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Abstract

A two-dimensional nonlocal version of continuum crystal plasticity theory is proposed, which
is based on a statistical-mechanics description of the collective behavior of dislocations coupled
to standard small-strain crystal continuum kinematics for single slip. It involves a set of transport
equations for the total dislocation density )eld and for the net-Burgers vector density )eld, which
include a slip system back stress associated to the gradient of the net-Burgers vector density. The
theory is applied to the problem of shearing of a two-dimensional composite material with elastic
reinforcements in a crystalline matrix. The results are compared to those of discrete dislocation
simulations of the same problem. The continuum theory is shown to be able to pick up the
distinct dependence on the size of the reinforcing particles for one of the morphologies being
studied. Also, its predictions are consistent with the discrete dislocation results during unloading,
showing a pronounced Bauschinger e8ect. None of these features are captured by standard local
plasticity theories.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Dislocations; B. Constitutive behavior; B. Crystal plasticity; B. Metallic materials; C. Finite
elements

1. Introduction

Crystal plasticity theories have become popular and successful models for the an-
isotropic plastic deformation of single crystals. They have a hybrid, discrete/continuum,
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nature in the sense that they adopt a continuum description of the plastic Dow by
averaging over dislocations, but account for the discreteness of the available slip sys-
tems. Constitutive descriptions of the Dow strengths and the hardening matrix have
been given on purely phenomenological grounds, by e.g. Asaro (1983), but also on the
basis of dislocation models, e.g. by Kocks et al. (1975).

Irrespective of the precise formulation, conventional continuum plasticity theory pre-
dicts that the plastic response is size independent. There is a considerable, and growing,
body of experimental evidence, however, that shows that the response is in fact size
dependent at length scales of the order of tens of microns and smaller, e.g. Fleck
et al. (1994), Ma and Clarke (1995) and StFolken and Evans (1998). Various so-called
nonlocal plasticity theories have been proposed that incorporate a size dependence, e.g.
Aifantis (1984), Fleck and Hutchinson (1997), Acharya and Bassani (2000), Gurtin
(2000, 2002), but they di8er strongly in origin and mathematical structure. Although
dislocation-based arguments have sometimes been used as a motivation, the theories
mentioned above are phenomenological and have not been quantitatively derived from
considerations of the behavior of dislocations. Therefore, the material length scale
that enters in such theories needs to be )tted to experimental results (see, e.g., Fleck
et al., 1994; Fleck and Hutchinson, 1997) or results of numerical discrete dislocation
simulations, e.g. Bassani et al. (2001), Bittencourt et al. (2003).
This paper is concerned with a new nonlocal plasticity theory that combines a stan-

dard crystal plasticity model with a two-dimensional statistical-mechanics description of
the collective behavior of dislocations due to Groma (1997) and to Groma and Balogh
(1999). The resulting theory contains a length scale through a set of coupled transport
equations for two dislocation density )elds: one is the total dislocation density and the
other is a net-Burgers vector density. After a summary of the theory for single slip,
we proceed to numerical implementation of the theory and to a comparison with direct
simulations of discrete dislocation plasticity in a model composite material based on
the work of Cleveringa et al. (1997, 1998, 1999a). Similar comparisons have been
carried out by Bassani et al. (2001) and Bittencourt et al. (2003) with the nonlocal
theories of Acharya and Bassani (2000) and Gurtin (2002), respectively.

2. Statistical-mechanics description for single slip

Let us consider N parallel edge dislocations positioned at the points ri, i=1; : : : ; N ,
in R2. In single slip, the Burgers vector of the ith dislocation is bi = ±b where b is
parallel to the slip direction s, i.e. b = bs. With the commonly accepted assumption
of over-damped dislocation motion, the glide velocity of the ith dislocation in the slip
direction s is given by vi = B−1F i in terms of the dislocation drag coeKcient B and
the glide component of the Peach-Koehler force, F i. This can be further elaborated as

vi = B−1bi


 N∑

j �=i
�ind(ri − rj) + �ext(ri)


 ; (1)
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where �ind is the shear stress at position ri created by the dislocation at rj and �ext is
the external resolved shear stress )eld.
The passage to a continuum description is carried out with a special averaging proce-

dure explained in detail in (Groma, 1997; Groma and Balogh, 1999). By coarse-graining
the discrete dislocation distribution into densities of dislocations with positive or nega-
tive signs—	+ and 	−, respectively—one can arrive at the following balance equations:

	̇+(r; t) + B−1 9
9r · b

[ ∫
{	++(r; r′; t)− 	+−(r; r′; t)}

×�ind(r − r′; t)d2r′ + 	+(r; t)�ext(r; t)

]
= 0; (2)

	̇−(r; t) + B−1 9
9r · b

[ ∫
{	−−(r; r′; t)− 	−+(r; r′; t)}

×�ind(r − r′; t)d2r′ − 	−(r; t)�ext(r; t)

]
= 0; (3)

where ( ) · ( ) is the usual scalar product of two vectors, a superposed dot denotes the
time (t) derivative and where 	++; 	+−; 	−+; 	−− are the two-particle density functions
with the corresponding signs. For the further considerations it is useful to introduce
the total dislocation density, 	, and the sign density, �, by

