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1. Introduction

The problem of constructing the open superstring effective action in ten dimensions is

still not settled. Even in absence of Chan-Paton factors (the abelian case) only a few

sectors of the complete effective action are known. The ten-dimensional Born-Infeld action

describes the dynamics for slowly varying fields [1], which in the abelian case is a consistent

approximation. Its supersymmetric extension was derived in [2]–[5]. In [6] it was shown

that there are no corrections quadratic in derivatives to all orders in α′ . All bosonic

terms with four derivatives were derived in [7]. Furthermore, it is known that there are no

corrections with an odd number of fields strengths.1

In this paper we derive a new all-order result. We obtain the effective action for

the tree-level four-point function in the abelian open superstring theory to all orders in

α′ , i.e., including all derivative corrections. Our construction is an example of the so-

called S-matrix method [8]–[11] to construct the effective action.2 In this method one first

writes down an action which reproduces the propagators of the massless string modes, and

proceeds, in the absence of cubic interactions, to the four-point function, which in string

theory is non-polynomial in the momenta k1, . . . , k4 of the external particles. Because

of the absence of cubic interactions the four-point function does not have poles, and the

calculation of the four-point function only involves one-particle-irreducible diagrams.

1One can show that as a consequence of the invariance of the theory under worldsheet parity, all string

amplitudes with an odd number of external lines (involving only massless modes) vanish [8]. The authors

were unaware of this whilst writing [9], which led them to propose the above fact as a conjecture. This

footnote should settle the issue.
2See [12] for a recent example of the use of the S-matrix method in the present context.
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One can easily write down a closed form for the effective action because the open string

four-point function factorizes in a product of two terms: the first term (K) depending on

polarization vectors and wave functions, the second term (G), proportional to the Veneziano

amplitude, depending only on the momenta. The first term determines how the fields

should appear in the effective action. The second term expands into an infinite series in

α′ , and determines how derivatives should be distributed over the fields. This structure

applies to both the bosonic terms and the terms involving fermions. Due to the factorization

of the amplitude, supersymmetry of the effective action can be easily established. The

supersymmetry of the effective action which reproduces the term K has been established

a long time ago [13]. The term G, with momenta replaced by derivatives acts on K in the

full effective action, but we will show that the proof of supersymmetry still works “under

the derivatives”.

In discussing the higher derivative contributions to the open string effective action it

is useful to introduce the following notation [9]. We write such terms as

L(m,n) = α′m
(

∂nF p + ∂n+1F p−2χ̄γχ+ · · ·
)

. (1.1)

For dimensional reasons we must have 2p− 2m+ n− 4 = 0.

The outline of this paper is as follows. In section 2 we review some properties of the

tree-level four-point function in open string theory, and construct the corresponding bosonic

effective action. We then proceed to discuss in section 3 the fermionic contributions and

verify that the effective action is supersymmetric. In section 4 we consider the expansion

of the result in α′ , and give explicit results through order α′ 5. Conclusions are given in

section 5.

2. The 4-photon tree amplitude and its effective action

The open string tree-level 4-point function is given by [8]:

A(1, 2, 3, 4) = −16 i g2α′ 2(2π)10δ(10)(k1 + k2 + k3 + k4)G(k1, k2, k3, k4)K(1, 2, 3, 4) (2.1)

G contains the α′ dependence and is given by:

G(k1, k2, k3, k4) = G(s, t) +G(t, u) +G(u, s)

=
Γ(−α′s)Γ(−α′t)

Γ(1− α′s− α′t)
+

Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
+

Γ(−α′u)Γ(−α′s)

Γ(1− α′u− α′s)
. (2.2)

Here s, t, and u are the Mandelstam variables, satisfying s+ t+ u = 0. They are defined

in terms of the ki only up to momentum conservation and the mass-shell condition. We

choose to write them in such a way that G is manifestly symmetric in the ki:

s = − k1 · k2 − k3 · k4 ,

t = − k1 · k3 − k2 · k4 ,

u = − k1 · k4 − k2 · k3 . (2.3)

– 2 –
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As discussed in the above, G is regular as ki → 0, which one can verify by expanding (2.2)

in α′ . For now we just mention that

G(k1, k2, k3, k4) = −
π2

2
+O(α′ 2) , (2.4)

and postpone a detailed discussion of the expansion to a later section. K involves not

only the momenta of the external particles, but also their wavefunctions. For the 4-boson

amplitude we have:

K(1, 2, 3, 4) = tabcdefghk1aζ
1
b k

2
c ζ

2
dk

3
eζ

3
fk

4
gζ

4
h , (2.5)

where ζ i is the polarization vector of the ith incoming photon, and the tensor t is defined in

appendix A. The leading order contribution to the amplitude is just (2.5) times a constant.

