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ABSTRACT: The phase behavior of block copolymers melts involving competing length scales, i.e., able
to microphase separate on two different length scales, is theoretically investigated using a self-consistent
field approach. The specific block copolymers studied consist of a linear A-block linked to an alternating
(A-alt-B)-block. The large length scale microphase separation is closely related to the overall length scale
of the block copolymer, whereas the short length scale microphase separation is associated with the length
scale of the repeat unit of the alternating block. Because of the presence of competing intrinsic length
scales, the periodicity of the lamellar structure is extremely temperature sensitive. For a range of polymer
compositions a first-order phase transition occurs from a lamellar morphology with a large periodicity to
a lamellar or hexagonal morphology with a much smaller periodicity. Such phase transitions could
potentially form the basis for responsive materials.

1. Introduction

Simple AB-block copolymer melts microphase sepa-
rate with one characteristic length scale. However, if
more than two monomer types are involved, microphase
separation frequently occurs at different length scales.1-7

Several examples can be found in the experimental work
of Ikkala and ten Brinke and co-workers. There,4-6

linear-comb diblock copolymers are investigated con-
sisting of a polystyrene-block-poly(4-vinylpyridine)
(PS-b-P4VP) diblock copolymer with side chains (e.g.,
pentadecylphenol, PDP) attached by hydrogen bonds to
the P4VP-block. The resulting linear-comb diblock
copolymers show typical two length scale hierarchical
structure-within-structure morphologies. The PS-blocks
microphase separate from the P4VP(PDP)-blocks, giving
rise to the well-known classical morphologies depending
on the volume fraction of either block. This structure
corresponds to the large length scale ordering, and the
order-disorder transition temperature is, if present at
all, very high. Inside the P4VP(PDP) domains an
additional short length scale lamellar ordering takes
place below the order-disorder transition at ca. 60 °C.
The structure-within-structure formation of these comb-
shaped supramolecules can be used to prepare materials
with interesting electronic and photonic properties. For
example, upon selective “doping” of one block, temper-
ature-dependent proton conductivity can be suitably
based on a sequence of phase transitions.8,9 The self-
organization of similar linear-comb diblock supramol-
ecules using dodecylbenzenesulfonic acid (DBSA) and
high molar mass diblock copolymers, PS-block-P4VP-
(DBSA), leads to a particularly large lamellar periodicity
in excess of 100 nm with a strong reflectivity around
460 nm; i.e., an incomplete photonic band-gap opens.10,11

Structure formation involving competing length scales
is only possible for systems that can phase separate in
more than one way. An interesting example, very re-
cently discussed by Erukhimovich et al.,12 concerned a
mixture of AC-diblock and ABC-triblock copolymers.

Other possibilities, which will form the main subject of
this paper, are based on pure copolymer melts (not mix-
tures) of copolymer molecules with an architecture that
involves more than one intrinsic length scale. The most
simple example consists of ABC-triblock copolymers,
which indeed formed the subject of many experimental
and theoretical investigations during recent years.1,3,7,13-16

By selecting appropriate block lengths, a variety of
structures have been produced. Such systems are hard
to analyze systematically because three different Flory-
Huggins interaction parameters (øAB, øAC, øBC) and two
different composition variables (fA, fB) are involved.

Interestingly enough, when competing length scales
is the topic of real interest, the use of two chemically
different monomers only turns out to be a more natural
choice. In the case of the aforementioned linear-comb
PS-block-P4VP(PDP) supramolecules self-organization
leads to hierarchical structures characterized by two
length scales; however, the self-assembly does not in-
volve a real competition between the two length scales.
The large length scale is formed at high temperatures
where upon cooling the short length scale structure is
formed inside the domains that contain the comb-shaped
blocks. Genuine competing length scales require only
two chemically different monomers. By selecting diblock
copolymer-like architectures with one block being a ho-
mopolymer and the other block being essentially a mul-
tiblock, two intrinsic length scales are introduced in a
most natural way. In particular, the use of a multiblock
as one of the two blocks almost automatically introduces
a length scale that is an order of magnitude smaller
than the length scale corresponding to the diblock struc-
ture. Typical examples are diblock copolymers consisting
of an A-homopolymer block and either an A-graft-B
block or an A-alt-B block denoted as Am-b-(A-g-B)n or
Am-b-(B-b-A)n. These copolymers will be referred to as
linear-comb block copolymers and linear-alternating
block copolymers, respectively. A schematic picture of
the linear-alternating block copolymer architecture,
which forms the subject of the present paper, is shown
in Figure 1.

Because of the architecture of the molecule, micro-
phase separation is feasible at two different length
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scales, which loosely speaking correspond to microphase
separation “between” the linear A-block and the AB-
block and “inside” the AB-multiblock. The first possibil-
ity resembles that of a diblock copolymer melt, and the
characteristic length scale corresponds to the length
scale of the whole molecule. The second possibility in-
volves microphase separation on the level of the alter-
nating block. The A- and B-blocks of the alternating
block phase separate from each other, and the linear
A-block resides inside the A-phase formed by the alter-
nating A-blocks. In the situation analyzed further on
in detail, the alternating block itself is taken to have a
symmetric composition. However, the presence of the
extra A-monomers of the linear block, over that of the
alternating block, in the A-phase introduces an asym-
metry, implying that in this case the A- and B-domains
will not be of equal size. Still, the characteristic length
scale of the self-organized structure will be dominated
by the length scale of one repeat unit of the alternating
block.

