see “Methods”). Again
using the mean value across populations within species,
we find that log10 and were positively related (fig. 4;2 2ˆ ˆj je d

correlation , , ). How-coefficient p 0.51 P p .009 n p 25
ever, this relationship was no longer significant ( )P 1 .05
after excluding Melopsiza melodia from the analysis or
when accounting for the effects of phylogeny (phylogenetic
correlation , ).coefficient p 0.25 t p 0.86

Discussion

This study is based on three fundamental assumptions.
First, we assume that the large uncertainties in the param-
eter estimates (Sæther et al. 2000a; Sæther and Engen
2002b; Lande et al. 2003), because of time series that in
a statistical sense are short, are independent of the species-
specific life-history characteristics. To reduce the impact
of violation of this assumption, we fit density-dependent
models only to species with age at maturity ≤3 years of
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Figure 4: Mean value across species of environmental variance in2je

relation to the demographic variance for species with age at maturity2jd

!4 years of age.

age (see appendix). Second, we assume that interspecific
variation in population dynamical characteristics is larger
than differences among populations within a species. This
is not necessarily always the case. For instance, in three
hole-nesting species (Parus caeruleus, Parus major, and Fi-
cedula hypoleuca) for which several estimates of and2jd

were available (Sæther et al. 2003), the among-2je

population variation was larger than the interspecific var-
iation in both the demographic and the environmental2jd

variance . However, most of the estimates of long-lived2je

species (appendix) still lie outside the range of intraspecific
variation within these three passerine species that have
quite similar life-history characteristics. Third, the esti-
mates of may be influenced by interspecific differences2jd

in natal dispersal (Lambrechts et al. 1999) because small
values of are expected in populations where few recruits2ĵd

return. However, in several of the long-lived species with
small demographic stochasticity (e.g., Diomedea exulans),
a large proportion of all individuals in the population have
been individually followed over several decades (Weimer-
skirch 1992) that sometimes also involved control of even
long-distance dispersers (Inchausti and Weimerskirch
2002). This makes it unlikely that the proportion of un-
recorded recruits is systematically smaller among long-
lived species, even though the number of local recruits
may be extremely small also in long-lived species such as
Pagodroma nivea (Chastel et al. 1993). In spite of these
caveats, we still find that the contribution of demographic
stochasticity to annual variation in population size of birds
increases with decreasing life expectancy and increasing
clutch size (fig. 3). This supports the hypothesis that re-
duced demographic stochasticity is found in species at the

slow end of the slow-fast continuum of life-history vari-
ation (Sæther and Bakke 2000; Bennett and Owens 2002).

The methods employed here allow for separating out
the relative contribution of demographic and environ-
mental stochasticity to variation in annual changes in (log)
population size. This represents an important extension
of earlier stochastic population models that considered
only either demographic stochasticity (Bartlett 1960) or
environmental variance (Tuljapurkar 1990). Our results
indicate a covariation across species between these two
stochastic components of the population dynamics, al-
though this relationship was strongly sensitive by one out-
lier (fig. 4). However, we estimated only for species that2je

matured earlier than 4 years of age to avoid the effects of
life-history-induced effects on the population fluctuations
(Lande et al. 2002). Although we have no methods avail-
able yet for separating out this effect, our estimates suggest
that a reduction of the stochastic influence on the pop-
ulation fluctuations may be a general characteristic of the
population dynamics of long-lived species.

Analyses of avian life-history variation have identified
strong phylogenetic effects (Bennett and Owens 2002).
Some families have evolved slow development, delayed
maturation, and small clutch sizes, whereas others are
characterized by an early age of maturity and high re-
productive output (Lack 1968). Accordingly, for many of
the relationships, our phylogenetic analyses show high
values of the phylogenetic index t (Freckleton et al.
2002), indicating that phylogenetic relationships explain
a high proportion of the relationship between demo-
graphic stochasticity and life-history variation in birds.
This component was especially large for the contribution
of fecundity to interspecific variation in .2jd