It is well known that it is reproduced by the action

S(2,0) =
1

8
(2πgα′)2

∫

d10x

(

trF 4 −
1

4
(trF 2)2

)

=
1

8
(2πgα′)2

∫

d10x
1

24
tabcdefghF

abF cdF efF gh , (2.6)

We observe that every factor of momentum ki in (2.5) is reproduced by a derivative acting

on the appropriate field in (2.6).

The complete amplitude (2.1) differs from the leading order contribution by multipli-

cation with G, i.e. by extra factors of momentum. In order to reproduce these factors,

we simply need to act with derivatives on the appropriate fields. This is implemented by

first allowing the four fields to be “defined at different points in spacetime”, resulting in

a non-local action. That is, we consider the fields Aa(xi), where i = 1, . . . , 4, and then

replace the momenta ki in the amplitude by differentiations with respect to the appropriate

coordinate in the effective action, i.e. ki,a → −i∂/∂xa
i . We need to multiply the resulting

expression by delta functions and then integrate over the xi to make the action local.

Hence we define the following differential operator

D(∂x1 , ∂x2 , ∂x3 , ∂x4) ≡ G(k1, k2, k3, k4)|ki→−i∂xi
, (2.7)

which we use to write down the effective action for the complete four-photon amplitude:

Seff [Aa] = −
1

24
(gα′)2

∫

d10x

{

∏

i

d10xi δ
(10)(x− xi)

}

D(∂x1 , ∂x2 , ∂x3 , ∂x4)×

× tabcdefghF
ab(x1)F

cd(x2)F
ef (x3)F

gh(x4) . (2.8)

D is understood as a Taylor expansion in α′ . Then the multiple integral over the xi

factorizes into a product of integrals, each involving only one of the xi and none of the

others, which is necessary in order that the above expression is well defined. The actual

proof that this action reproduces the amplitude (2.1) can be found in appendix B.

As mentioned above, we choose to express s, t, u in terms of the ki in such a way that

G is manifestly symmetric in the momenta. This will turn out to be convenient in the

following section. It is not difficult to see that a different prescription than (2.3) would

– 3 –
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result in modifications of the effective action (2.8) by total derivatives and/or the effects

of field redefinitions.3. This follows from momentum conservation ka
1 + ka

2 + ka
3 + ka

4 = 0

and the mass-shell conditions k2i = 0, respectively.

3. The fermionic contributions and supersymmetry

As is well known, the supersymmetric extension of (2.6) is unique and given by [13, 15]:4

S(2,0) =
1

8
(2πgα′)2

∫

d10x

(

trF 4 −
1

4
(trF 2)2 − 2FabFacχ̄γb∂cχ+ FabFcdχ̄γabc∂dχ+

+
1

3
χ̄γa∂bχχ̄γa∂bχ

)

. (3.1)

This action reproduces the four-point string amplitudes involving two and four fermions [16]

to lowest order in α′ . It is then easy to guess what the effective action should be when

fermionic interactions as well as higher derivative corrections are included:

Seff [Aa, χ] = −(gα′)2
∫

d10x

{

∏

i

d10xi δ
(10)(x− xi)

}

D(∂x1 , ∂x2 , ∂x3 , ∂x4)×

×

{

Fab(x1)Fbc(x2)Fcd(x3)Fda(x4)−
1

4
Fab(x1)Fab(x2)Fcd(x3)Fcd(x4)−

− 2Fab(x1)Fac(x2)χ̄(x3)γb∂cχ(x4) + Fab(x1)Fcd(x2)χ̄(x3)γabc∂dχ(x4) +

+
1

3
χ̄(x1)γa∂bχ(x2)χ̄(x3)γa∂bχ(x4)

}

. (3.2)

It is not difficult to prove that this action is supersymmetric. As explained in the previous

section, the operator D is symmetric in the ∂xi
. This implies that, when we apply the

Noether method5 to (3.2), we can perform the same manipulations as the ones necessary

to demonstrate the supersymmetry of (3.1).