	(r; t) = 	+(r; t) + 	−(r; t); �(r; t) = 	+(r; t)− 	−(r; t):

The latter is a measure of the density of net-Burgers vector, and therefore is equiv-
alent to the density of geometrically necessary dislocations (GNDs). By adding and
subtracting Eqs. (2)–(3) we arrive at

	̇(r; t) + B−1 9
9r · b

[∫
�(2)(r; r′; t)�ind(r − r′; t)d2r′ + �(r; t)�ext(r; t)

]
= 0; (4)

�̇(r; t) + B−1 9
9r · b

[∫
	(2)(r; r′; t)�ind(r − r′; t)d2r′ + 	(r; t)�ext(r; t)

]
= 0 (5)

with

�(2)(r; r′; t) = 	++(r; r′; t) + 	−−(r; r′; t)− 	+−(r; r′; t)− 	−+(r; r′; t);

	(2)(r; r′; t) = 	++(r; r′; t)− 	−−(r; r′; t)− 	+−(r; r′; t) + 	−+(r; r′; t):

It is important to note that Eqs. (4) and (5) are exact, i.e. they are obtained from (1)
without any assumptions. However, since they depend on the two-particle distribution
functions they do not form a closed set of equations. Although equations can be derived
for the two-particle densities, they depend on the three-particle densities (Groma, 1997)
etc., resulting in a hierarchy of equations. In order to arrive at a set of evolution
equations in closed form, this chain of equations has to be cut by assuming a form for
a certain order correlation function.
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Numerical investigations by Zaiser et al. (2001) and Groma et al. (2003) have
revealed that the dislocation–dislocation correlations in a homogeneous system have
a short-range character. Therefore, it is plausible to assume that for a system not far
from being homogeneous, the two-particle density functions 	ij(r; r′; t) can be given in
the form

	ij(r; r′; t) = 	i(r)	j(r′)[1 + dij(r; r′)] i; j =+;−; (6)

where dij corresponds to the correlation function of a homogeneous dislocation system.
As a consequence, dij depends only on the relative coordinate r−r′. The actual form of
dij can be determined either from discrete numerical simulations or from an equation
obtained by cutting the hierarchy of the above-mentioned equations at second order;
for details, see (Zaiser et al., 2001).
Note that nucleation and annihilation of dislocations are not considered in (4) and

(5) at this stage since the analysis is for a )xed number of dislocations. The nucleation
and annihilation of dislocations can be taken into account by adding a source term to
the right-hand side of Eq. (4). However, Eq. (5) has to remain unchanged reDecting
that for the coarse-graining area (with sizes of a few dislocation distances) introduced
for the derivation of Eqs. (2) and (3), dislocation multiplication or annihilation cannot
modify the net-Burgers vector, i.e. the number of GNDs is “locally” conserved.
With the above assumption and taking (6) into account, we can rewrite the evolution

equations (4) and (5) in the form

	̇+ B−1 9
9r · b�{�int + �ext − �s}= f(	; �; : : :); (7)

�̇ + B−1 9
9r · b	{�int + �ext − �s}= 0; (8)

in which f(	; �; : : :) is a term describing the dislocation creation and annihilation (to
be speci)ed later),

�int(r) =
∫
�(r′)�ind(r − r′) d2r′ (9)

is the self-consistent, internal stress )eld created by the dislocations, and

�s(r) =−
∫
�(r′)dt(r − r′)�ind(r − r′) d2r′ (10)

is due to dislocation–dislocation correlations and will be referred to as back stress.
Here we have introduced dt(r)=[2d++(r)+d+−(r)+d+−(−r)]=4, taking into account
that in a homogeneous system d++(r) = d−−(r) and d+−(r) = d−+(−r).
Since the function dt(r) decays to zero within a few dislocation distances (for details,

see Zaiser et al., 2001), the Taylor expansion of �(r′) around the point r can be used
to approximate the integral in (10) by the form (keeping only the )rst non-vanishing
term)

�s(r) =
9�
9r ·

∫
(r − r′)dt(r − r′)�ind(r − r′) d2r′: (11)
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Next, we note that dt(r) does not depend directly on r but through
√
	r, because of

dimensional considerations. Furthermore, since the shear stress �ind(r) is proportional
to 1=r, the expression (11) can be rewritten as

�s(r) =
9�
9r · 1

	(r)

∫
x dt(x)�ind(x) d2x with x=

√
	r: (12)

From the actual, well-known (Hirth and Lothe, 1968) shear stress )eld of a single
dislocation, �ind(r), one can )nally conclude that

�s(r) =
�b

2�(1− �)	(r)
· D 9�9r (13)

where � is the shear modulus, � is Poisson’s ratio, and D is a dimensionless constant.
It should be mentioned that Groma et al. (2003) have put forward a more elaborate

version of the theory, which leads to an additional stress contribution. Here we con)ne
attention to the previous version of Groma (1997) and Groma and Balogh (1999).

