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Abstract

Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer,

poly(2-methoxy-5-(30,70-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a

methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were investigated using

photocurrent imaging techniques to determine characteristic patterns of efficiency and

degradation. The solar cells with power efficiencies of up to 2.6% showed significant

inhomogeneities and variations depending on the preparation steps (e.g. aluminum

deposition), suggesting there is still room for improvements. A characteristic feature

of the well-known photoinduced and dark cell degradation is the formation of islands

of higher efficiency. Degradation mechanisms appear to have a morphological com-

ponent. The imaging technique will open opportunities for combinatorial plastic solar cell

research.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Plastic solar cells consisting of thin films of solid-state composites of con-
jugated polymer/fullerene have attracted significant attention [1–6]. In contrast to
traditional heterojunction photovoltaic cells, plastic solar cells are based on
irreversible charge separation in the micro-heterogeneous bulk. This is achieved by
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homogenous distribution of the fullerene acceptor in the polymer donor
matrix. Recently, plastic solar cells produced from a conjugated polymer poly(2-
methoxy-5-(30,70-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV) and
a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) have
received much attention. Our contribution will focus on this type of com-
posite polymer solar cell. The presently still high photoinstability and dark
instability of plastic solar cells is a well-known challenge. It has motivated
experimental strategies focused on glove boxes with controlled atmospheres.
An important goal is to understand and tackle the mechanisms of instability,
and to eventually avoid expensive manufacturing techniques. This contribution
aims at investigating plastic solar cells by means of photocurrent imaging tech-
niques in order to identify characteristic spatial patterns of efficiency and
degradation.

2. Experimental

2.1. Summary of cell fabrication

The preparation steps used in cell preparation are explained in Fig. 1. ITO/glass
substrates (MDT Darmstadt; Praezisions Glas und Optik) were structured with a
laser and cleaned in ultrasonic baths. Buffer layers for acceptor strength modulation
were deposited by spin-casting poly(3,4-ethylenedioxythiophene):polystyrene sulfo-
nic acid (PEDOT: PSS, Bayer AG) in air. The active layer was cast from a
chlorobenzene solution with mass ratios of MDMO-PPV and metanofullerene
(PCBM) of (1:5). Deposition of the top electrode was done by thermal evaporation
of Al through a shadow mask to define a device area of about 5mm2. All Al
electrodes were non-transparent with a measured thickness of ca. 40 nm. Spin casting
of active layers was performed under a dry argon atmosphere to avoid
photooxidation of the fragile layers. After evaporation of the metal electrode,
devices were characterized in a sealed container (see Fig. 2) under an argon
atmosphere or in air.

2.1.1. Preparation of samples

Squares of ITO-coated glass (15� 15� 1mm3) were laser-structured (Fig. 1) to
avoid short circuits in the finished cells. The samples were cleaned in acetone and
isopropanol ultrasonic baths, consecutively, and blow-dried under pressurized
argon. The cleaned substrates were stored in a glove box.

2.1.2. Spin casting of the buffer layer

PEDOT: PPS, Bayer AG was filtered using a 0.4 mm membrane filter, mixed 1:1
with water and stirred for 2 h. The solution was spin cast onto the prepared ITO
substrates in air in two steps using 1500RPM for 20 s and 2000 RPM for 40 s. After
each step, a slab of ITO was wiped clear of buffer with cotton wool and acetone. The
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samples were then dried under a vacuum and transferred to a glove box for spin
casting of the active layer.

2.1.3. Spin casting of the active layer

The complete process was performed under an inert argon atmosphere. PCBM
was weighed and dissolved in chlorobenzene to give a 1% w/w solution.
The solution was stirred for 24 h. MDMO-PPV was added (mass ratio
PCBM:MDMO-PPV 5:1) and the solution stirred for another 2 h. It was then
heated to 50�C for 10min and spin cast onto the prepared samples in two steps using
1500RPM for 20 s and 2000RPM for 40 s. The solution was kept at constant
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Fig. 1. Preparation steps for cell fabrication.
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temperature and in the dark during the process. After each step, the same slab as in
Section 2.1.2 (see Fig. 1) was wiped clear of coating with cotton wool and
toluene.