Consider for example the variation of the first term in (3.1). It is given by

δ
(

trF 4
)

= δFabFbcFcdFda + FabδFbcFcdFda + FabFbcδFcdFda + FabFbcFcdδFda

= 4FabFbcFcdδFda . (3.3)

The last step is of course completely trivial in the local case, but essential for proving the

supersymmetry. In the non-local case (3.2), this last step is not automatic. We see that it

is the symmetry of D that allows us to perform it.

3Remember that terms containing lowest order field equations can be induced in the effective action by

means of a redefinition of the fields. See e.g. [14, 9].
4Supersymmetry holds only order by order in the number of fields, starting with the standard super-

Maxwell action F 2 + χ̄γ∂χ, and requires modifications of the supersymmetry transformations at all orders.

The superinvariants involving higher-derivative terms defined below have a similar structure.
5For a detailed description of the Noether method in the case of super Yang-Mills theory we refer to our

previous papers [14, 9] with A. Collinucci.

– 4 –
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In addition to algebraic manipulations of the kind described above, it is also necessary

to perform partial integrations to prove the supersymmetry. In the local case one encounters

for example the following total derivative at an intermediate stage of the calculation:

∂a

(

Fab trF
2 ε̄γbχ

)

. (3.4)

In the non-local case this term will manifest itself as
(

∂

∂xa
1

+
∂

∂xa
2

+
∂

∂xa
3

+
∂

∂xa
4

)

Fab(x1)Fcd(x2)Fcd(x3) ε̄γbχ(x4) . (3.5)

This still gives rise to a total derivative, since we can pull the
∑

i ∂/∂x
a
i out of the inte-

gration over the xi:

∫

d10x

{

∏

i

d10xi δ
(10)(x− xi)

}

D(∂x1 , ∂x2 , ∂x3 , ∂x4)×

×





∑

j

∂

∂xa
j



Fab(x1)Fcd(x2)Fcd(x3) ε̄γbχ(x4) =

=

∫

d10x
∂

∂x

∫

{

∏

i

d10xi δ
(10)(x− xi)

}

D(∂x1 , ∂x2 , ∂x3 , ∂x4)×

×Fab(x1)Fcd(x2)Fcd(x3) ε̄γbχ(x4) . (3.6)

Here the symmetry properties of D are not required.

We conclude, that the fact that (3.2) is supersymmetric follows immediately from the

supersymmetry of (3.1).

The above actually shows that when we replaceD in (3.2) by any symmetric differential

operator ∆(∂x1 , . . . , ∂x4), we obtain a supersymmetric action.

4. Derivative expansion of the effective action

In this section we will consider the derivative expansion of the effective action (2.8). This

will allow us to make contact with previously obtained results at order α′4 as well as to

present new results at order α′5. But first let us discuss the form of the generic Lorentz

invariant symmetric differential operator ∆(∂x1 , . . . , ∂x4) and determine the number of

independent supersymmetric invariants that are possible at any given order in α ′ .

To find the form of ∆(∂x1 , . . . , ∂x4) we need the most general Lorentz invariant ex-

pression that is symmetric and regular in the momenta ki, after which we substitute

ki → −i∂i. In such an expression only combinations ki · kj and their products can en-

ter.6 Using momentum conservation and the mass-shell condition all such terms can be

written as combinations of s, t, u. Any completely symmetric polynomial in s, t, u can be

written as:
∑

k≤l≤m

α′k+l+m ck,l,m P(k, l,m) , (4.1)

6We do not have to consider contractions with the ε-tensor, since all scalars that one can form by

contracting it with the momenta ki vanish.

– 5 –
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where the ck,l,m are constants and

P(k, l,m) = sktlum + sktmul + smtkul + smtluk + sltmuk + sltkum . (4.2)

Define

P (n) = sn + tn + un , Q = stu . (4.3)

P(k, l,m) can be expressed in terms of P (n) and Q:

P(k, l,m) = Qk (P (l − k)P (m− k)− P (l +m− 2k)) . (4.4)

Furthermore, it follows from P (1)P (n − 1) = 0 that

P (n) =
1

2
P (2)P (n− 2) +QP (n− 3) . (4.5)

We conclude that we can express (4.1) in powers of P ≡ P (2) and Q:

∑

a,b

α′2a+3b da,b P
aQb , (4.6)

where the da,b are constants. The number NP,Q(m) of possible independent combinations

of P and Q, at order α′m in the above expansion, is given by

NP,Q(m) =











[m

6

]

+ 1 , if m 6= 6×
[m

6

]

+ 1
[m

6

]

, if m = 6×
[m

6

]

+ 1 ,
(4.7)

where [x] denotes the largest integer smaller than x.