Depending on the number of repeat units (n) of the
alternating block and the length of the linear A-block
(m), the phase behavior is dominated by either of the
two length scales, or these length scales are competing
for dominance. A stability analysis of the disordered
melt17 demonstrated that the n-m parameter space
displays a bifurcation point. Above the bifurcation point
a region exists where both length scales are dominately
present: the structure factor exhibits two correlation
hole peaks. Note that the “spinodal” behavior of the
linear-alternating and the linear-comb block copoly-
mers is completely analogous. In an ensuing article,18

we examined the stability of the ordered phases of
linear-comb (rather than the linear-alternating con-
sidered here) block copolymer melts within the frame-
work of the weak segregation theory. Such an analysis
is only valid near the order-disorder transition tem-
perature (ODT) because the weak segregation theory
involves a Landau expansion of the free energy up to
fourth order in the concentration profile together with
the representation of the concentration profile with only
one dominant wave vector. In particular, the second ap-
proximation proved to be very restrictive for the systems
under consideration. Consequently, we were only able
to calculate the free energy in the weak segregation
theory for those values of n and m where the phase
behavior is dominated by one length scale, which more-
over is not influenced by the second one. To extend the
analysis beyond the ODT and to investigate the effect
of competition between both length scales, we decided
to apply the self-consistent field approach. The paper
is organized as follows. In section 2, the theory is out-
lined and the pertinent system parameters are defined,
and in section 3 the results are presented and discussed.

2. Theory

Here we briefly review the self-consistent field
theory19-22 for linear block copolymer melts. For more
detailed information see e.g. refs 22-24.

We consider an incompressible polymer melt consist-
ing of np AB linear block copolymers of degree of
polymerization N. The volume of an A-monomer as well
as a B-monomer is 1/F0. Thus, the total volume of the
system equals V ) npN/F0. The configuration of the ith
polymer is represented by a contour curve ri(s). The
variable s is proportional to the arc length along the
contour of the polymer, where s is scaled such that s
∈[0, 1]. The architecture or composition of the block
copolymer is defined by the function σR(s), which equals
one if monomer s is of type R and is zero otherwise.

We suppose that the linear-alternating block copoly-
mer Am-b-(B-b-A)n consists of a linear A-block and an
AB-alternating block.17 The alternating block consists
of n identical AB-blocks of symmetric composition, i.e.,
with equal number of A- and B-monomers. Hence, the
A- and B-blocks of one repeat unit of the alternating
block have equal degrees of polymerization, denoted as
d. The length of the linear block, expressed in units of
d, is m. Therefore, the total length of the polymer is N
) (2n + m)d. The σA(s) for the linear-alternating block
copolymer is given by

where s ) t/(2n + m) and i ∈ 0, 1, ..., n - 1. Note that
σB(s) ) 1 - σA(s). Assuming the interaction is described
by the familiar Flory-Huggins expression, incompress-
ibility, and Gaussian statistics, the following free energy
functional F can be derived22

The functional Q ) Q[WA,WB]

is the partition function of one polymer subject to the
external fields WA and WB acting on the A and the B
monomers, respectively. Here P is the Gaussian weight
distribution function. The functions ΦR correspond to
monomer density functions. The function ¥ enforces the
incompressibility. The mean-field free energy is given
by the extremum of F[ΦA, ΦB, WA, WB, ¥] and denoted
by F[φA, φB, wA, wB, ê]. The equations determining this
extremum are

Figure 1. Linear-alternating block copolymer architectures
considered.

σA(s) )

{1 0 e t e m linear block
0 m + 2i e t e m + 2i + 1 alternating block
1 m + 2i + 1 e t e m + 2i + 2 alternating block

(1)

F
npkT

) F
kT

N
VF0

) -ln Q + 1
V∫dr [øNΦAΦB -

{WAΦA + WBΦB + ¥(1 - φA - φB)}] (2)

Q ) ∫Dr P[r; 0; 1] exp[-∫0

1
ds {σA(s) WA(r(s)) +

σB(s) WB(r(s))}] (3)

wA(r) ) øNφB(r) + ê(r) (4)

wB(r) ) øNφA(r) + ê(r) (5)

φA(r) ) - V
Q

δQ
δwA(r)

(6)

φB(r) ) - V
Q

δQ
δwB(r)

(7)

1 ) φA(r) + φB(r) (8)
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The preceding equations show that the densities are
related to the functional derivatives of Q[wA,wB]. Once
the partition function Q is known, the set of eqs 4-8
can be solved. To this end, the partition function Q is
rewritten as Q ≡ ∫dr q(r,1), where q(r,s) is the end-
segment distribution function. This end-segment distri-
bution function satisfies the modified diffusion equation

where w(r,s) ) wA(r) σA(s) + wB(r) σB(s) and its bound-
ary condition is q(r,0) ) 1. There exists a second end-
segment distribution function qj(r,s) also satisfying eq
9 apart from an additional minus on the left-hand side
and a different boundary condition: qj(r,1) ) 1. With
the above definitions the monomer density functions
become