2.1.4. Deposition of aluminum layer

Al layers were deposited by vaccum evaporation, aiming to achieve a 40 nm
thickness. Samples were placed on masks defining selected areas of the cells. To
avoid a gradient in layer thickness the samples were rotated during the deposition
process. The vaccum chamber was evacuated with a turbomolecular pump. Typical
pressures during deposition were 10�7 mbar. Aluminum was heated in a thin ceramic
tube at the base of the chamber, ca. 50 cm below the samples, kept at a storage
temperature of ca. 200�C. The Al was first slowly heated to about 1000�C and then
to about 1300�C. When the deposition rate was measured to be 0.1 nm/s, a shutter
was opened to allow deposition onto the samples, keeping the rate constant.
Typically, it took 10–15min to deposit 40 nm. No LiF was applied below the Al
layer. After depositon, the chamber was flushed with argon and the samples stored in
an inert adjacent chamber.

2.2. Scanning apparatus

The experimental technique used for most measurements presented in this
contribution is the scanning microscope for semiconductor characterization (SMSC)
[7,8]. The cells are mounted on a scan stage which allows the movement of the probe
in the x and y directions. A He–Ne laser (632 nm) is focussed on the cell in a
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small spot, and the resulting photocurrent is measured point by point. The current
induced by the laser beam is filtered out from the background using a lock-in
amplifier. The spatially resolved photocurrent images were obtained by scanning
across the sample in this way. The image resolution depends on the size of the laser
spot focused through the microscope lenses and the scan-step-width, though the
former is the limiting factor. The spot diameter was varied between 10 and 30 mm
except for the higher-resolution images (Fig. 10) when a 2 mm spot diameter was
selected.
The experimental conditions applied in the scanning measurements and

the measurement program selected for the different samples are shown in detail in
Table 1.

2.3. Current–voltage curve measurement

Current–voltage curves were recorded under a calibrated solar simulator,
adjusted to 1000W/m2. During the measurements, cells were inside a portable
airtight container (see Fig. 2), which was sealed under the inert atmosphere
of the evaporation chamber to avoid air exposure. The scanning measurements
for cell 9 were performed in the same container after the current voltage curves
were recorded.

3. Results

3.1. Efficiency patterns

The 10 investigated cells (Table 1) have yielded solar efficiencies of up to 2.6%
(Fig. 3A). This cell yielded an initial short-circuit photocurrent density of
7.55mAcm�2 and a photovoltage of 0.754V. The fill factor was determined to be
0.456. The effective solar cell area was 5.25mm2. It can be observed that this
cell, analyzed with a laser spot of 10 mm diameter and an adjusted light intensity
of 106W/m2 (much lower than solar light intensity) shows remarkable inhomogene-
ities. While about one-third of the cell surface yields a laser-induced photo-
current density of more than 80 mA/cm2, the rest of the cell seems to operate at
two-third of the maximum efficiency. Characteristic spots of 50–100 mm in diameter
can be identified where the photocurrent efficiency reaches only 50% of that
in the surrounding area. To rule out that the inhomogeneities are an effect of
trivial morphological variations across the plastic solar cell, an image of reflected
light (Fig. 3B) was also recorded. A more homogeneous reflection without the
characteristic patterns is seen, as compared with the photocurrent image (Fig. 3A),
ruling out trivial morphological variations across the plastic solar cell or related
optical effects as an obvious reason for photocurrent inhomogeneities. They maybe
induced to be controlled by impurities or impurity controlled reactivity of the
composite.
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Table 1

Experimental conditions and measurement program explained for different solar cells as presented in the listed figures

Figure Cell Imageheight

(mm)

Imagewidth

(mm)

Light intens-ity

(W/m2)

Laser spot

diameter (mm)
Pulse frequency

(Hz)