This implies that, for a given m, there are NP,Q(m) independent supersymmetric

contributions to the open string tree-level effective action that contain terms of the form

∂2mF 4.

We now turn to the derivative expansion of (3.2). We use the Taylor expansion for

log Γ(1 + z),

log Γ(1 + z) = −γz +

∞
∑

m=2

(−1)mζ(m)
zm

m
, (4.8)

where ζ(n) is the Riemann zeta-function, γ the Euler-Mascheroni constant, to obtain the

following expression for G(s, t):

α′ 2G(s, t) =
1

st
exp

{

∞
∑

m=2

α′m
ζ(m)

m
(sm + tm − (s+ t)m)

}

. (4.9)

This expression can be used to calculate the α′ expansion of G(k1, . . . , k4). We give here

the first terms in this expansion, expressed in P and Q:

G(k1, . . . , k4) = −
1

2
π2 −

1

48
α′ 2 π4 P −

1

2
α′3π2ζ(3)Q−

1

960
α′4 π6 P 2 −

1

48
α′5π2 ×

×
(

π2ζ(3)+12ζ(5)
)

PQ−
1

967680
α′6
(

51π8P 3+8π2
(

31π6+30240ζ(3)2
)

Q2
)

−

– 6 –
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−
1

960
α′7 π2

(

π4ζ(3) + 10π2ζ(5) + 120 ζ(7)
)

P 2Q−
1

58060800
α′8 × (4.10)

×
(

155π10 P 4 + 32π2(67π8 + 18900π2ζ(3)2 + 453600 ζ(3)ζ(5))PQ2
)

−

−
1

967680
α′9

(

π2
(

51π6ζ(3) + 504π4ζ(5) + 5040π2ζ(7) + 60480 ζ(9)
)

×

× P 3Q+ 8π2(31π6ζ(3)+10080(ζ(3)3 + 2ζ(9)))Q3

)

+ · · · .

We see that, at least to this order, all possible combinations of P and Q indeed appear.

String theory thus seems to make use of all available superinvariants. By substituting

derivatives for momenta in the above expansion and inserting the resulting expression

in (3.2), one can straightforwardly construct the contribution to the effective action at any

desired order in α′ . We demonstrate this for the bosonic terms at order α′4 and α′5. At

order α′4 we obtain:

L(4,4) =
1

288
π4 g2α′4 tabcdefgh ∂kFab∂kFcd∂lFef∂lFgh

=
1

36
π4 g2α′4

(

(∂kFab∂lFbc∂kFcd∂lFda + 2 ∂kFab∂kFbc∂lFcd∂lFda)−

−
1

4
(∂kFab∂kFab∂lFcd∂lFcd + 2 ∂kFab∂lFab∂kFcd∂lFcd)

)

. (4.11)

This expression is consistent with results obtained previously by different methods [17]. We

have also checked explicitly that the terms bilinear in the fermions - which were obtained

in [9], see also [18] — are reproduced correctly. As always, this result is determined up to

total derivatives and terms containing lowest order field equations.

At order α′5 we obtain the following result:

L(5,6) = −
1

6
π2ζ(3) g2α′5 tabcdefgh ∂k∂l∂mFab∂kFcd∂lFef∂mFgh (4.12)

= −4π2ζ(3) g2α′5
(

∂k∂l∂mFab∂kFbc∂lFcd∂mFda −
1

4
∂k∂l∂mFab∂kFab∂lFcd∂mFcd

)

.

As was already mentioned above, each of the terms L(m,2m−4) constructed in this

paper are, together with the order α′ 0 super-Maxwell action, supersymmetric to fourth

order in the number of fields. From the point of view of the Noether procedure each of

these terms contributes to genuine superinvariants that extend to all orders in the number

of fields. One such superinvariant is the complete open superstring effective action, to

which all L(m,2m−4) contribute. One can then pose the question how many independent

sub-invariants the string effective action contains. In [9] the general structure of the web

of supersymmetric derivative corrections was discussed in some detail. It was argued there

that the contributions which in the string effective action have coefficients involving powers

of ζ(n), n odd, only, should form independent invariants.