3. Incorporation into crystal plasticity theory

The above description of the dislocation structure in terms of the density )elds 	 and
� is incorporated into the well-known framework of single crystal continuum plasticity
(see, e.g., Asaro, 1983). Con)ning attention to small displacement gradients, the total
strain rate ”̇ in such a constitutive model is decomposed as

”̇ = ”̇e + ”̇p (14)

in terms of the elastic strain rate ”̇e and the plastic strain rate ”̇p which, for single slip,
is expressed in terms of the slip rate �̇ on the slip system as

”̇p = 1
2 �̇(s ⊗m +m ⊗ s): (15)

Here, m is the unit normal vector on the slip planes and s is the slip direction; in this
case s = b=|b|. The elastic strain rate is governed by Hooke’s law in the form

”̇e = L−1	̇; (16)

with 	̇ the stress rate and L the tensor of elastic moduli, which is expressed in terms
of � and � for isotropic elasticity.
The coupling between crystal plasticity and dislocation densities comprises two steps:

1. The driving stress �int + �ext appearing in the evolution equations (7)–(8) is approx-
imated by the resolved shear stress based on the continuum stress )eld 	, i.e.

�int + �ext ≡ �=m · 	 · s: (17)

Note that this shear stress is a local quantity, i.e. determined only by quantities at
the continuum point r. �ext is the local stress in the dislocated body applied through
the boundary conditions, �int is the local internal stress due to the collective )elds
of all dislocations irrespective of any dislocation–dislocation correlation. Correlation
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between dislocations is taken into account in a )rst approximation by the back stress
�s. This is determined by the gradient of the � )eld, see Eq. (13), and therefore is
nonlocal in nature.

2. The slip rate �̇ is related to the dislocation density and to the average (in the usual
continuum sense) dislocation velocity v through Orowan’s relation 1 �̇=	b · v. With
v being approximated by

v= B−1b(�− �s); (18)

similar to (1), we obtain

�̇= B−1b2	(�− �s): (19)

In addition, we stipulate that the response of the material be elastic, i.e. �̇=0, when

|�− �s|¡�res; (20)

where �res is the slip resistance. This quantity can take into account the e8ect of
obstacles on the slip plane in the form of small precipitates or forest dislocations.

This results in a closed system of equations once the source term in Eq. (7) is speci)ed.
At this point, various propositions have been made, e.g. Groma (1997) and Groma
and Balogh (1999). Let us )rst look at the nucleation and annihilation mechanism
incorporated in the discrete dislocation simulations of Cleveringa et al. (1997, 1998,
1999a) which will serve as “numerical experiments” for veri)cation in a subsequent
section.
In these simulations, based on the discrete dislocation plasticity description proposed

by Van der Giessen and Needleman (1995), new dislocations are generated by mimick-
ing the Frank-Read mechanism. In two dimensions, a Frank-Read source is emulated
by a point source on the slip plane which generates a dislocation dipole when the
magnitude of the resolved shear stress at the source exceeds the source strength �nuc
during a period of time tnuc. Annihilation of two dislocations on the same slip plane
with opposite Burgers vectors occurs when they are within a material-dependent, crit-
ical annihilation distance Le, which is taken to be Le = 6b (Cleveringa et al., 1997,
1998, 1999a). As we are here aiming at a comparison with the discrete dislocation
results in these references, we choose a form of the source term in (7) that mimics
the above-mentioned nucleation and annihilation rules:

f(	; �; : : :) = C	nuc|�− �s| − ALe(	+ �)(	− �)|v|: (21)

The )rst term in the right-hand side represents nucleation from sources with a density
	nuc and at a rate governed by the parameter C given by

C =
1

�nuctnuc
if |�− �s|¿ �nuc; C = 0 otherwise; (22)

in terms of the nucleation strength �nuc and the nucleation time tnuc. The second term in
the right-hand side of (21) describes the annihilation of positive and negative disloca-
tions, with densities 	+= 1

2(	+�) and 	−= 1
2(	−�) respectively, at a rate determined

1 We do not include a term with 	̇ in �̇ for freshly generated dislocations since they have not glided yet
and therefore have not produced slip.
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by A|v|, with A is a dimensionless constant. This is similar in spirit to the proposition
by Tabourot et al. (2001) that the annihilation rate is proportional to 	�̇b−1 = 	2v.
However, since we distinguish here between positive and negative dislocations, the an-
nihilation term in (21) with 	2 replaced by 	+	− more closely reDects the annihilation
mechanism.
It is of importance to note that the set of Eqs. (7)–(8) and(14)–(21) is a particular

non-local theory. The material length scale is introduced in the evolution equations
(7)–(8) via the gradient terms. These equations are similar in form to the reaction–
di8usion-based model proposed by Aifantis (1984), but in the present model they
are actually derived from a statistical-mechanics description of dislocation glide. Even
though they have the mathematical structure of di8usion equations, they physically
represent conservations laws for dislocation densities during dislocation glide.