To obtain a solution, eqs 4-10 need to be solved
numerically. This is done by reformulating these equa-
tions in the reciprocal space of a set of basis functions,
i.e., writing every spatial depended function as f(r) )
∑ifiæi(r). These basis functions æi(r) satisfy the sym-
metry properties of a given spatial structure and are
eigenfunctions of the Laplace operator: ∇2æi(r) ) -λi/
D2æi(r). The variable D is the periodicity of the structure
under consideration. Within the reciprocal space of the
basis functions the partial differential equation becomes
a differential equation of the form

where

This set of equations can be readily solved through
orthogonal transformations that diagonalize AA and
AB.25-27 By substituting the expressions for qi and qji into
the density function, the integral over s can be carried
out analytically. The density functions, i.e φR(r) )
∑iφR,iæi(r), are expressed in the eigenvalues and eigen-
vectors of the matrices AA and AB.26,28 The remaining
self-consistent field equations become, in the reciprocal
space of the basis functions

Combining the above equations gives for i * 1

For i ) 1 we may set ê1 ) 0, which gives wA,1 ) øNφB,1

and wB,1 ) øNφA,1 with φR,1 ) fR, where fR is the volume
fraction of monomer type R.

The self-consistent field equations can now be solved
iteratively. We start with an initial guess for wR,i,
enabling us to compute qi and qji (the eigenvalues and
eigenvectors) from which the densities φR,i are calcu-
lated. Subsequently, the external fields wR,i are adjusted
such that the densities obtained for the external fields
satisfy eq 16. Having found a solution for the self-
consistent field equations, the free energy is calculated.
For an ordered structure the free energy has to be
minimized with respect to the periodicity D, and finally
a phase diagram is constructed by comparing the free
energies of different structures and selecting the struc-
ture with minimal free energy as the equilibrium state.

Two numerical iterations schemes have been used to
solve the nonlinear self-consistent field equations: a
Picard-like algorithm and the Broyden algorithm.27,29-31

In a Picard iteration new external fields are obtained
by a linear combination of the old and new external
fields and densities, which are then used in the next
iteration step. The Broyden algorithm is essentially a
quasi-Newton algorithm.31 We mostly employed the
Picard iteration method to solve the SCF equations.

3. Results and Discussion

Before we present the results of the self-consistent
field calculations of the linear-alternating block co-
polymer melts, we first briefly consider purely alternat-
ing block copolymer melts. Their phase behavior is
generic for block copolymer systems having only one
intrinsic length scale. It will be of interest to contrast
it with the phase behavior of melts of linear-alternating
block copolymers, characterized by two intrinsic length
scales. Particular attention will be given to the periodic-
ity of the lamellar morphology.

3.1. Phase Behavior of Alternating Block Co-
polymer Melts. We consider an alternating block
copolymer melt (A-b-B)n with A- and B-blocks having
the same number of segments d. In Figure 2 A-density
profiles for a microphase-separated symmetric alternat-
ing block copolymer melt (n ) 10) obtained by the SCF
approach are shown for several degrees of segregation.
Symmetry considerations and calculations with the
weak-segregation theory32 as well as the self-consistent
field theory25,33 and experiments34-38 show that the
equilibrium phase morphology for a symmetric alternat-
ing block is the lamellar structure. This is also con-
firmed by our self-consistent field calculations, through

∂q(r,s)
∂s

) 1
6
Na2∇2q(r,s) - w(r,s) q(r,s) (9)

φR(r) ) V
Q∫0

1
ds σR(s) q(r,s) qj(r,s) (10)

dqi(s)

ds
) ∑

R
∑

j

AR,ijσR(s) qj(s) (11)

AR,ij ) -
1

6
Na2λiD

-2δij - ∑
k

wR,kΓijk,

Γijk )
1

V
∫dr æi(r) æj(r) æk(r) (12)

wA,i ) øNφB,i + êi (13)

wB,i ) øNφA,i + êi (14)

δ1i ) φA,i + φB,i (15)

φA,i ) -φB,i ) (wB,i - wA,i)/2øN (16)

êi ) (wA,i + wB,i)/2 (17)

Figure 2. A-density profiles of the lamellar structure of a
symmetric alternating block copolymer (A-b-B)10 with n ) 10
repeat units. At z ) 0, the profiles correspond from bottom to
top to ø(2d) ) 15, 16, 20, and 30.
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a comparison of the free energies of the lamellar (1h),
cylindrical (p6mm and p4mm), and cubical structures,
(Im3hm and Fm3hm). The variable ø2d controls the degree
of segregation between the A- and B-blocks, as is clearly
demonstrated in Figure 2. Upon increasing ø2d, that is
decreasing the temperature, the amplitude (maximum)
of the density profile becomes larger, and the interfaces
between the A- and B-domains become sharper and the
periodicity of the lamellar structure increases.39,40 Thus,
upon cooling the melt passes from the weak, via the
intermediate, to the strong segregation regime.

Because of the increased complexity of the alternating
block copolymers, their conformation behavior is more
complicated as compared to diblock copolymers. The
molecules are able to form loops and bridges. However,
the most important observations is the following: mi-
crophase separation of a melt of alternating block
copolymers is governed by the degree of polymerization
or length of one repeat unit, which only in the case of
diblock copolymers coincides with the overall length of
the polymer.33,36,41,42

Having discussed the phase behavior of alternating
block copolymers, we are now in a position to discuss
the results obtained for linear-alternating block co-
polymers using SCFT calculations.