Three explanations may account for these results. First,
the association between and the life-history character-2jd

istics (fig. 3) may be due to a relationship between habitat
characteristics and population dynamics. If, for instance,
marine environments are more stable than terrestrial en-
vironments, the proportion of marine species in the data
set will strongly influence any relationships. However, in-
cluding only terrestrial species in the analyses had only a
slight effect (!10%) on the correlation coefficients in figure
3. Second, our results (figs. 3, 4) may suggest an adaptive
reduction through natural selection of the influence of
stochastic variation on population variability in long-lived
species. In general, the deterministic growth rate r1 in birds
decreases with adult survival rate (Sæther and Engen
2002b; Sæther et al. 2002a). This reduces the maximal
amount of stochastic variation in the population dynamics
that still ensures a positive long-run population growth
rate (see eq. [2]). Accordingly, species with small clutch
sizes have smaller demographic variances (fig. 3a). Since
individual variation in resource allocation is likely to affect
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reproductive success (Roff 1992), this suggests that females
in long-lived species allocate resources toward their own
survival at the expense of expected survival of offspring
under unfavorable environmental conditions. This is also
supported by theoretical analyses of life-history evolution
in stochastic environments showing increased environ-
mental stochasticity to favor delayed reproduction or re-
duced parental effort to reduce the risk of extinction (Or-
zack 1997; Erikstad et al. 1998; Benton and Grant 1999;
Orzack and Tuljapurkar 2000; Gaillard and Yoccoz 2003).
For instance, female cervides may stop lactating during
periods with bad weather (Gaillard and Yoccoz 2003), re-
sulting in mortality of the offspring. Accordingly, short-
lived bird species generally respond by increased foraging
effort when the nutritional requirements are artificially
increased (Wright and Cuthill 1989), but such a response
sacrificing the probability of own survival in favor of off-
spring investment is rarely recorded in long-lived species
(Sæther et al. 1993).

A general pattern that seems to emerge from several
studies covering a variety of taxa (Pfister 1998; Sæther and
Bakke 2000; Gaillard and Yoccoz 2003) is that smaller
temporal variation is found in those demographic traits
that most strongly influence variation in population
growth rate. However, these studies were unable to dis-
tinguish between the relative contribution of density de-
pendence and stochastic variation to the variance in de-
mographic traits. Our results suggest that an important
contribution in birds to such an inverse relationship be-
tween variance and sensitivity (Caswell 2001) of a trait is
a reduction in long-lived species of the influences of the
demographic stochasticity (fig. 3) and also maybe the en-
vironmental stochasticity (fig. 4) on the population growth
rate. This suggests an interaction between patterns in pop-
ulation dynamics and evolutionary processes within pop-
ulations, probably operating through an increase of life
expectancy in the intensity of natural selection to reduce
the influence of stochastic variation on demographic traits
with high sensitivity.
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zeel, A. Dhondt, B. Ullrich, M. van der Pol, S. Verhulst,
and J. Visser for access to unpublished data; R. Freckleton
for help with the phylogenetic analyses; and T. Coulson
for comments on previous versions of the manuscript. The
study was financed by grants from the European Com-
mission (project METABIRD), the Research Council of
Norway (Strategic University Program), the National Sci-
ence Foundation, and the Dutch Science Foundation

(Nederlandsde Organisatie voor Wetenschappelijk Onder-
zoek).

Literature Cited

Ariño, A., and S. L. Pimm. 1995. On the nature of pop-
ulation extremes. Evolutionary Ecology 9:429–443.

Bartlett, M. S. 1960. Stochastic population models in ecol-
ogy and epidemiology. Methuen, London.

Bennett, P. M., and I. P. F. Owens. 2002. Evolutionary
ecology of birds. Oxford University Press, Oxford.

Benton, T. G., and A. Grant. 1999. Optimal reproductive
effort in stochastic, density-dependent environments.
Evolution 53:677–688.

Bro, E., F. Sarrazin, J. Clobert, and F. Reitz. 2000. De-
mography and the decline of the grey partridge Perdix
perdix in France. Journal of Applied Ecology 37:432–
448.

