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Effects of self-affine surface roughness on the friction coefficient
of rubbers in the presence of a liquid interlayer

G. Palasantzasa) and J. Th. M. De Hosson
Department of Applied Physics, Materials Science Centre and Netherlands Institute for Metals Research,
University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 2 September 2003; accepted 21 October 2003!

In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer
in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce
energy dissipation from the small surface asperities and cavities of lateral sizes smaller than the
healing lengthz and, therefore, will reduce the coefficient of friction. Significant coefficients of
friction are attained for small healing lengthsz ~!j with j the in-plane roughness correlation
length!. Finally, it is shown that the effect of the substrate roughness exponentH becomes less
important especially for large healing lengths~z>j!. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1633338#

I. INTRODUCTION

Clearly, the frictional properties of a rubber body sliding
onto a hard solid surface is a relevant issue for the car indus-
try ~i.e., tire construction and rubber wiper blades! and the
cosmetics industry.1–5 The principal characteristics of rubber
regarding frictional properties arise from its low elastic
modulusE and high internal friction.2 Moreover, sliding oc-
curs on real solid surfaces, which are predominantly rough,
with a significant degree of randomness.6,7 In particular, the
influence of roughness has to be carefully considered in
contact-related phenomena~i.e., friction and adhesion!.5

The frictional force between a rubber body and a rough
solid substrate has two contributions: A hysteric and an ad-
hesive one.1 The hysteric one arises from the oscillating
forces that the surface asperities exert onto the rubber surface
leading effectively to cyclic deformations, and energy dissi-
pation due to internal friction.5 Thus, the hysteric contribu-
tion will have the same temperature dependence as that of a
body of elastic modulusE(v).5 The adhesive component is
only important for clean and relatively smooth surfaces.5

When a rubber body slides with velocityV over a sinusoidal
rough surface with periodL, then it will feel fluctuating
forces with frequenciesv'V/L. The frequency 1/t5V/L
falls in a regime between rubber~low v! and glass~high v!
behavior.5 If the surface has a broad distribution of length
scalesL, then it will be present a broader distribution of
frequency components in the Fourier decomposition of the
surface stresses acting on the sliding rubber.5

An interesting case arises when a thin liquid layer is
trapped within the rubber/solid interface. For fluid films in
between rubber/glass, the rubber flexibility leads to liquid
entrapment by elastic deformation. Similar effects have been
observed for organic liquid films between mica surfaces.8,9

Under certain conditions thin and uniformly thick fluid films
remain trapped at the rubber/substrate interface.10–12The lat-

ter occurs when electrical charge is introduced upon contact
of the surfaces leading to their electrical repulsion. The re-
pulsive force can support a normal load<0.1 MPa.5,12 Typi-
cally, a liquid film of about 20 nm thick is stored between the
surfaces. Similar effects can be important in biological sys-
tems~i.e., polyelectrolyte layers yield low friction in mam-
malian joints!.4,5 It has been also found that in the presence
of a uniform liquid film, the rubber/glass contact under shear
is stable~under contact pressures of about 0.1 MPa!. More-
over, friction measurements indicated that the electrolyte so-
lution alone does not effectively lubricate the contact sur-
faces of sheared films thinner than 10 nm. However, if a
surface-active agent is included in the electrolyte solution,
monolayer protection prevents surfaces from coming into in-
timate contact at points where the separating liquid film is
locally punctured.5

In any case, the formation and squeezing thin liquid lay-
ers between a rubber surface and a hard rough solid substrate
is a complex problem. It is related to cavity connectivity,
aperture distribution,5,13 and the hydrodynamic pressure dis-
tribution in the liquid film at the interface. All of these pa-
rameters depend on the local pressure and the squeezing
time.5 So far, it has not been shown how a self-affine random
rough surface can affect the coefficient of frictionm f in the
presence of a thin liquid film between the rubber and the
solid substrate, which induces attenuation of replicated
roughness on the rubber surface.14

II. THEORY OF FRICTION UNDER CONDITIONS
OF INCOMPLETE CONTACT

We assume that sliding occurs with a liquid film con-
fined between the rough solid substrate and the rubber sur-
face ~see Fig. 1!. For a rubber body of Young’s modulusE
and Poisson’s ration that slides with velocityV, and pro-
vided that contact occurs up to a lateral length scalel
52p/qcon, the coefficient of friction is given by5

a!Author to whom correspondence should be addressed; electronic mail:
g.palasantzas@phys.rug.nl
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C* (q) is the Fourier transform of the ensemble averaged
correlation functionC* (r )5^h* (r )h* (0)& with h* (r ) the
roughness height fluctuation (^h* &50) at the liquid/rubber
interface.s is the macroscopic applied load andẼ(v) is the
complex conjugate of the Young modulusE(v) which is
given by5

E~v!5
E1~12 ivt!