3.2. Phase Behavior of Linear-Alternating Block
Copolymers. Figure 3 shows the (n, m) classification
or bifurcation diagram for linear-alternating block
copolymers of the form Am-b-(B-b-A)n obtained by a
stability analysis employing the RPA approximation
(see ref 17). Here, the A- and B-blocks are assumed to
have equal length d, and the linear A-block has a length
md. Inside region S and L the structure factor shows
two maxima at wave vectors qs and ql (qs > ql). Inside
S the absolute maximum is at qs, and inside L it is at
ql. Both maxima have the same value on the dividing
line. Outside region S and L the structure factor has
only one maximum located either at qs or ql. (Similiar
spinodal behavior is observed in refs 12 and 43; how-
ever, all these systems involve mixtures.)

A complete investigation of the parameter space of n
and m is clearly impossible since the numerical SCF
calculations consume a considerable amount of CPU
time. Instead, we focus on a series of systems that
already clearly display the influence of two competing
length scales but are still relatively easy to analyze.
These are indicated in Figure 3 by the dashed areas.
Despite the fact that the systems are outside the
bifurcation region, they do already show intriguing
phase behavior due to a competition between length

scales occurring at intermediate (rather than weak)
segregation conditions.

First we consider (n, m) ) (10, 20). The number of
repeat units of the alternating block is chosen such that
there is a considerable difference between the two
intrinsic length scales. A rough estimate shows that the
large length scale is almost an order of magnitude larger
than the small length scale:

Here RG(M) ) x1/6a2M corresponds to the radius of
gyration of a chain of length M. The length of the linear
block is chosen such that it is equal to the length of the
complete alternating block, i.e., md ) 2nd. The structure
factor of the A20-b-(B-b-A)10 shows only one maximum
located at ql. Consequently, for this system a large
length scale, diblock-like, phase behavior close to the
ODT is expected. By virtue of this stability analysis and
the fact that the molecule is symmetric, i.e., md ) 2nd,
the anticipated equilibrium morphology near the ODT
is a symmetric lamellar structure, as the calculations
confirmed.

To explain and illustrate the structure development
of the A20-b-(B-b-A)10 melt, a number of lamellar density
profiles are presented in Figure 4. They show the
density profiles at different stages of segregation. Fig-
ure 4a presents the lamellar density profile at a tem-
perature relatively close to the ODT temperature,
which is given by (ød)ODT = 1.095 ( 0.002 and D )
(3.174 ( 0.001)RG(N). This SCFT result is in agreement
with the spinodal value of (ød)s ) 1.0934 with D* )
3.17155RG(N). Initially, on cooling the melt still behaves
like a symmetric diblock. The domain spacing first
increases obeying the limiting scaling relation of a
diblock, i.e., D ∼ øδNδ+1/2 with δ = 0.48.39,40

As in a simple AB diblock copolymer melt, the A- and
B-monomers in a linear-alternating block copolymer
melt try to avoid each other. However, because there
are many more A-monomers in a linear A20-block than
in one A-block of the alternating block (20:1), the

Figure 3. Classification or bifurcation diagram. The dashed
areas indicate the systems considered in this paper; n refers
to the number of repeat units, and m indicates the relative
length of the linear block.

Figure 4. B-density profiles of the lamellar structure of the
linear-alternating block copolymer A20-b-(B-b-A)10 for increas-
ing ød. The density profiles (a), (b), (c), (d), (e), and (f)
correspond to ød ) 2.5, 5, 11, 11, 11.5, and 22.5, respectively.
The solid profiles denote stable lamellar structures, whereas
the dotted ones correspond to metastable structures.

qs

ql
=

RG(N)

RG(d)
) x2n + m ≈ 6 (18)
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A-monomers of the linear A-block can more easily
cluster together than the A-monomers of the alternating
block. Hence, the A-monomers of the linear A20-blocks
segregate from the B- and A-monomers contained in the
alternating blocks. Thus, the linear A20-blocks segregate
spatially from the (A-b-B)10 alternating blocks. The
A-rich domains are enriched with the A20-blocks, whereas
the B-rich domains contain relatively more of the (A-
b-B)10-blocks (Figure 4a). Of course, at this stage the
melt is only weakly segregated.

On decreasing the temperature, the behavior quickly
deviates from its initial diblock-like behavior. Instead
of the A- and B-rich domains becoming purer and
interfaces becoming sharper, augmented with an in-
crease of the periodicity, the domains (especially the
A-rich domains) do not become pure at all, as can be
seen from the density profiles in Figure 4b,c. Moreover,
the domain spacing, after an initial increase, dramati-
cally decreases, as shown in Figure 5a presenting
domain spacing vs ø parameter value. For the level of
segregation shown in Figure 4b,c the phase separation
is still diblock-like. However, on further cooling the
A-monomers are more and more expelled from the
B-rich domains, and vice versa. At very high ø values,
a thin asymmetric lamellar structure is formed. Now
the A-rich domains contain both the A-monomers of the
alternating blocks plus the A-monomers belonging to
the linear A-blocks. Such lamellae are asymmetric and
have a periodicity comparable to that of a pure alternat-
ing block copolymer melt. The melt tries to adopt this
morphology because it enables a maximal reduction in
the number of unfavorable AB contacts; the domains
become pure in this arrangement. Thus, the melt
evolves from a thick lamellar to a thin asymmetric
lamellar morphology. Figure 4e,f shows the intermedi-
ate segregated states of these thin asymmetric lamellae.
Note that even at a comparably high ø value of ød )
22.5, the lamellae are only intermediately segregated.
However, the domains have become substantially purer,
and the shrinkage of the periodicity is even more
pronounced.