The simplest assumption, which was posed as a conjecture in [9], is that the sectors

L(2,0), L(4,4) and L(m,2m−4), m odd, contain the next-to-leading-order contributions to

– 7 –
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separate superinvariants, and that there are no other all-order invariants starting at L(m,n)

for any m,n. The results obtained in the present paper do not falsify this conjecture.

Note that the conjecture implies that the terms involving, for example, ζ(9)P 3Q and

ζ(9)Q3, which are independently invariant when supersymmetry to fourth order in the

number of fields is considered, should become part of a single invariant if supersymmetry

is required also at higher orders.

5. Summary and conclusions

We have obtained a new result to all orders in α′ for a specific sector of the open superstring

effective action: the four-point vertices. The bosonic four-derivative term agrees with [6],

the fermionic contributions at that order agree with our result [9], which was obtained with

the Noether procedure.

The bosonic part of the term at order α′ 5 (4.12) (six derivatives) can be compared

with a conjecture by Wyllard [19].

In [19] it was conjectured that all derivative corrections to the Born-Infeld action

follow from the corrections to the Wess-Zumino term. This conjecture is applied in [19]

using the results for the Wess-Zumino term of [7] as input. We have taken the six-derivative

corrections given in [19, formula (4.16)], and extracted the terms of fourth order in F . We

find:

L(5,6)Wyllard = −4π2ζ(3) g2α′5
(

∂k∂lFab∂k∂mFbc∂l∂mFcdFda −

−
1

4
∂k∂lFab∂k∂mFab∂l∂mFcdFcd

)

. (5.1)

This agrees, up to field redefinitions, with our result (4.12). However, this agreement

should be interpreted with care. First of all the procedure of [19] involves an infinite series

involving functional derivatives of the Born-Infeld action with respect to the field strength

F . The conjecture requires an ordering prescription for these functional derivatives. For

our comparison we have taken the simplest solution to this ordering ambiguity. Secondly,

the corrections to the Wess-Zumino term in [7] are not complete. Other corrections, such

as those evaluated in [20]–[22], will contribute as well. On applying Wyllard’s proposal

to these extra terms, further six-derivative corrections to the Born-Infeld term might be

generated. Our agreement with [19] indicates that these extra terms do not give rise to

new six-derivative F 4 terms in the Born-Infeld action.7

In figure 1 we show the present situation for the effective action of abelian open su-

perstring. Black dots indicate sectors for which bosonic as well as fermionic terms are

known, and supersymmetry has been established. The terms corresponding to the four-

point function established in this paper are along the line (m, 2m − 4), where m is the

order of α′ . All bosonic four-derivative terms have been given in [7], but the fermionic

contributions remain to be found. Clearly further progress requires a better understanding

of the six- and higher-point functions from string theory. In the case of the four-point

7We are grateful to Niclas Wyllard for useful remarks and suggestions on these issues.
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Figure 1: Structure of the abelian open superstring tree level effective action. Black dots indicate

nonempty sectors of which the explicit form is known. Empty white dots correspond to sectors that

are known to be empty up to field redefinitions. The yellow dots indicate sectors that are known

to be nonempty but have yet to be constructed explicitly.

function supersymmetry of L(m,2m−4) for m > 0 follows from the supersymmetry of L(2,0).

The generalization one could hope for is that supersymmetry of the full effective action

follows, “under the derivatives”, from supersymmetry of the Born-Infeld action.

An interesting problem is the extension of our result to the nonabelian case. In that

case (2.1) is still valid, but G contains now also the group structure:

G(k1, k2, k3, k4) = (tABCD + tDCBA)G(s, t) + (tABDC + tCDBA)G(t, u) +

+ (tACBD + tDBCA)G(u, s) , (5.2)

where tABCD = rmTrλAλBλCλD. The problem is now that at order α′n we are not

just discussing the derivative correction to the four-point function, but also contributions

with different numbers of derivatives and F ’s. These all communicate through the relation

[D,D]F = [F, F ], and correspond to vertical lines in figure 1. The sectors which are inde-

pendent in the abelian case are connected in the nonabelian situation. The method of [17]

to organize the nonabelian effective string action in terms of symmetric traces seems to

maximize the usefulness of the abelian results for solving the nonabelian problem. Never-

theless, making further progress with the nonabelian case remains a formidable problem.
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A. Definitions and conventions

We use the conventions of [9] for the metric, γ-matrices and fermions. We freely raise and

lower spacetime indices. No confusion should arise, since contractions are always performed

using the Minkowski metric.

