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One-step finite-difference time-domain algorithm to solve the Maxwell equations
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We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially
varying permittivity and permeability. We compare the results of this algorithm with those obtained from the
Yee algorithm and from unconditionally stable algorithms. We demonstrate that for a range of applications the
one-step algorithm may be orders of magnitude more efficient than multiple time-step, finite-difference time-
domain algorithms. We discuss both the virtues and limitations of this one-step approach.

DOI: 10.1103/PhysRevE.67.056706 PACS number~s!: 02.60.Cb, 03.50.De, 41.20.Jb

I. INTRODUCTION

Many applications in physics and engineering require nu-
merical methods to solve the time-dependent Maxwell equa-
tions @1–10#. A popular approach is the finite-difference
time-domain~FDTD! method@2–4# based on a proposal by
Yee @1#. It is flexible, fast, and easy to implement. A limita-
tion of Yee-based FDTD techniques is that their stability is
conditional, depending on the mesh size of the spatial dis-
cretization and the time step of the time integration@2#.

Recently we have introduced a family of unconditionally
stable algorithms to solve the time-dependent Maxwell equa-
tions @9,10#. The operator that governs the time evolution of
the electromagnetic~em! fields is orthogonal and can be
written as the matrix exponential of a skew-symmetric ma-
trix @9#. Orthogonal approximations to the time-evolution op-
erator yield unconditionally stable algorithms by construc-
tion @11#. Details of the construction of such algorithms can
be found elsewhere@9,10#.

A limitation of both the Yee-based@2# and our uncondi-
tionally stable algorithms@9,10# is that the amount of com-
putational work required to propagate the em fields for long
times may be prohibitive for a class of important applica-
tions, such as bioelectromagnetics and very large scale inte-
grated design@2,12,13#. The basic reason for this is that in
order to maintain a reasonable degree of accuracy during the
time integration, the time step has to be relatively small.

A well-known alternative to time stepping is to use
Chebyshev polynomials to construct approximations to time-
evolution operators@14–20#. In this paper we make use of
these rapidly converging polynomial approximations to con-
struct a one-step algorithm that solves the time-dependent
Maxwell equations. We demonstrate that the one-step algo-
rithm can be orders of magnitude more efficient than current
FDTD algorithms.

The paper is organized as follows. In Sec. II we recall
some basic, essential facts about the mathematical structure
of the Maxwell equations that we need in Sec. III to turn the

Chebyshev polynomial expansion method into a one-step al-
gorithm for solving the Maxwell equations. In Sec. IV we
illustrate this approach by considering a one-dimensional
system with a current source and present results of an error-
efficiency analysis. Results of numerical experiments on a
three-dimensional system as well as an error-efficiency
analysis are presented in Sec. V. A summary and our conclu-
sions are given in Sec. VI.

II. THEORY

We consider em fields in linear, isotropic, nondispersive,
and lossless materials. Generalizations are discussed below.
In the absence of electric charges, the time evolution of the
em fields in these materials is governed by the time-
dependent Maxwell equations~in mks units! @2#

]

]t
H52

1

m
“3E,

]

]t
E5

1

«
~“3H2J!, ~1!

“•~mH!50, ¹•~«E!50, ~2!

where H5„Hx(r ,t),Hy(r ,t),Hz(r ,t)…T and E
5„Ex(r ,t),Ey(r ,t),Ez(r ,t)…T denote the magnetic and the
electric field vector, respectively. The source of the electric
field is represented byJ5„Jx(r ,t),Jy(r ,t),Jz(r ,t)…T. The
permeability and the permittivity are given bym5m(r ) and
«5«(r ). For simplicity of notation, we will omit the tempo-
ral and the spatial dependence onr5(x,y,z)T unless this
leads to ambiguities. For numerical purposes it is expedient
to introduce dimensionless quantities. The velocity of light in
vacuum is given byc51/A«0m0 ~in mks units!, where«0
denotes the permittivity andm0 the permeability in vacuum.
If we measure distances in units of the wavelengthl, time
and frequency are expressed in units ofl/c andc/l, respec-
tively. Then Eqs.~1! and~2! take a dimensionless form if we
replace«(m) by its value relative to«0 (m0) and expressH
andE in units of A/m andV/m, respectively. We adopt this
dimensionless form, in other words, from now onH, E, «,
m, t, andr are dimensionless quantities.