The composition profiles demonstrate that the rear-
rangement of material upon cooling proceeds via a

“second microphase separation” involving the segrega-
tion of the A- and B-monomers within the B-rich do-
main. The density profile of Figure 4c shows the de-
velopment of a secondary structure, which originates
from the microphase separation of the A- and B-mono-
mers of the alternating blocks. Next, the segregation of
the A- and B-monomers within B-rich domains is fol-
lowed by a rearrangement of all A- and B-monomer ma-
terial, leading to a significant reduction of the domain
spacing. The shrinking already sets in at temperatures
prior to the spinodal temperature of the pure (A-b-B)10
alternating block copolymer melt, which occurs at (ød)s
) 7.31194 and a periodicity of D* ) 5.4613RG(d).
Apparently both intrinsic length scales influence the
phase behavior of the linear-alternating copolymer
melt, and the interplay between them results in a strong
temperature dependence of the domain spacing.

When signs of a second domain structure just appear,
which can be viewed as a kind of lamellar-within-
lamellar structure, an alternative lamellar structure
becomes feasible. This structure corresponds to the thin
asymmetric lamellar morphology and will be denoted
with Ls because its period is short in comparison to the
period of the original lamellar structure, denoted as Ll.
First, this lamellar structure Ls is metastable (Figure
4d), and the lamellar structure with the long periodicity
(Ll) is still stable. However, on further cooling the
lamellar-within-lamellar structure (Ll) quickly loses
stability because the second domain structure intro-
duces additional energetically unfavorable interfaces.
Hence, on lowering the temperature further (Figure 4e),
the thin lamellar structure Ls becomes preferable to the
thick lamellar structure Ll. The actual first-order phase
transition occurs at ød ) 11.27. At the phase transition,
the periodicity of the long lamellar structure (Ll) equals
Dl ) 11.327RG(d), whereas the periodicity of the short
lamellar structure (Ls) is Ds ) 6.265RG(d). Hence, the
domain spacing changes by a factor of 1.81. Conse-
quently, this phase transition can potentially form the
basis for responsive materials, e.g., switching of the
reflectivity as suggested in the Introduction.

The thin lamellar structure Ls remains only stable
in a narrow interval of ø parameter values given by ød
∈ [11.27, 11.80]. At ød ) 11.80 a second phase transition
to hexagonally ordered cylinders occurs. Because this
hexagonal structure has also a short period, we denote
it with Hs. This transition from the asymmetric lamellar
structure to the hexagonal structure can be easily
understood on the basis of the volume fraction of the
A- and B-monomers involved, which for A20-b-(B-b-A)10
corresponds to fA ) 3/4. (Asymmetric diblock copolymer
melts with fA J 0.63 adopt a hexagonal structure as
their equilibrium morphology.)

To illustrate the development of the asymmetry of the
lamellar structure, Figure 5b shows the relative thick-
ness of the lamellar A-domain lA as a function of ød.
This thickness lA is defined as the distance between two
consecutive inflection points of the lamellar density
profile divided by the domain spacing. Mathematically,
the relative thickness of the A-domain is given by

with φA′′(z)|z)v,w ) 0 ∧ φA′(z ) v) > 0 ∧ φA′(z ) w) < 0 ∧

Figure 5. (a) Period D as a function of ød of the lamellar
structure of the symmetric linear-alternating block copolymer
A20-b-(B-b-A)10. D is expressed in units of the radius of gyration
RG ) RG(d). The solid lines correspond to the stable lamellar
morphology. The dotted lines correspond to the unstable
lamellar morphology. At ød ) 11.27 a phase transition occurs
as the period of the lamellar structure changes discontinuously
from a large to a small value. (b) Relative thickness of the
lamellar A-domain lA as a function of ød of the linear-
alternating block copolymer A20-b-(B-b-A)10.

lA ) {D + w0 - v0

D
v0 > w0

w0 - v0

D
v0 < w0

(19)
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v0 ) |v| mod D ∧ w0 ) |w| mod D. Figure 5b demon-
strates that before the phase transition from Ll to Ls
occurs, i.e., ød j 11.27, the A- and B-rich layers have
approximately the same size. Hence, the lamellar
morphology is favored compared to other structures like
e.g. the hexagonally ordered cylinders. At the phase
transition lA jumps discontinuously to a larger value and
for increasing ød values approaches the value of lA )
0.75. This is to be expected because for larger segrega-
tions the relative thickness of the lamellar A-domain
must approach the A-monomer volume fraction fA ) 3/4.
At ød ) 11.80 a phase transition from thin lamellae to
hexagonally ordered cylinders occurs because the asym-
metric lamellae become unstable compared to the
hexagonally ordered cylinders.