4. Application to a metal–matrix composite

4.1. Problem formulation

As a )rst application of the theory we consider the deformation of a two-dimensional
model material containing rectangular particles arranged in a doubly periodic hexagonal
packing, as illustrated in Fig. 1. This is the same problem as analyzed using discrete
dislocation dynamics by Cleveringa et al. (1997, 1998, 1999a), and is used to check the
quality of the present nonlocal theory in reproducing the size-dependent results. Two
reinforcement morphologies are analyzed which have the same area fraction of 20% but
di8erent geometric arrangements of the reinforcing phase. In one morphology, called

2w 2 3h=

2h 2hf

2wf

U· hΓ·=

U
·

hΓ·=

x1

x2

Fig. 1. Simple shear of a model composite material with elastic reinforcements in a hexagonal pattern. All
slip planes are parallel to the shearing direction x1.
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material (i) by Cleveringa et al. (1997), the particles are square and are separated by
unreinforced veins of matrix material while in the other, referred to as material (iii),
the particles are rectangular and do not leave any unreinforced veins of matrix material.
Because of periodicity, a unit cell analysis is carried out with each cell having width

2w and height 2h (w=h =
√
3), see Fig. 1. The particles are of size 2wf × 2hf with

hf=wf=0:416h for material (i) and hf=2wf=0:588h for material (iii). The half-height
of the unit cell, h, is expressed in terms of the material length scale L which in turn
is taken to be L= 4000b. The e8ect of particle size is studied by varying h=L (recall
that L is just a )xed reference length).
The reinforcing particles remain elastic with shear modulus �∗ = 192:3 GPa and

Poisson ratio �∗ = 0:17. The matrix material also has isotropic elastic properties, but
with � = 26:3 GPa and � = 0:33. These values are representative for silicon carbide
particles in an aluminum matrix. The matrix material can undergo plastic deformation
by single slip with the slip plane normal m being in the x2-direction and the Burgers
vector b parallel to the x1-direction, see Fig. 1. The magnitude of the Burgers vector
is b= 0:25 nm and the drag coeKcient is B= 10−4 Pa s.

The unit cell is subjected to plane-strain simple shear, which is prescribed through
the macroscopic boundary conditions

u1(t) =±h�(t); u2(t) = 0 along x2 =±h; (23)

where �(t) is the applied macroscopic shear at time t. Periodic boundary conditions are
imposed along the lateral sides x1 =±w. The overall shear stress V� needed to sustain
this deformation is calculated from the virtual work statement∫

V
	 : ” dV =

∫
S
T0 · u dS; (24)

by using the actual displacement (u) and associated strain )eld (”) as virtual )elds.
The vector T0 is the traction on the boundary S of the region V . The boundary integral
consists of contributions of the boundary S1 = {x1 = ±w} ⊂ S, which cancel because
of periodicity, and of two contributions from the boundary S2 = {x2 = ±h} = S \ S1,
which add up to 2( V�h�2w). Hence, the overall shear stress V� is calculated from

V�=
1

4wh�

∫ w

−w

∫ h

−h
	 : ” dx1 dx2: (25)

A constant macroscopic strain rate, �̇, is imposed until a speci)ed shear strain � is
reached. Then, the material is unloaded by applying �̇ in the opposite direction until
the average shear stress V� vanishes.
In addition to these purely mechanical boundary conditions, we specify conditions

on dislocation motion along the interfaces with the elastic particles, by requiring these
interfaces to be impenetrable.

4.2. Numerical implementation of the continuum model

We begin by expressing the evolution equations (7)–(8) in the particular form for the
present problem, where b= be1 everywhere in the matrix (with ei being the Cartesion
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base vectors associated with the coordinates xi), see Fig. 1. Hence,

	̇+ B−1 9
9x1

[b�(�− �s)] = f(	; �; : : :); (26)

�̇ + B−1 9
9x1

[b	(�− �s)] = 0: (27)

Making reference to the expression (18) for the continuum dislocation velocity v, we
see that the evolution law for the � )eld is determined by the gradient of 	v in the
slip direction. This observation helps us in formulating physically meaningful boundary
conditions along the cell boundaries S as well as along the particle boundaries Sp. First
of all, along the cell sides S1={x1=±w} with unit outer normal vector n=±e1, periodic
boundary conditions are applied, so that 	(w; x2)=	(−w; x2) and �(w; x2)=�(−w; x2) at
all times. Along S2 = {x2 =±h} with n=±e2 we have the natural boundary condition
that there is no Dux of dislocations across these boundaries since the slip plane is
parallel to these boundaries. The conditions along the matrix–particle interfaces, Sp,
fall apart in two groups. First, there is a similar natural boundary condition of no
dislocation Dux across interfaces with the normal in the x2-direction, S

p
2 ⊂ Sp. Second,

on the ones with normals in the x1-direction, S
p
1 = Sp \ Sp2 , we require the dislocation

Dux to vanish, i.e. v1 = 0, because the particles are impenetrable. In summary, we can
write