11a2 ivt
, ~4!

with E(`)5E1 , andE(0)5E(`)/(11a) (a'103).5 1/t is
the flip rate of molecular segments~configurational changes!
that are responsible for the rubber viscoelasticity.5

Furthermore, we have to relate the roughness spectrum
^uh* (q)u2& of the rubber/liquid interface with that of the sub-
strate surfacêuh(q)u2&. Under conditions of complete wet-
ting of the liquid layer onto the rough surface, we have14

h* ~q!5~11q2z2!21h~q!, ~5!

with z the so-called healing length. The meaning of the latter
is that roughness fluctuations of the substrate/liquid interface
at length scales smaller thanz are smoothened out, and thus
they are not further replicated onto the rubber/liquid
interface.14 The healing lengthz is calculated from the rela-
tion z5@g/(]2U/]z2)z5d#1/2 with g as the liquid interface
energy at the rubber/liquid interface,d as the averaged liquid
layer thickness, and (]2U/]z2)z5d as the second derivative
~calculated atz5d) of the attractive potentialU(z) toward
the solid flat surface.14 Here, it is assumed that only weak
fluctuations exist, i.e.,w,j, z with j the in-plane roughness
correlation length. In the present caseU(z) will also include

the applied loads. With increasing load, the liquid/rubber
interface will increase its degree of conformity with the sub-
strate roughness.

III. RESULTS AND DISCUSSION

As Eq. ~1! indicates, in order to calculate the coefficient
of friction m f the knowledge of the roughness spectrum
C(q) is necessary. A wide variety of surfaces/interfaces in
nature are well described by a kind of roughness associated
with self-affine fractal scaling.7 In this case,C(q) scales as a
power-lawC(q)}q2222H if qj@1, andC(q)}constant, if
qj!1.7 The roughness exponentH is a measure of the de-
gree of surface irregularity,7 such that small values ofH
characterize more jagged or irregular surfaces at short length
scales~,j!. The self-affine scaling behavior is satisfied by
the equation15

C~q!5
1

2p

w2j2

~11aq2j2!11H
, ~6!

with a5(1/2H)@12(11aQc
2j2)2H#, if 0,H,1 ~power-

law roughness!, anda5(1/2)ln@11aQc
2j2# if H50 ~logarith-

mic roughness!.15 The parameterw is the root-mean-square
~rms! roughness amplitude, andQc5p/ao with ao of the
order of atomic dimensions. For other correlation models,
see also Refs. 16 and 17. Finally, from Eqs.~5! and ~6!, we
obtainC* (q)5(11q2z2)22C(q).

Our calculations were performed forao50.3 nm, Pois-
son’s ratio n50.5 ~ignoring any weak frequency
dependence!,5 and relatively weak applied loadss (E1 /s
@1). Moreover, as is shown in Ref. 5, the factorP(q,qcon)
can be well approximated by the extrapolation formula
P(q,qcon)5$11@pG(q,qcon)#3/2%21/3, which makes the cal-
culations of the friction coefficientm f simpler. Finally, we
consider contact lengthsl@j, because it is more physically
to occur in the presence of a liquid layer rather than in the
case of direct contact of a rubber on a hard solid substrate.

As is shown in Figs. 2 and 3, with increment of the
healing lengthz and thus smoothing of the substrate features,
which are replicated on the rubber body, the friction coeffi-
cient drops very drastically. This is more clearly shown in

FIG. 1. Schematic of the system rubber/liquid film/solid substrate.

FIG. 2. Friction coefficientm f vs sliding velocityV for contact length scale
l51000 nm~@j!, E1 /s51000,t5231023 s, H50.4, w55 nm, j5100
nm, and healing lengthsz as indicated.
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Figs. 4 and 5, where for healing lengthsz.j, the friction
coefficient becomes negligible (m f!1). Clearly, the effect
of the roughness exponentH is rather small, as Fig. 4 indi-
cates. Similar is the situation for the correlation lengthj,
which, however, has a larger influence than the roughness
exponentH for healing lengths practicallyz,j/2. Indeed, the
dominant influence of the healing lengthz is due to the fact
that C* (q) depends onz as an inverse square power law
C* (q)}(11q2z2)22 leading to a higher decay rate than the
exponent 11H (H,1) of the roughness contribution
through the spectrumC(q).