3.3. Phase Diagrams for n ) 10. So far, only results
for the case m ) 20 and n ) 10, i.e., A10-b-(B-b-A)20, are
presented. Next, the analysis is extended by examining
the phase behavior for a wider range of A-block lengths
(m) and temperatures (ød). The number of repeat units
of the alternating block will still be fixed at n ) 10. The
results are presented in the phase diagrams of Figures
6 and 7. The first one is most interesting as it presents
the phase behavior in the temperature range where the
transition from the long to the short domain spacing
occurs. As shown, this transition is from thick lamellae
either to thin lamellae, followed by a second transition
to hexagonally ordered cylinders with a short periodic-
ity, or directly to hexagonally ordered cylinders.

The phase transition from thick lamellae directly to
hexagonally ordered cylinders (Ll f Hs) occurs in a
window of m values ending in two triple points. At the

triple points, given by (m, ød) ) (12.92, 8.61) and (m,
ød) ) (16.01, 9.86), the Ll, Ls, and Hs phases all have
the same free energy. The second phase diagram shows
the behavior of these linear-alternating block copoly-
mer melts around the ODT temperature. For values of
m J 21.5 the melt behaves similar to that of a diblock
melt. The following sequence of phase transitions occurs

where D, Bl, Hl, and Ll refer to the disordered, the
spherical, the hexagonal, and the lamellar structures,
respectively. They all have periodicities comparable to
those of a diblock melt with a degree of polymerization
of N ) (2n + m)d. Eventually on cooling further also
the phase transitions Ll f Ls f Hs (for m = 22) occur.
Because we have not analyzed the low-temperature
behavior systematically for m > 20, these systems are
not included in the first phase diagram (Figure 6).

For values of m j 21.5, i.e., for lengths of the linear
A-block comparable to or smaller than the length of the
alternating (A- b-B)10-block, the behavior of the melt is
different from that of a diblock melt: no cubic or
hexagonal morphologies appear. Instead, a direct tran-
sition from the disordered to the lamellar structure
occurs. For linear A-blocks smaller than m j 21.5 we
find the following sequence of transitions

It depends on the value of m whether the Ls phase
appears in “between” the Ll and Hs phase, as discussed
above.

The ODT and the spinodal temperatures, previously
calculated using RPA in ref 17, are virtually identical;
within the accuracy of the graph the ODT and the
spinodal-curve fall on top of each other. For m J 21.5
they are distinguishable. Accurately establishing the
ODT temperature for m j 21.5 proved to be somewhat
problematic as convergence problems arose. On ap-
proaching the ODT temperature, i.e., reducing ød in
small steps, the amplitudes of the density functions
become small, and as a consequence the convergence
rates drop. Hence, the establishment of the ODT tem-
peratures is difficult. However, for values down to m )
13 the calculations are still sufficiently accurate. For
smaller values of m the calculation around the ODT was
insufficiently accurate.

At m = 21.5 the phase boundaries between lamellar
and hexagonal, hexagonal and spherical, and the ODT
converge. Moreover, the amplitudes of the density
functions become very small. This is an indication for a
second-order transition; thus, a critical point should be
located at m = 21.5.

For values smaller than m j 10 complex structures
like bi- or tricontinuous gyroid (Ia3hd and I4132) or
rectangular structures like p4mm, p2mm, and c2mm
might become feasible around the ODT. For such values
of m one enters the range of volume fractions where the
complex Ia3hd structure is anticipated to be stable (see
e.g. refs 44-46). So far, we have only considered “effec-
tive” volume fractions for which the classical morphol-
ogies occur, i.e., the lamellar, hexagonal, or spherical
structures.

Finally, we show in Figure 8 the density profile
corresponding to a hexagonal cylindrical structure of a
A12-b-(B-b-A)10 at ød ) 12.8125. It clearly shows that
the “structure-within-structure”, already discussed in

Figure 6. Phase diagram of Am-b-(B-b-A)10 around the long-
short length scale transition. The phases are labeled Ll
(lamellar with a large period), Ls (lamellar with a short period),
and Hs (hexagonal ordered cylinders with a short period).

Figure 7. Phase diagram of Am-b-(B-b-A)10 around the ODT
temperature. Ll, Hl, and Bl denote respectively lamellar,
hexagonal, and spherical morphology having all a large period.
D is disordered.

D f Bl f Hl f Ll f Ls f Hs (20)

D f Ll(f Ls) f Hs (21)

Macromolecules, Vol. 37, No. 11, 2004 Self-Assembling Block Copolymer Systems 4301



the case of the lamellar morphology, also occurs for
the hexagonal cylindrical structure. At this value of the
ød the structure is already metastable against the
thin hexagonal cylindrical structure as can be seen in
the phase diagram (Figure 6). It is expected to be stable
if the linear block is chemically different from the
alternating block, i.e., Cm-b-(B-b-A)n, instead of Am-b-
(B-b-A)n.