Caswell, H. 2001. Matrix population models. 2d ed. Sin-
auer, Sunderland, Mass.

Chastel, O., H. Weimerskirch, and P. Jouventin. 1993. High
annual variability in reproductive success and survival
of an Antarctic seabird, the snow petrel Pagodroma ni-
vea: a 27-year study. Oecologia (Berlin) 94:278–285.

Dennis, B., P. Munholland, and J. M. Scott. 1991. Esti-
mation of growth and extinction parameters for en-
dangered species. Ecological Monographs 61:115–143.

Engen, S., Ø. Bakke, and A. Islam. 1998. Demographic
and environmental stochasticity: concepts and defini-
tions. Biometrics 54:830–836.

Engen, S., B.-E. Sæther, and A. P. Møller. 2001. Stochastic
population dynamics and time to extinction of a de-
clining population of barn swallows. Journal of Animal
Ecology 70:789–797.

Engen, S., R. Lande, and B.-E. Sæther. 2003. Demographic
stochasticity and Allee effects in populations with two
sexes. Ecology 84:2378–2386.

Engen, S., R. Lande, B.-E. Sæther, and T. Bregnballe. In
press. Estimating the pattern of synchrony in fluctuating
populations. Journal of Animal Ecology.

Erikstad, K. E., P. Fauchald, T. Tveraa, and H. Steen. 1998.
On the cost of reproduction in long-lived birds: the
influence of environmental variability. Ecology 79:1781–
1788.

Fox, G. A., and B. E. Kendall. 2002. Demographic sto-
chasticity and the variance reduction effect. Ecology 83:
1928–1934.

Freckleton, R. P., P. H. Harvey, and M. D. Pagel. 2002.
Phylogenetic analysis and comparative data: a test and
review of evidence. American Naturalist 160:712–726.

Gaillard, J.-M., and N. G. Yoccoz. 2003. Temporal variation
in survival of mammals: a case of environmental can-
alization? Ecology 84:3294–3306.

This content downloaded from 129.125.148.019 on November 12, 2018 23:26:45 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&system=10.1086%2F343873&citationId=p_15
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1007%2FBF01237765&citationId=p_1
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1046%2Fj.1365-2664.2000.00511.x&citationId=p_5
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.2307%2F2533838&citationId=p_9
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1890%2F02-0409&citationId=p_16
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1890%2F0012-9658%281998%29079%5B1781%3AOTCORI%5D2.0.CO%3B2&citationId=p_13
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1046%2Fj.0021-8790.2001.00543.x&citationId=p_10
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1046%2Fj.0021-8790.2001.00543.x&citationId=p_10
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&pmid=28314043&crossref=10.1007%2FBF00341328&citationId=p_7
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1890%2F0012-9658%282002%29083%5B1928%3ADSATVR%5D2.0.CO%3B2&citationId=p_14
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&pmid=28565645&crossref=10.1111%2Fj.1558-5646.1999.tb05363.x&citationId=p_4
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.1890%2F02-0123&citationId=p_11
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F425371&crossref=10.2307%2F1943004&citationId=p_8


Demographic Stochasticity in Birds 801

Gilpin, M. E., and F. J. Ayala. 1973. Global models of
growth and competition. Proceedings of the National
Academy of Sciences of the USA 70:3590–3593.

Goodman, L. 1967. The probability of extinction for birth-
and-death processes that are age-dependent or phase-
dependent. Biometrika 54:579–596.

Hansen, F. 1987. Die Einwanderung des Schwarzspechtes
Dryocopus martius nach Bornholm und seine Popula-
tionsentwicklung während 25 Jahren. Acta Regiae So-
cietatis Litteraturae Gothoburgensis, Zoologica 14:53–
59.

Inchausti, P., and J. Halley. 2002. The long-term temporal
variability and spectral colour of animal populations.
Evolutionary Ecology Research 4:1033–1048.

Inchausti, P., and H. Weimerskirch. 2002. Dispersal and
metapopulation dynamics of an oceanic seabird, the
wandering albatross, and its consequences for its re-
sponse to long-line fisheries. Journal of Animal Ecology
71:765–770.