Step size

(mm)
Exposure to

air

Dark

storage

3 a 9 2.385 4.245 106 10 71 15 Inert atm. 1 day

3 b 9 2.250 3.870 106 10 109 30 Inert atm. 2 days

4 9 2.480 4.360 1940 14 71 20 2 weeks 2 weeks

7 a 1 2.820 7.380 835 18 69 20 1 h 2 months

7 b 2 2.360 7.620 835 18 69 20 1 h 2 months

7 c 2 2.550 7.290 n.a. 15 71 30 1 week 2 months

9 a 10 2.160 4.800 2084 14 72 20 2 weeks —

9 b 11 2.700 4.960 2011 14 78 20 2 weeks —

9 c 12 2.420 5.160 2011 14 78 20 2 weeks —

11 a 3 2.040 4.620 802 30 72 30 1 h 3 months

11 b 4 1.980 5.900 800 30 71 20 1 h 2 months

11 c 5 2.340 6.090 800 30 71 30 1 h 2 months

12 5 0.232 0.464 n.a. 2 73 2 1 day 2 months
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Fig. 4 shows the same cell as in Fig. 3, after dark degradation in air for 2 weeks.
The obtained photocurrent pattern differs from the original cell. It looks blurred, an
effect of the high light intensity (1940W/m2) used to obtain the image of the much
degraded photocurrent. A curious feature in Fig. 4 is an isolated area with somewhat
higher photocurrent density. The boundaries of the cell yield lower photocurrent
than the bulk, which looks less decomposed. This can be seen more clearly in the
photocurrent profiles across the plastic cells, presented in Fig. 5 for the fresh cell
(Fig. 3) and the decomposed cell (Fig. 4). A lateral process of degradation of the

ARTICLE IN PRESS

Fig. 3. Cell 9: Photocurrent density (A) and reflectance (B) diagram taken under air exclusion. The black

arrow shows the position of the cross-section in Fig. 5. JPH=photocurrent density. The starting solar

efficiency of the cell was 2.6%.
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solar cell may be taking place simultaneously to degradation through diffusion of
ambient gases into the aluminum cover layer. The photocurrent voltage character-
istics of the plastic cell from Fig. 3 are shown in a linear and a logarithmic current
plot (Fig. 6). This curve was taken in an inert atmosphere before recording the
images.

3.2. Inhomogeneous aluminum deposits

A few of the plastic solar cells, with efficiencies of 1.0–1.5%, showed significant
inhomogeneities due to a preparation step. In the case of Fig. 7a and b, aluminum
contact deposition created an evaporation shadow pattern with a significantly
enhanced photocurrent. On the right rim of the plastic cell in Fig. 7a, the
photocurrent density turned out to be three times as high as in the rest of the plastic
cell area. This is a remarkable observation indicating that the Al deposition
conditions are crucial to achieving high efficiencies. To find out more about the cause
of the patterns an image of reflectance was measured (Fig. 7c) where the patterns
were not observed, ruling out optical effects. To dermine whether variations in
aluminum thickness correlate with the observed photocurrent, DEKTAK profile
measurements were performed along the arrows a, b, c in Fig. 7. Fig. 8 shows the
profiles. Surprisingly no change of thickness is observed within the area of high
photocurrent density. Since the pattern of aluminum shadowing was measured with
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Fig. 4. Cell 9: Photocurrent density image after degradation in air in the dark for 2 weeks. Some degree

of deterioration at the edges can be observed. The black arrow shows the position of the cross-section

in Fig. 5.
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a laser spot dimension of 18 mm the information obtained appears to be reliable. The
nature of Al/polymer composite interface seems to play a key role in the efficiency of
electron and hole transfer. However, more systematic measurements will be
necessary to clarify possible mechanisms.