3.4. Phase Diagrams for n ) 2. Finally, we consider
the Am-b-(B-b-A)2 block copolymers as the first non-
trivial linear-alternating block copolymers having two
intrinsic length scales. The case n ) 1 corresponds to
asymmetric triblock copolymers AmB1A1 having one
length scale only. The phase behavior of a triblock
copolymer melt is similar to that of a diblock copolymer
melt, and its phase diagram is topologically equivalent
to that of a diblock.32,47,48

For the case Am-b-(B-b-A)10 (n ) 10), discussed before,
there is a substantial difference between the two
intrinsic lengths leading to a strong temperature de-
pendence of the domain spacing and even to phase
transitions characterized by a jump in the domain
spacing. For the case n ) 2, the difference between the
two intrinsic lengths is less pronounced, i.e., qS/qL ∼
x2n+m ) 2x1+m/4. Hence, we anticipate a much
weaker temperature dependence of the periodicity. As
in the case of n ) 10, we start our analysis by
considering the symmetric linear-alternating block
copolymer A4-b-(B-b-A)2. Figure 9 presents the domain
spacing as well as the relative thickness of the A-

domains for the lamellar structure. Around the ODT the
phase behavior resembles that of a diblock as phase
separation occurs with a domain spacing comparable to
the size of the molecule. Note that the domain spacing
is already considerably smaller than that of a diblock
having equal length: D ∼ 7.5RG(d) against Ddiblock ∼
3.2RG(N) ≈ 9.1RG(d). However, it is still considerably
larger than the domain spacing of an alternating
tetrablock copolymer given by Dtetra ∼ 2.8RG(2d) ≈
4.0RG(d). Hence, the periodicity is intermediate between
that of a diblock and an alternating block copolymer.
At the ODT the spherical structure (Bl) occurs first,
which on cooling readily transforms into hexagonally
ordered cylinders followed quickly by a transition to the
lamellar structures. All structures have a large domain
spacing. On further cooling the domain spacing of the
lamellar structure starts to decrease, resembling the
behavior of the linear alternating block copolymer melt
A20-b-(B-b-A)10. However, the decrease is less spectacu-
lar. Moreover, no lamellar-within-lamellar structure
evolves, and no discontinuity in the periodicity occurs.
Instead, the domain spacing gradually shrinks aug-
mented by an increase in the relative thickness of the
A-domain. Thus, on cooling the lamellae become thinner
and asymmetric. As the asymmetry of the lamellar
domains increases, the hexagonal cylindrical structure
becomes more likely, and at ød ) 8.09 indeed a phase
transition from the lamellae to the hexagonally ordered
cylinders occurs. Hence, the melt of linear-alternating
block copolymers A4-b-(B-b-A)2 goes through the follow-
ing sequence of phase transitions:

Here we have dropped the subscript indicating the size
of the lamellar structure because its periodicity changes
gradually from large to small. This is unlike the
previous case (n, m) ) (10, 20) where this change is
abruptly, i.e., a phase transition.

Investigations into the effect of m resulted in the
phase diagram shown in Figure 10. For linear-
alternating block copolymers with m > 2.89 the melt
phase behavior resembles the above-described phase
behavior (m ) 4). However, for smaller values of m no
lamellar phase in between two hexagonal phases occurs.
This is obviously due to the fact that on decreasing the
length of the A-block (m) the difference between the two
intrinsic length scales diminishes. Note that the case
m ) 0 corresponds to an alternating (tetra) block
copolymer, which has only one intrinsic length scale.

Figure 8. B-density surface of hexagonally ordered cylinders
for the linear-alternating block copolymer A12-b-(B-b-A)10 and
ød ) 12.8125.

Figure 9. Period D and relative thickness lA of the A-domain
as a function of ød of the lamellar structure of the symmetric
linear-alternating block copolymer A4-b-(B-b-A)2. D is ex-
pressed in units of the radius of gyration RG ) RG(d). The solid
line corresponds to the periodicity of the lamellar structure,
and the dotted line corresponds to the relative thickness of
the A-domain.

Figure 10. Phase diagram of Am-b-(B-b-A)2. The phases are
labeled D (disordered), L (lamellar), H (hexagonal cylinders),
and B (spherical).

D f Bl f Hl f L f Hs (22)

4302 Nap et al. Macromolecules, Vol. 37, No. 11, 2004



Moreover for m ) 0, due to symmetry, the ODT occurs
as a critical point. Like in the case of n ) 10, calculations
around the critical point turned out to be difficult due
to convergence problems, and the difference in ød be-
tween the phase lines becomes very small. This pre-
vented us from accurately establishing the ODT, the
disorder-spherical phase transition line, in the interval
m ∈[0, 0.5). Instead for this interval the spinodal is
plotted.

4. Concluding Remarks
Within the self-consistent field theory the phase be-

havior of a subset of linear-alternating block copolymer
melts is analyzed. Because of the two intrinsic length
scales, the periodicity of the self-organized structure is
strongly temperature dependent. Moreover, in various
cases a phase transition occurs from a lamellar mor-
phology characterized by a large periodicity to a lamellar
morphology with a small periodicity. Identifying such
possibilities partially motivated the research under-
taken as these kind of phase transitions could poten-
tially form the basis for responsive materials.