Lack, D. 1968. Ecological adaptations for breeding in birds.
Methuen, London.

Lambrechts, M. M., J. Blondel, A. Caizergues, P. C. Dias,
R. Pradel, and D. W. Thomas. 1999. Will estimates of
lifetime recruitment of breeding offspring on small-scale
study plots help us to quantify processes underlying
adaptation? Oikos 86:147–151.

Lande, R. 1998. Demographic stochasticity and Allee effect
on a scale with isotropic noise. Oikos 83:353–358.

Lande, R., S. Engen, B.-E. Sæther, F. Filli, E. Matthysen,
and H. Weimerskirch. 2002. Estimating density depen-
dence from population time series using demographic
theory and life-history data. American Naturalist 159:
321–337.

Lande, R., S. Engen, and B.-E. Sæther. 2003. Stochastic
population dynamics in ecology and conservation. Ox-
ford University Press, Oxford.

Lebreton, J. 1990. Modelling density dependence, envi-
ronmental variability, and demographic stochasticity
from population counts: an example using Wytham
Wood great tits. Pages 89–102 in J. Blondel, A. Gosler,
J.-D. Lebreton, and R. H. McCleery, eds. Population
biology of passerine birds. Springer, Berlin.

Leigh, E. G., Jr. 1981. The average lifetime of a population
in a varying environment. Journal of Theoretical Bi-
ology 90:213–239.

May, R. M. 1973. Stability in randomly fluctuating versus
deterministic environments. American Naturalist 107:
621–650.

Newton, I. 1998. Population limitation in birds. Academic
Press, San Diego, Calif.

Orzack, S. H. 1997. Life history evolution and extinction.
Pages 273–302 in S. Tuljapurkar and H. Caswell, eds.

Structured population models in marine, terrestrial, and
freshwater systems. Chapman & Hall, New York.

Orzack, S. H., and S. Tuljapurkar. 2000. Reproductive ef-
fort in variable environments, or environmental vari-
ation is for the birds. Ecology 82:2659–2665.

Pagel, M. D. 1999. Inferring the historical patterns of bi-
ological evolution. Nature 401:877–884.

Pfister, C. 1998. Patterns of variance in stage-structured
populations: evolutionary predictions and ecological
implications. Proceedings of the National Academy of
Sciences of the USA 95:213–218.

Pimm, S. L. 1991. The balance of nature? University of
Chicago Press, Chicago.

Roff, D. 1992. The evolution of life histories. Chapman &
Hall, New York.

Sæther, B.-E., and Ø. Bakke. 2000. Avian life history var-
iation and contribution of demographic traits to the
population growth rate. Ecology 81:642–653.

Sæther, B.-E., and S. Engen. 2002a. Including uncertainties
in population viability analysis using population pre-
diction intervals. Pages 191–212 in S. R. Beissinger and
D. R. McCullough, eds. Population viability analysis.
University of Chicago Press, Chicago.

———. 2002b. Pattern of variation in avian population
growth rates. Philosophical Transactions of the Royal
Society of London B 357:1185–1196.

———. 2003. The routes to extinction. Pages 218–236 in
T. Blackburn and K. Gaston, eds. Macroecology. Black-
well, Oxford.

Sæther, B.-E., R. Andersen, and H. C. Pedersen. 1993.
Regulation of parental effort in a long-lived seabird: an
experimental manipulation of the cost of reproduction
in the antarctic petrel, Thalassoica antarctica. Behavioral
Ecology and Sociobiology 33:147–150.

Sæther, B.-E., S. Engen, A. Islam, R. McCleery, and C.
Perrins. 1998. Environmental stochasticity and extinc-
tion risk in a population of a small songbird, the great
tit. American Naturalist 151:441–450.

Sæther, B.-E., S. Engen, R. Lande, P. Arcese, and J. N. M.
Smith. 2000a. Estimating the time to extinction in an
island population of song sparrows. Proceedings of the
Royal Society of London B 267:621–626.

Sæther, B.-E., J. Tufto, S. Engen, K. Jerstad, O. W. Røstad,
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