In a simulation there is a limit to the size of the box
surrounding the material of interest. On the surface of this
simulation box, the EM fields are assumed to satisfy the
boundary conditions@21#
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n3E50, n•H50, ~3!

with n denoting the vector normal to a boundary of the sur-
face. Conditions~3! assure that the normal component of the
magnetic field and the tangential components of the electric
field vanish at the boundary@21#.

Some important physical symmetries of the Maxwell
equations~1! and~2! can be made explicit by introducing the
fields

X~ t !5AmH~ t !, Y~ t !5A«E~ t !. ~4!

In terms of the fieldsX(t) and Y(t), Maxwell’s curl equa-
tions ~1! read

]

]t S X~ t !

Y~ t !
D 5S 2

1

Am
“3

Y~ t !

A«

1

A«
“3

X~ t !

Am

D 2S 0

J~ t !

A«
D ,

5HS X~ t !

Y~ t !
D 2S 0

J~ t !

A«
D , ~5!

where

H5S 0 2
1

Am
“3

1

A«

1

A«
“3

1

Am
0

D . ~6!

Writing Z(t)5„X(t),Y(t)…T it is easy to show thatH is
skew symmetric, i.e.,H T52H, with respect to the inner
product^ZuZ8&[*VZT

•Z8dr , whereV denotes the volume
of the enclosing box. By constructioniZ(t)i25^Z(t)uZ(t)&
5*V@«E2(t)1mH2(t)#dr , relating the length ofZ(t) to the
energy densityw(t)[«E2(t)1mH2(t) of the em fields@21#.
The formal solution of Eq.~5! can be written as

Z~ t !5S X~ t !

Y~ t !
D 5etHF S X~0!

Y~0!
D 2E

0

t

e2uHS 0

J~u!

A«
D duG .

~7!

From Eq.~7! it is clear that the operatorU(t)[etH governs
the time evolution of the em fields. AsU(t)T5U(2t)
5U 21(t)5e2tH, the time-evolution operatorU(t) is an or-
thogonal transformation that rotates the vectorZ(t) without
changing the length ofZ(t). In physical terms this means
that if J(t)50, the energy density of the em fields does not
change with time, as expected on physical grounds@21#.

III. TIME-INTEGRATION ALGORITHM

A numerical algorithm that solves the time-dependent
Maxwell equations necessarily involves some discretization

procedure of the spatial derivatives. This procedure maps
continuum space onto a lattice, i.e., it maps the differential
operatorH onto a matrixL. The time-evolution matrix and
the vector of the em fields on the lattice will be denoted by
U(t)5etL andC(t), respectively. The matrix equivalent of
Eq. ~5! reads

]

]t
C~ t !5LC~ t !2F~ t !, ~8!

whereF(t) is the vector that represents the current source.
The formal solution of Eq.~8! is given by

C~ t !5etLC~0!2E
0

t

e(t2u)LF~u!du. ~9!

Ideally, the mapping from a continuum to a lattice prob-
lem should not change the basic symmetries of the Maxwell
equations. The underlying symmetry of the time-dependent
Maxwell equations suggests using matricesL that are real
and skew symmetric. The discretization procedure itself is
not essential for what follows as long asL is skew symmet-
ric ~generalizations are being discussed below!. Therefore, in
this paper, we do not discuss the~important! technicalities
related to the spatial discretization and refer the reader to
Ref. @9#.