For large contact length scales~l@j!, the friction coef-
ficient m f is given by the simpler form

m f5
1

2~12n2!

E1

s E
0

Qc
q3C~q!~11q2z2!22dq

3E
0

2p aqVt cos2 f

~11a!21~qVt!2 cos2 f
df. ~7!

SinceC(q)}w2, the influence of the rms roughness ampli-
tude w on the friction coefficientm f is rather simple
(m f}w2). Therefore, any more complex dependence on the
substrate surface roughness will arise solely from the rough-

ness parametersH andj ~or the ratiow/j). If Vt!a/Qc in
Eq. ~4!, then a simpler form for the friction coefficientm f

can be found:

m f>
pa

2~12n2!~11a!2

E1

s
~Vt!

3E
0

Qc
q4C~q!~11q2z2!22dq. ~8!

Equation ~8! results in the following two expressions for
exponentsH50 andH51:

m f ~H50!>
a

4~12n2!~11a!2

E1

s
~Vt!w2j2~z22aj2!21

3F Qc

2z2~11Qc
2z2!

2
~3z22aj2!

2z3~z22aj2!
tan21~zQc!

2
1

jAa~z22aj2!
tan21~jAaQc!G , ~9!

m f ~H51!>
a

8~12n2!~11a!2

E1

s
~Vt!w2j2~z22aj2!22

3F Qc

~11Qc
2z2!

1
Qc

~11aj2Qc
2!

2
~3z21aj2!

z~z22aj2!
tan21~zQc!

1
~z213aj2!

jAa~z22aj2!
tan21~jAaQc!G . ~10!

Equations~9! and ~10! set analytic physical limits of the
friction coefficient so thatm f (H50)<m f (H)<m f (H51) . These
are more important for low healing lengths~z,j! and sig-

FIG. 4. Friction coefficientm f vs healing lengthz for sliding velocity V
5231024 m/s, j5100 nm, contact length scalel51000 nm~@j!, E1 /s
51000, t5231023 s, w55 nm, z530 nm, and various roughness expo-
nentsH.

FIG. 5. Friction coefficientm f vs healing lengthz for sliding velocity V
5231024 m/s, various correlation lengthsj, contact length scalel51000
nm ~@j!, E1 /s51000,t5231023 s, w55 nm, z530 nm, andH50.4.

FIG. 3. Friction coefficientm f vs sliding velocityV for various correlation
lengths j, contact length scalel51000 nm ~@j!, E1 /s51000, t52
31023 s, H50.4, w55 nm, and healing lengthz530 nm.
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nificant substrate roughness (w/j;0.1), since in the oppo-
site limit ~j!z!, the friction coefficient is negligible (m f

!1; see Figs. 4 and 5!.
Clearly, the presence of the liquid layer will remove the

contribution to the energy dissipation from the small surface
asperities and cavities of lateral sizes smaller than the heal-
ing length z and, therefore, will reduce the coefficient of
friction. Nevertheless, for lower healing lengths~or higher
conformity degree of the liquid/rubber interface to the sub-
strate roughness!, the effect of the rubber relaxation time on
the friction coefficient is more pronounced, especially for
relatively high sliding velocities as is shown in Fig. 6.

IV. CONCLUSIONS

In summary, we have shown that the presence of the
liquid layer between a self-affine rough surface and a sliding
rubber surface will reduce energy dissipation from the small
surface asperities and cavities of lateral sizes smaller than the
healing lengthz and, therefore, the coefficient of friction will

be reduced. Significant coefficients of friction are attained
for small healing lengths~z!j!. Finally, it is shown that the
effect of the substrate roughness exponentH becomes less
important, especially for large healing lengths~z>j!.

Although, we considered contact lengthsl@j which is
likely to occur for a liquid layer in direct contact with a
rubber surface under pressure, in future studies, also the case
of incomplete contact~between liquid/solid and/or rubber/
liquid! has also to be investigated. Moreover, despite the fact
that our work is theoretical, it would be interesting to be
tested by rubber sliding experiments on well-defined random
rough surfaces in the presence of a liquid layer between
rubber/substrate. The substrate roughness can vary from mi-
crometers in size~produced, i.e., by scratch/wear testers!
down to nanometers~i.e., polished glass surfaces5 or surfaces
fabricated by metal evaporation onto metallic substrates,
etc.!.7
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