�v1n1 = 	v1n1 = 0 on matrix boundaries S2 ∪ Sp (28)

with n1 the component of boundary normal n in the slip direction.
The dislocation density evolution equations (26)–(27) supplemented with the bound-

ary conditions (28) represent a non-linear convection-dominated di8usion problem cou-
pled to the single crystal continuum plasticity model described in Section 3. A straight-
forward )nite element method is employed here to solve this set of equations.
The dislocation evolution part of the problem and the crystal plasticity part can be

decoupled by applying a staggered solution procedure for time integration. The solution
of either of the two separate problems is obtained by using an explicit time-stepping
scheme, with the same time steps for both subproblems. In principle, we may adopt
independent spatial discretizations for the two parts of the problem, but we take the two
meshes to be identical for convenient passing of information. The spatial discretization
is based on quadrilateral elements consisting of four crossed linear triangular elements.
As we are limiting attention to small strains, the solution of the crystal plasticity

part departs directly from the incremental version of the principle of virtual work (24).
The associated boundary conditions have already been listed in (23).
In addition, we solve the evolution equations (26)–(27) in the matrix using a stan-

dard weighted-residual Galerkin method. It is well-known that this is generally not
an adequate method for convection-dominated problems. However, since the objective
here is not to present an e8ective numerical method but to demonstrate the predic-
tions of the constitutive theory, the priority at this stage is not the implementation of
more complicated upwinding methods, see e.g. Morton (1996). Therefore, we adopt a
straightforward Galerkin method, and choose mesh and time stepping so as to retain
the necessary accuracy for the desired proof of principle. The spatial discretization is
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based on the interpolation of 	 and �, as well as their rates, inside an element from
the nodal values; e.g.

	=NT�; (29)

� =NT�; (30)

where � and � are the vectors of nodal values of the dislocation densities 	 and �, re-
spectively, and N is the vector of the C0 continuous shape functions. As a consequence,
the back stress according to (13), i.e.

�s = b
T
	
9�
9x1

; T = D
�

2�(1− �)
(31)

is governed by lower-dimensional interpolation. Therefore, we take the back stresses
to be de)ned at the integration points of elements, just like the resolved shear stress
from (17).
After substitution of (31) and evaluation of the weighted residual integral for the

balance law (27) for �, for instance, we obtain the system of linear equations

M�̇ = J�−H� − f : (32)

Here,

M =
∫ w

−w

∫ h

−h
NNT dx1 dx2 (33)

is the standard mass matrix;

J = B−1b
∫ w

−w

∫ h

−h
�N
9NT

9x1
dx1 dx2 (34)

is the nonsymmetric matrix of the convective term; and

H = B−1b2
∫ w

−w

∫ h

−h
T
9N
9x

9NT

9x dx1 dx2 (35)

is the di8usion matrix. Note that in the derivation of this term, the density 	 in the
numerator of the convective term of (27) cancels the 	 in the denominator of (31).
The right-hand side vector

f =
∫
S1
NT	v1n1 dS +

∫
S2∪Sp

NT	v1n1 dS = 0 (36)

contains contributions from the matrix boundaries S1 and S2 ∪ Sp, which vanish sepa-
rately. The integral over the boundaries S1 comprises two parts which cancel due to the
applied periodic boundary conditions and the fact that the unit normals at x1=±w point
in opposite directions. The second contribution in (36) vanishes due to the boundary
conditions (28).
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The spatial discretization of Eq. (26) is done in the same manner as for Eq. (27),
leading to

M�̇= J� −H∗� + f∗: (37)

Here, the matrices M and J are identical to those in (33) and (34), respectively, and

H∗ = B−1b2
∫ w

−w

∫ h

−h
T
�
	
9N
9x

9NT

9x dx1 dx2 (38)

is the di8usion matrix; the vector f∗ contains the discretized source term (21) and
contributions from the boundaries. The boundary terms vanish due to the same reasons
discussed above for (36).
Integration of the integrals in (33)–(35) and (38) per triangular element is done by

single-point integration with the integration point located at the center of each triangle.
After assembling the contributions for Eqs. (37) and (32) from all elements, we obtain
two independent sets of linear equations for the nodal values of the total and sign
density rates �̇ and �̇, respectively.
Thus, starting from a known stress con)guration and dislocation density distribution,

we can compute the elastic and plastic strain rates, as well as associated stress rates,
and the rate of change of the dislocation density )elds at a given instant t. To integrate
the solution in time an adaptive time stepping procedure with a maximum allowable
time step Wtcrit is adopted here. The critical time step Wtcrit is determined by the
dislocation evolution subproblem and is de)ned as the minimum value of all element
time steps Wtel calculated from the stability condition

Cel
c =

√
1
Pe2

+
1
3
− 1
Pe
; (39)

where,

Cel
c =

∣∣∣∣B−1b�
Wtel

hel

∣∣∣∣ ; Pe =
∣∣∣∣ �hel2Tb'

∣∣∣∣
are the element Courant and Peclet numbers, respectively, with hel the element size;
'=�=	 for Eq. (26) and '=1 for Eq. (27). Oscillations in the solution can be avoided
when the element Peclet number Pe6 1 (Zienkiewicz and Taylor, 1991).

5. Summary of discrete dislocation results

In this section, we brieDy summarize the results of discrete dislocations simulations
of the problem at hand. The results to be presented are close to those obtained by
Cleveringa et al. (1997, 1998, 1999a) but di8er in the fact that here we do not as-
sume an initial distribution of dislocation obstacles inside the matrix. There are no
dislocations present initially, and dislocation sources are assumed to be distributed ran-
domly in the matrix with a uniform density of 	n = 61:2L−2 for morphology (i) and
	n = 55:4L−2 for morphology (iii). The strength of the dislocation sources is chosen
randomly from a Gaussian distribution with mean value V�nuc=1:9×10−3� and standard
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Fig. 2. Average shear stress V� versus applied shear strain � for forward shearing and unloading from
� = 0:58% and from � = 0:96% to V� = 0 for material (i) and material (iii) according to the discrete
dislocation dynamics.

deviation W�nuc = 0:2 V�nuc. The nucleation time is taken to be tnuc = 2:6 × 106B=� for
all sources.
Fig. 2a shows the overall stress response to shear for morphologies (i) and (iii).