The next step is to choose an algorithm to perform the
time integration for the time-dependent Maxwell equations
defined on the grid. In general, this amounts to approximat-
ing the matrix exponentialU(t)5etL by a time-evolution
matrix Ũ(t). The corresponding approximate solution will

be denoted byC̃(t). If the approximationŨ(t) is itself an
orthogonal transformation, theniŨ(t)i51, whereiXi de-
notes the two-norm of a vector or matrixX @22#. The fact that
Ũ(t) is an orthogonal transformation is essential for the de-
velopment of an unconditionally stable algorithm to solve
the Maxwell equations@9#. In the absence of source terms

@i.e., F(t)50], this implies that iC̃(t)i5iŨ(t)C(0)i
5iC(0)i , for an arbitrary initial conditionC(0) and for all
times t and hence the time-integration algorithm defined by
Ũ(t) is unconditionally stable by construction@23,11#. In the
presence of current sources, for generalŨ(t), it follows im-
mediately from Eq.~9! that

iC̃~ t !i<iC~ t !i1 ẽS 11E
0

t

iF~u!iduD , ~10!

whereiŨ(u)2U(u)i<ẽ for 0<u<t andẽ is a measure for
the accuracy of the approximationŨ(t). In a strict sense, the
one-step method we describe below does not correspond to
an orthogonal approximation. However, for practical pur-
poses it can be viewed as an extremely stable time-
integration algorithm because it yields an approximation to
the exact time-evolution operatorU(t)5etL that is exact to
nearly machine precision, i.e., in practice the value ofẽ in
Eq. ~10! is very small. This also implies that within the same
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precision “•„mH(t)…5“•„mH(t50)… and “•„«E(t)…
5“•„«E(t50)…, i.e., Eq.~2! holds for all times.

A. Case: J„t…Ä0

We first recall how the Chebyshev polynomial approach is
used to approximateU(t)5etL and then show how to treat
the source term. We begin by ‘‘normalizing’’ the matrixL.
The eigenvalues of the skew-symmetric matrixL are pure
imaginary numbers. Hence the eigenvalues of the Hermitian
matrix A52 iL are real and ifa is one of these eigenvalues
so is 2a. The eigenvalues ofA lie in the interval
@2iLi2 ,iLi2#, whereiLi2 is the largest~in absolute value!
eigenvalue ofL @22#. Obviously iLi2 is hard to find. How-
ever, for our purposes we only need an upper bound toiLi2.
SinceL is sparse it is easy to computeiLi1[maxj(iuLi , j u
and the upper bound follows fromiLi2<iLi1 @22#. By con-
struction the eigenvalues ofB[2 iL/iLi1 all lie in the in-
terval @21,1#. The time-evolution operator then readsU(t)
5etL5eizB, wherez5tiLi1. In practice, it is easy to deter-
mine iLi1 by hand. Ife5m51, in the case of a three-point
central-difference approximation to the spatial dervatives,
iLi152/d for a one-dimensional grid andiLi154/d for a
two- and three-dimensional grid,d being the mesh size.

Expanding the initial valueC(0) in the~unknown! eigen-
vectorsbj of B we have

U~ t !C~0!5etLC~0!5eit iLi1(2 iL/iLi1)C~0!5eizBC~0!

5(
j

eizbjbj^bj uC~0!&, ~11!

where thebj denote the~unknown! eigenvalues ofB. Actu-
ally, we will only make use of the fact that21<bj<1. We
find the Chebyshev polynomial expansion ofU(t) by com-

puting the expansion coefficients of each of the functions
eizbj that appear in Eq.~11!. In general, for21<x<1 we
can represent a functionf (x) as

f ~x!5 1
2 a0T0~x!1a1T1~x!1a2T2~x!1•••, ~12!

whereTk(x)5cos(karccosx) is the Chebyshev polynomial
of the first kind of orderk @24#. The expansion coefficientsak
can be found by computing

ak5
2

pE21

11 f ~x!Tk~x!

A12x2
dx5

2

pE0

p

f ~cosu!coskudu.

~13!

From Eq.~13! it is clear that, in practice, the coefficientsak
can be calculated by Fourier transformation off (cosu).