An explicit expression for the tensor t8 is given for example in [8]. tabcdefgh is antisym-

metric in the pairs (ab), (cd), etc., and is symmetric under the exchange of such pairs. It

satisfies the following identity:

tabcdefghM
ab
1 M cd

2 M
ef
3 Mgh

4 =−2 (trM1M2trM3M4+trM1M3trM2M4+trM1M4 trM2M3)+

+8 (trM1M2M3M4+trM1M3M2M4+trM1M3M4M2) , (A.1)

where the Mi are antisymmetric tensors.

The effective action is by definition the generator of 1PI diagrams:

Seff [Aa] ≡
∑

n

1

n!

∫

d10x1 · · · d
10xn Γ

(n)
a1···an(x1, . . . , xn)A

a1(x1) · · ·A
an(xn) , (A.2)

hence

Γ
(n)
a1···an(x1, . . . , xn) =

δnSeff [Aa]

δAa1(x1) . . . δAan (xn)

∣

∣

∣

∣

Aa=0

. (A.3)

We define the momentum space amplitudes as follows:

(2π)10δ(10)(k1+ . . .+kn)Γ
(n)
a1···an(k1, . . . , kn) ≡

∫ n
∏

i=1

d10xi e
iki·xi Γ

(n)
a1···an(x1, . . . , xn) . (A.4)

An n-photon interaction gives the following contribution to the S-matrix:

A(1, . . . , n) = i(2π)10δ(10)(k1 + . . .+ kn) ζ
1
a1
· · · ζn

an
Γ
(n)
a1···an(k1, . . . , kn) . (A.5)

B. Proof

In order to reproduce (2.1), we have to obtain the following 1PI four-point function

from (2.8):

Γ
(4)
klmn(k1, k2, k3, k4) = −16(gα

′)2 takblcmdnk
a
1k

b
2k

c
3k

d
4 G(k1, k2, k3, k4) . (B.1)

First we calculate the four-point function in position space:

Γ
(4)
klmn(y1, . . . , y4) =

δ4Seff [Aa]

δAk(y1)Al(y2)Am(y3)An(y4)

∣

∣

∣

∣

Aa=0

= −4!24
1

24
(gα′)2

∫

d10x

{

∏

i

d10xiδ(x− xi)

}

D(∂x1 , . . . , ∂x4)takblcmdn ×

× ∂a
x1
δ(x1 − y1)∂

b
x2
δ(x2 − y2)∂

c
x3
δ(x3 − y3)∂

d
x4
δ(x4 − y4) . (B.2)

The factor of 24 arises from substituting Fab = ∂aAb − ∂bAa, the factor 4! from the

distributive property of the functional derivative. To arrive at the result we renamed

dummy variables and made use of the fact that D is symmetric in its arguments.

– 10 –
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In momentum space this becomes:

−
1

16(gα′)2
(2π)10δ(k1 + k2 + k3 + k4)Γ

(4)
klmn(k1, k2, k3, k4) =

= takblcmdn

∫

d10x

{

∏

i

d10xid
10yi δ(xi − x)eiki·yi

}

D(∂x1 , . . . , ∂x4)×

× ∂a
x1
δ(x1 − y1)∂

b
x2
δ(x2 − y2)∂

c
x3
δ(x3 − y3)∂

d
x4
δ(x4 − y4)

= takblcmdn

∫

d10x

{

∏

i

d10xi δ(xi − x)

}

×

×D(∂x1 , . . . , ∂x4) ∂
a
x1
∂b

x2
∂c

x3
∂d

x4







∏

j

∫

d10yj e
ikj ·yjδ(xj − yj)







= takblcmdn

∫

d10x

{

∏

i

d10xi δ(xi − x)

}

×

× G(−i∂x1 , . . . ,−i∂x4)∂
a
x1
∂b

x2
∂c

x3
∂d

x4







∏

j

eikj ·xj







= takblcmdn

∫

d10x

{

∏

i

d10xi δ(xi − x) eiki·xi

}

G(k1, . . . , k4) k
a
1k

b
2k

c
3k

d
4

= takblcmdn G(k1, . . . , k4) k
a
1k

b
2k

c
3k

d
4 × (2π)10δ(k1 + k2 + k3 + k4) . (B.3)

This completes the proof.
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