Even though there are no obstacles, the trends are equal to those found by Cleveringa
et al. (1997, 1998). Morphology (i) gives rise to essentially perfect plasticity, with a
small amount of softening upon overall yield, while morphology (iii) leads to almost
linear hardening on average. The origin of this di8erence lies in the fact that there
are unblocked channels of material for morphology (i) where unrestricted slip can take
place; only a few dislocations that move over long distances are necessary to accom-
modate the applied shear, see Fig. 2b. A few slip planes that are blocked by one of the
particles contain dislocations that are generated by virtue of the stress concentrations
at the particle corners, see Fig. 3a. Not shown here is the observation, just like in
(Cleveringa et al., 1997, 1998), that the response of material (i) is independent of the
size of the particles.
The hardening found for morphology (iii) is caused by many dislocations piling up

against the particles. This leads to polarized walls of dislocations on either side the
central particle, corresponding to its rotation in the shearing direction. A number of
these dislocations are geometrically necessary in the sense of Ashby (1970). Associ-
ated with this, the overall response is size dependent with smaller particles giving rise
to a harder material (Cleveringa et al., 1998). Other characteristics are the develop-
ment of several long pile ups against the corner particles (Fig. 3b) and the fact that
the total dislocation density is much higher than for morphology (i), Fig. 2b. These
characteristics translate into a deformation pattern as illustrated in Fig. 4.
Also shown in Fig. 2a is the response under unloading from pre-strains of � =

0:58% and 0.96%. In material (i) this occurs by elastic unloading without any signif-
icant change in the dislocation distribution. On the other hand, the long-range back
stress developed in morphology (iii) gives rise to a very signi)cant Bauschinger e8ect
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Fig. 3. Dislocation distributions at � = 0:6% for (a) material (i) and (b) for material (iii).

Fig. 4. Deformed )nite element mesh (displacements magni)ed by a factor of 20) showing the local distor-
tions in material (iii) at the same instant, � = 0:6%, as depicted in Fig. 3b.
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associated with dissolution of the dislocation structure. This con)rms the assertion of
Cleveringa et al. (1999a) that hardening for this morphology originates predominantly
from back stress.

6. Nonlocal crystal plasticity results

The discrete dislocation simulations discussed above will now be compared with the
calculations based on the nonlocal continuum plasticity theory put forward in Sections 2
and 3. As in the discrete calculations, we start out from a stress free and dislocation free
state, 	(r; t0)=�(r; t0)=0. The results to be presented have been obtained using the same
material parameters, whenever possible, as in the discrete dislocation calculations above,
both for elastic and dislocation properties. The sources have the same densities as in
the discrete dislocation simulations, but are distributed uniformly in the matrix. The
strength of the dislocation sources per integration point is randomly chosen from the
same Gaussian distribution as above. An almost uniform )nite element mesh consisting
of 102× 60 quadrilateral elements is used.
It is important to note that, compared to the discrete dislocation simulations, the

continuum theory has a few free parameters: the coeKcient D in the back stress (13);
the slip resistance �res, cf. (20); and the annihilation coeKcient A. Their values do not
follow from the derivation (although D = 0:8 has been suggested in (Groma et al.,
2003)) and have to be speci)ed additionally as material parameters. For comparison
with the foregoing discrete dislocation results, the following parameter values have
been employed: A= 5, D = 1 and �res = 15 MPa.

6.1. Size e:ects

Fig. 5 shows the computed overall shear stress response to the prescribed shear � for
the two morphologies (i) and (iii) for the reference cell size h = L. For comparison,
the results of the discrete dislocation calculations from Section 5 are included. For
morphology (iii) the result of the continuum calculations is also shown for the case
of a uniform distribution of source strength (W�n = 0) with the reference value V�n =
1:9× 10−3�. Consistent with the discrete dislocation results, morphology (i) leads to a
clear yield point with strain softening afterwards, while morphology (iii) exhibits nearly
linear back stress hardening. The results for morphology (iii) for two di8erent values
of the W�n show a strong dependence of the yield point on the strength distribution of
the dislocation sources, but the average tangent modulus d V�=d� is hardly a8ected by
the source strength distribution.
The continuum dislocation distributions for the cases with W�nuc =0:2 V�nuc are shown

in Figs. 6 and 7 in terms of the 	 and � )elds, respectively. The “noise” in the
	-distributions in Fig. 6 for low values of 	 suggests that the chosen Galerkin-based
method has some diKculties in obtaining stable solutions. Experiments with di8er-
ent meshes and time steps has convinced us nevertheless that the shown solution
is suKciently reliable for the present purpose. Qualitatively, the results in Figs. 6
and 7 show similar dislocation structures as found in the discrete dislocation analyses
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Fig. 5. Comparison of V�–� curves for material (i) and (iii) according to the discrete dislocation dynamics
and the nonlocal continuum plasticity theory.