Using representation@24#

eizx5J0~z!12(
k51

`

i kJk~z!Tk~x!, ~14!

where Jk(z) is the Bessel function of integer orderk, we
obtain

U~ t !C~0!5etLC~0!5FJ0~ tiLi1!I

12(
k51

`

Jk~ tiLi1!T̃k~L/iLi1!GC~0!.

~15!

Here I is the identity matrix andT̃k(L/iLi1) is a matrix-
valued modified Chebyshev polynomial that is defined by the
recursion relation

T̃0~L/iLi1!C~0!5C~0!, T̃1~L/iLi1!C~0!5LiLi1
21C~0!, ~16!

T̃k11~L/iLi1!C~0!52LiLi1
21T̃k~L/iLi1!C~0!1T̃k21~L/iLi1!C~0! for k>1. ~17!

From Eqs.~16! and ~17! it is clear thatT̃k(L/iLi1)C(0) is
real valued, as it should be in the case of the Maxwell equa-
tions. Thus, in an actual implementation of the algorithm
there is no need to perform complex arithmetic.

In practice, we will have to truncate the sum in Eq.~15!,
i.e., we will use only the firstK11 contributions to approxi-
mateU(t)C(0):

etLC~0!'FJ0~ tiLi1!I 12(
k51

K

Jk~ tiLi1!

3T̃k~L/iLi1!GC~0!. ~18!

To determine the value ofK it is instructive to studyJk(z)

as a function ofk. Using the downward recursion relation of
the Bessel functions, we can computeK Bessel functions to
machine precision using only of the order ofK arithmetic
operations@24,25#. In practice, a calculation of the first
20 000 Bessel functions takes less than 1 s on aPentium III
600-MHz mobile processor, using 14-15 digit arithmetic.
Hence this part of a calculation is a negligible fraction of the
total computational work for solving the Maxwell equations.

From Fig. 1 it is clear thatuJk(z)u vanishes rapidly ifk
becomes larger thanz. For instance,uJk(z52000)u,10210

for all k.z1100. Thus we may fix the numberK by requir-
ing thatuJk(tiLi1)u.k for all k<K. Herek is a small num-
ber that determines the accuracy of the approximation. In our
numerical experiments we use conventional 14-15 digit
floating-point arithmetic and we have takenk510210. Once
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we have found the smallestK such thatuJk(tiLi1)u.k for
all k<K, there is no point in taking more thanK terms in the
expansion. Indeed, sinceiT̃k(L/iLi1)i<1 by construction
of the modified Chebyshev polynomials, it follows from Fig.
1 that such contributions would only add to the noise. How-
ever, taking less thanz terms has considerable negative im-
pact on the accuracy of the results. Hence in practice the
choice of K is rather limited ~e.g., KP@z,z1100# if z
52000). In any case, for fixedk, K increases linearly with
tiLi1.

At this point one may wonder why it would not be sim-
pler to use the Taylor series instead of the Chebyshev poly-
nomial expansion. There are two reasons for not doing this.
The first is the accuracy of the polynomial expansion. From
the derivation of Eq.~18!, it is clear that we use the Cheby-
shev polynomial expansion to approximate exp(izbj) for each
of the ~unknown! eigenvaluesbj . After rescaling, the values
of bj enter through the variablexP@21,1#. As shown in Fig.
2, the Chebyshev polynomial expansion withK550 is a very
good approximation to exp(izx), for all relevant values ofx.
The corresponding Taylor series approximation, using the
same number of termsK550, does very well for20.25
,x,0.25 but performs much worse than the Chebyshev

polynomial expansion for other values ofx. Doubling the
number of Taylor expansion terms helps to reduce the error
but not to the same level as for the Chebyshev polynomial
expansion.