3.3. Patterns of degradation

Fig. 9 shows the degradation of the photocurrent of a plastic solar cell under
1000W/cm2 illumination inside the sealed container, used for cell 9. Already within
1 h the effect is very pronounced. It also shows how a temporary exposure of the cell
to air leads to an accelerated decrease of photoefficiency, and gives a measure of the
cells lifetime for the measurements used for cell 9. Fig. 10 shows three cells after 2
weeks of degradation. The photocurrent seems to become inhomogeneous,
suggesting selective degradation. Higher degrees of degradation around the rim of
the cell could be an effect of a mechanism of lateral degradion through diffusion of
oxygen or water vapor.

ARTICLE IN PRESS

Fig. 5. Cross-section of photocurrent density through cell 9 in an inert atmosphere (A) and after 2 weeks

of degradation in air (B).
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3.4. Island formation

Fig. 11 shows photocurrent images of three plastic solar cells after 2 months
of dark storage. The cells have characteristically altered the pattern of photo-
current efficiency distribution. They exhibit island-like areas with still enhanced
photocurrent efficiency. Some areas of composite aggregation seem to be more
stable than others. To determine whether the decomposed areas exhibit a
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Fig. 6. Current–voltage characteristics of cell 9 in the dark and under 1000W/m2 illumination, taken prior

to scanning photocurrent microscopy under an inert atmosphere.
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Fig. 7. Photocurrent density patterns caused by a shadow during aluminum vacuum deposition.

Photocurrent density is larger in the shadow region in cell 1 (A) and cell 2 (B). A reflectance image of cells

2 (C) shows that the shadow is probably not an optical effect. The arrows on cells 1 and 2 indicate the

locations of DEKTAK measurements.
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Fig. 8. DEKTAK profiles of cells 1 and 2, taken at the edge of the aluminum strip. Graphs A, B, C

correspond to arrows on Fig. 7. Units are in mm on the x-axis and Angstroms on the y-axis. A step of

about 400 (A (40 nm), seen in all three profiles, is probably the edge of the aluminum strip. No change

in thickness due to the shadow can be observed at the expected position 200mm before the edge in (A)
and (B).
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micrometer-scale structure, photocurrent images with a laser spot of 2 mm
diameter were performed (Fig. 12) and a smooth pattern was observed, indicating
an absence of efficiency determining crystalline or polymeric structures on this
scale.

4. Discussion

This explorative study of photocurrent images of plastic solar cells has yielded
some interesting results, which warrant further detailed investigation. First it was
observed that the photocurrent density of plastic solar cells is usually inhomoge-
neous to some extent, indicating that a significantly higher efficiency is within reach,
for example by more accurate control of the process of plastic cell fabrication. The
remarkable threefold increase of photocurrent density as a result of beam shadows
during aluminum deposition is apparently a phenomenon, which has been caused by
the geometry of chamber and masks influencing the local nature of the deposition
process. It indicates that there are challenging problems related to forming metal
contacts with polymer: fullerene solar cells. A weakness of plastic solar cells is their
instability, both in presence of light and in the dark as well as upon exposure to
ambient gases such as oxygen and water vapor. The apparently characteristic
property of these plastic solar cells of allowing islands of high efficiency to survive
suggests that there is room for more understanding and improvement. The presented
experiments have shown that photocurrent images yield additional information to
integral measurements. Peculiarities and random variations of parameters, of which
there are a great number in this type of device, can be tracked down faster with this

ARTICLE IN PRESS

Fig. 9. Decay of photocurrent (Isc) in Cell 10 as a result of degradation under 1000W/cm
2 illumination in

an inert atmosphere, followed by exposure to the atmosphere.
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Fig. 10. Photocurrent density images of cells 10, 11 and 12 (A, B and C, respectively) after 2 weeks

degradation.
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method. The technique also has potential in combinatorial research of plastic solar
cells. It allows local modificaton of a cell with chemical or physical factors and
observation of the induced changes during an aging process, avoiding the inevitable
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Fig. 11. Photocurrent density images of cells 3, 4 and 5 (A, B and C, respectively) after 2 months of dark

storage.
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quality variations between different samples in traditional experiments. It may be
possible to obtain a more rapid cell optimization in this way.
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