(Fig. 3): a few dislocations in the matrix, concentrated mostly in the unblocked channels
for morphology (i), Fig. 6. Morphology (iii) gives strong piling up against the central
reinforcing particle (Fig. 7a) with positive dislocations against the left-hand side and
negative ones on the other side (Fig. 7b), associated with the rotation of the particle to
accommodate the shear. As discussed in the previous section, morphology (iii) involves
GNDs and the present continuum theory is able to predict them. Also seen in Fig. 7
are long pile-ups of the dislocations emanating from the corners of the particles; these
too are consistent with the discrete dislocation )ndings by Cleveringa et al. (1997,
1998) and those shown in Fig. 3b.
Contours of accumulated slip, �, are shown in Fig. 8. The results in Fig. 8a for mor-

phology (i) show that the applied macroscopic shear is accommodated in two coarse
slip bands in the continuous unblocked channels of the matrix material, whereas in
morphology (iii), Fig. 8b, a few bands of intense shearing near the top and bottom
faces of the particles have developed. The latter reDect the rotation of the central re-
inforcing particle. It is interesting to note that the slip activity for morphology (i) is
strongly controlled by the location of the weakest source; this explains why the slip
distribution in Fig. 8a is not symmetric. This phenomenon is not seen in morphology
(iii) since a large fraction of the dislocations are geometrically necessary. It is also
of importance to note by comparison of Figs. 8b and 7b that the localization of de-
formation for morphology (iii) occurs in regions that are relatively dislocation free.
Conversely, there is essentially no slip near the vertical sides of the central particle
even though the dislocation density is high there. These observations are fully con-
sistent with the results of discrete dislocation simulations, but notably di8erent (Van
der Giessen and Needleman, 2003) from the predictions of two other nonlocal contin-
uum theories, due to Acharya and Bassani (2000) and Gurtin (2002) as presented in
(Bassani et al., 2001) and (Bittencourt et al., 2003). In particular, the latter two theories
predict high levels of slip near the vertical sides of the particle, just as predicted by
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Fig. 6. Distribution of (a) the total dislocation density 	 and (b) the sign-dislocation density � for material
(i) at � = 0:6%.

standard local continuum theory. The absence of this, just as in the discrete dislocation
results of Fig. 4, is not merely due to the no-slip condition at these interfaces, because
the same condition is used in the application of Gurtin’s theory in (Bittencourt et al.,
2003). Instead, it seems to originate from the fact that dislocation nucleation is not
instantaneous and unlimited, as it is inherently assumed in standard phenomenological
continuum theories as well as in the nonlocal version of Acharya and Bassani (2000)
and Gurtin (2002).
The presence of GNDs in morphology (iii) but not in morphology (i) was used

in Cleveringa et al. (1997, 1998) to substantiate the di8erence in hardening between
the two materials, even though the area fractions of reinforcing phase are identical.
The present continuum theory, using the same material constants, is able to distinguish
between the di8erent types of dislocation distributions but also the resulting di8erence
in hardening.
A second consequence of the GNDs is that morphology (iii) shows a marked size

dependence—with smaller being stronger—while morphology (i) is not. To assess the
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Fig. 7. Distribution of (a) the total dislocation density 	 and (b) the sign-dislocation density � for material
(iii) with W�nuc = 0:2 V�nuc at � = 0:6%.

ability of the present non-local continuum theory to recover these size e8ects, we
have repeated the calculations but with smaller (so that h = L=2) and with larger
(h = 2L) particles, but leaving the area fraction unchanged. Indeed, for morphology
(i) the three responses are practically identical, while morphology (iii) exhibits the
expected tendency, as shown in Fig. 9a. The )gure displays the systematic trend that
the hardening rate as well as the Dow strength increase with decreasing particle size.
The overall hardening for all sizes appears to be approximately linear with strain.
Fig. 9b shows the evolution of the total dislocation density, normalized by the material
length L, for morphology (iii). It is seen that the density of dislocations increases faster
than linear with strain for all particle sizes. The dislocation density also increases with
decreasing particle size, in agreement with the discrete dislocation results.

6.2. Unloading

The discrete dislocation results in Fig. 2a revealed a very distinct Bauschinger e8ect
upon unloading for morphology (iii). This is largely due to the single slip con)guration,
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Fig. 9. Comparison of (a) stress–strain curve and (b) evolution of the total dislocation density 	 for material
(iii) with three di8erent particle sizes according to nonlocal continuum and discrete dislocation plasticity.
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Fig. 10. Comparison of (a) stress–strain curve for forward shearing and unloading from �=0:58%, and (b)
evolution of the total dislocation density 	 during forward loading and unloading for morphologies (i) and
(iii) according to nonlocal continuum and discrete dislocation plasticity.