One final remark concerns the subset of linear-
alternating block copolymers studied. In all systems
studied, the stability limit itself is governed by a single
length scale; i.e., the scattering function contains a
single correlation hole peak. The competition between
the two intrinsic length scales only occurs in the
intermediate segregation regime, in several cases lead-
ing to a first-order transition from a large length scale
to a short length scale structure. Of course, for the
subset of linear-alternating block copolymers systems
within the bifurcation region this competition is likely
to be even more pronounced as the scattering function
has two correlation hole peaks. Consequently, the limit
of stability of the disordered phase is controlled already
by two length scales. Soon we hope to extend our
analysis to such systems.
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(9) Mäki-Ontto, R.; de Moel, K.; Polushkin, E.; van Ekenstein,
G. A.; ten Brinke, G.; Ikkala, O. Adv. Mater. 2002, 14, 357.

(10) Kosonen, H.; Ruokolainen, S. V. J.; Torkkeli, M.; Serimaa,
R.; ten Brinke, G.; Ikkala, O. Eur. Phys. J. E 2003, 10, 69.

(11) Osuji, C.; Chao, C.-Y.; Bita, I.; Ober, C.; Thomas, E. Adv.
Funct. Mater. 2002, 12, 753.

(12) Erukhimovich, I.; Smirnova, Y.; Abetz, V. Polym. Sci. Ser. A
2003, 45, 1093.

(13) Bates, F.; Fredrickson, G. Phys. Today 1999, 52, 32.
(14) Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.;

Leibler, L. Nature (London) 1999, 398, 137.
(15) Erukhimovich, I.; Abetz, V.; Stadler, R. Macromolecules 1997,

30, 7435.
(16) Cochran, E.; Morse, D.; Bates, F. Macromolecules 2003, 36,

782.
(17) Nap, R.; Kok, C.; ten Brinke, G.; Kuchanov, S. Eur. Phys. J.

E 2001, 4, 515.
(18) Nap, R.; ten Brinke, G. Macromolecules 2002, 35, 952.
(19) Helfand, E.; Tagami, Y. J. Polym. Sci., Part B: Polym. Lett.

1971, 9, 741.
(20) Helfand, E.; Tagami, Y. J. Chem. Phys. 1972, 56, 3592.
(21) Helfand, E.; Sapse, A. J. Chem. Phys. 1975, 62, 1327.
(22) Matsen, M.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
(23) Schmid, F. J. Phys.: Condens. Matter 1998, 10, 8105.
(24) Fredrickson, G.; Ganesan, V.; Drolet, F. Macromolecules 2002,

35, 16.
(25) Matsen, M.; Schick, M. Macromolecules 1994, 27, 7157.
(26) Matsen, M. J. Chem. Phys. 1998, 108, 785.
(27) Laradji, M.; Shi, A.-C.; Noolandi, J.; Desai, R. Macromolecules

1997, 30, 3242.
(28) Nap, R. Self-Assembling block copolymer systems involving

competing length scales. Ph.D. Thesis, Rijksuniversiteit
Groningen, 2003.

(29) Drolet, F.; Fredrickson, G. Phys. Rev. Lett. 1999, 83, 4317.
(30) Tzeremes, G.; Rasmussen, K.; Lookman, T.; Saxena, A. Phys.

Rev. E 2002, 65, 41806.
(31) Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Nu-

merical Recipes in C: The Art of Scientific Computing;
Cambridge University Press: New York, 1992.

(32) Mayes, A.; de la Cruz, M. O. J. Chem. Phys. 1989, 91, 7228.
(33) Kavassalis, T.; Whitmore, M. Macromolecules 1991, 24, 5340.
(34) Matsushita, Y.; Mogi, Y.; Mukai, H.; Watanabe, J.; Noda, I.

Polymer 1994, 35, 246.
(35) Rasmussen, K.; Kober, E.; Lookman, T.; Saxena, A. J. Polym.

Sci., Part B: Polym. Phys. 2003, 41, 104.
(36) Smith, S.; Spontak, R.; Satkowski, M.; Ashraf, A.; Lin, J.

Phys. Rev. B 1993, 47, 14555.
(37) Spontak, R.; Smith, S. J. Polym. Sci., Part B: Polym. Phys.

2001, 39, 947.
(38) Smith, S.; Spontak, R.; Satkowski, M.; Ashraf, A.; Heape, A.;

Lin, J. Polymer 1993, 35, 4527.
(39) Shull, K.; Mayes, A.; Russell, T. Macromolecules 1993, 26,

3929.
(40) Matsen, M.; Bates, F. Macromolecules 1996, 29, 1091.
(41) Benoit, H.; Hadziioannou, G. Macromolecules 1988, 21, 1449.
(42) Spontak, R.; Zielinski, J.; Lipscomb, G. Macromolecules 1992,

25, 6270.
(43) Holyst, R.; Schick, M. J. Chem. Phys. 1992, 96, 7726.
(44) Lambert, C.; Radzilowski, L.; Thomas, E. Philos. Trans. R.

Soc. London A 1996, 354, 2009.
(45) Gross-Brauckmann, K. J. Colloid Interface Sci. Phys. 1997,

187, 418.
(46) Schwarz, U.; Gompper, G. Phys. Rev. E 1999, 59, 5528.
(47) Matsen, M.; Thompson, R. J. Chem. Phys. 1999, 111, 7139.
(48) Matsen, M. J. Chem. Phys. 2000, 113, 5539.

MA0356663

Macromolecules, Vol. 37, No. 11, 2004 Self-Assembling Block Copolymer Systems 4303