but is not present in standard local calculations (see Bittencourt et al., 2003). Also the
nonlocal theory of Acharya–Bassani does not predict any Bauschinger e8ect (Bassani
et al., 2001), but there is in Gurtin’s theory (Bittencourt et al., 2003). To see the
capabilities of the present theory, we have also carried out unloading computations
using the continuum theory, from the same amounts of pre-strain as in Fig. 2a and at
the same absolute value of the loading rate.
Fig. 10a shows a comparison of the average shear stress versus shear strain curves

for both morphologies including unloading from � = 0:58% according to both cal-
culations. Overall, the predictions of the nonlocal continuum plasticity are consistent
with the )ndings of the discrete dislocation simulations. The two models predict an
almost elastic response for morphology (i) and a strong Bauschinger e8ect for mor-
phology (iii) with residual plastic strains of around 0.25%. However, there is some
qualitative di8erence in the unloading response between the two models for morphol-
ogy (iii). In case of the continuum theory, reverse plastic Dow during unloading is
delayed compared to the discrete dislocation results, even though the two models pre-
dict the same amount of residual strain. The evolution of the total dislocation density
	 during unloading, shown in Fig. 10b, reveals that the reverse plastic Dow involves
not only the motion of dislocations but also their annihilation, which is most clear for
morphology (iii).
For morphology (iii), unloading from a pre-strain � = 0:96% is shown in Fig. 11.

The onset of reverse plastic Dow is more pronounced now than during unloading from
a pre-strain � = 0:58%, and also more pronounced than that predicted with discrete
dislocations, Fig. 2a. Nevertheless, the predicted residual strain of around 0.35% agrees
with the discrete dislocation results. It is important to note that the resulting residual
strains in the continuum calculations depend on the chosen value of �res = 15 MPa. To
demonstrate this, an additional unloading calculation was carried out with �res=20 MPa
instead of 15 MPa. An increase of the slip resistance decreases dislocation activity and
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Fig. 11. Stress–strain curves for forward shearing and unloading from � = 0:58% and from � = 0:96% for
material (iii) according to the nonlocal continuum theory. Unloading from � = 0:96% with �res = 20 MPa
instead of 15 MPa is shown for comparison.

leads to a less pronounced Bauschinger e8ect. Conversely, one can say that the value
of �res can be )tted from unloading results.

7. Conclusion

We have formulated a non-local continuum crystal plasticity theory for single slip
that involves standard continuum kinematics and two state variable )elds: the disloca-
tion density and the net-Burgers vector density. These densities are governed by two
coupled evolution equations that describe their balance during drag-controlled disloca-
tion glide, and which are derived from a statistical-mechanics treatment of an ensemble
of gliding dislocations. The conservation law for the dislocation density is extended
to account for dislocation generation from, for instance, Frank-Read sources and for
annihilation. The non-locality of the theory is contained in the balance laws and the
presence of a back stress that is controlled by the in-plane gradient of the net-Burgers
vector density.
To investigate the capabilities of the theory, it has been applied to the problem of

simple shearing of a model composite material, and compared to the discrete dislocation
simulations by Cleveringa et al. (1997, 1998, 1999a). The continuum theory is shown
capable of distinguishing between the responses of two di8erent particle morphologies
(with the same area fraction), one involving unblocked slip in veins of unreinforced
matrix material, the other relying on particle rotations induced by plastic slip gradients
and GNDs. The overall response as well as the local plastic deformation )elds are in
general accord with the discrete dislocation results. In addition, the size dependence of
the behavior for the morphology that has GNDs is also picked up well.
The comparison has exempli)ed the importance of nucleation control: continuum

theories have the inherent assumption that dislocations are present whenever and wher-
ever they are needed. This is not physical. The present theory includes a model for
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nucleation and does not make this assumption, which has a signi)cant e8ect on the
plastic Dow )eld.
Calculation of the responses during forward shearing as well as unloading have

clearly revealed that the theory involves two sources of hardening: (i) back stresses
generated by long-range � )elds; (ii) slip resistance. The back stresses are related to
gradients in �, i.e. the density of GNDs, which in the present problem are associated
with the rotation of the particles. Both hardening contributions enter the theory with a
free coeKcient, which needs to be )tted either to discrete dislocation simulations, as
done here, or to experimental results. The slip resistance has been viewed here as a
constant, but it can be extended to be a variable that evolves with deformation.
The theory belongs to the group of models like those of Aifantis (1984), Fleck and

Hutchinson (1997), Shu and Fleck (1999) and Gurtin (2002) which involve additional
boundary conditions compared to local continuum plasticity theories. Here, the addi-
tional boundary conditions enter through the density evolution equations. The model is
distinctly di8erent from Aifantis’ (1984) proposition in that his theory does not incor-
porate the net-Burgers vector density; it di8ers from the latter three theories—Fleck and
Hutchinson (1997), Shu and Fleck (1999) and Gurtin (2002)—in that they are entirely
phenomenological while the present one has a solid dislocation basis. Accordingly, the
additional boundary conditions have a clear physical meaning for the problem analyzed
here: no dislocation motion at the interfaces with particles normal to the slip planes.
Whether the model yields equally good agreement with discrete dislocation simulations
for other boundary-value problems, just as bending (Cleveringa et al., 1999b) involving
free surfaces, will be investigated in a subsequent paper.
Finally, it should be emphasized that the balance laws have been derived for single

slip only. Obviously, for the theory to become versatile, it needs to be extended to
multiple slip. The )rst steps into this direction have very recently been made by Zaiser
et al. (2001).
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