The fact that the truncated Taylor polynomial is less ac-
curate for eigenvalues of large modulus also contributes to
the second and main reason for not using the Taylor series to
approximate exp(tL): Numerical instability@23#. A clear sig-
nal of this phenomenon can already be seen in Fig. 2.
For 21<x<1, z520 and K550(100) we have
ueizx2(k50

K ( izx)k/k! u<uzuK11/(K11)!'100.16(10229).
The upper bound forK5100 tells us that we should have no
confidence in the numerical results forK5100 ~dotted line!
shown in Fig. 2. The reason that the numerical error foruxu
51 is much larger than the theoretical upper bound stems
from the fact that we have performed these numerical calcu-
lations using 14-15 digit arithmetic and, most importantly,
that summing the Taylor series forxz520 is a numerically
unstable procedure. This is most easily verified by repeating
the same calculation with 32-33 digit arithmetic. Then for
xz520, the numerical error of theK5100 series is 10229

~results not shown!, in agreement with the theoretical upper
bound.

In the Chebyshev approach we haveuJk(z)u,1 ~recallz is
real! andiT̃k(L/iLi1)i<1 and therefore all contributions in
Eq. ~18! are roughly of the same magnitude. In contrast, to
sum the Taylor series we must compute(k51

K (tL)k/k!,
which involves adding many small and large~real! numbers,
a numerical task that can be very difficult and often results in
numerical instabilities. Examples of this phenomenon for the
case of the Maxwell equations are given in the Appendix.

According to Eq.~18!, performing one time step amounts
to repeatedly using recursion relation~17! to obtain
T̃k(L/iLi1)C(0) for k52, . . . ,K, then multiplying the ele-
ments of this vector byJk(tiLi1) and adding all contribu-
tions. This procedure requires storage for two vectors of the
same length asC(0) and some code to multiply such a
vector by the sparse matrixL. For F(t)50, bound ~10!
gives

iC̃~ t !i<iC~ t !i1e~K !, ~19!

wheree(K) denotes the error bound on the truncated Cheby-
shev polynomial expansions ofU(t)5etL. As e(K) can be
made~exponentially! small by increasingK, bound~19! sug-
gests that in practice, the one-step algorithm may safely be
used repeatedly to perform multiple time steps with a~very!
large fixed time step. At most the error will simply bee(K)
times the number of time steps.

B. Case: J„t…Å0

We now turn to the treatment of the source term and focus
on the case where the time dependence of the source term is
known explicitly. One approach might be to simply use the
Chebyshev expansion fore(t2u)L and perform the integral in
Eq. ~9! numerically. However, this approach is not efficient,
as for each value oft2u we would have to perform a recur-

FIG. 1. Dependence of the Bessel functionJk(z) on the orderk.
Solid line,z5500; dashed line,z51000; dotted line,z52000.

FIG. 2. Error betweeneizx and the Chebyshev approximation to
eizx and two Taylor series approximations toeizx, as a function ofx

for z520. Solid line, log10ueizx2@J0(z)12(k51
K Jk(z)T̃k(x)#u for K

550; dashed line, log10ueizx2(k50
K (izx)k/k!u for K550; dotted line,

log10ueizx2(k50
K (izx)k/k!u for K5100.
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sion of the kind of Eq.~17!. Thus we take another route that
we illustrate by considering a sinusoidal source@26#

J~r ,t !5Q~T2t !s~r !sin~Vt !, ~20!

wheres(r ) specifies the spatial distribution of the source and
V is the angular frequency of the current source. The source
is turned on att50 and is switched off att5T, as indicated
by the presence of the step functionQ(T2t) in Eq. ~20!.
Artifacts that result from the discontinuity att5T can be
minimized by choosingT such thatVT/2p is an integer
number.

The contribution of the source term to the em field at time
t is given by the last term of Eq.~9!. For the sinusoidal
source described by Eq.~20! the formal expression of this
contribution reads

E
0

t

e(t2u)LF~u!du5~V21L 2!21e(t2T8)L

3~VeT8L2V cosVT82L sinVT8!J

[ f ~L,t,T8,V!J, ~21!

whereJ denotes the vector representing the spatial distribu-
tion s(r ) of the source andT85min(t,T). The expansion
coefficients of the Chebyshev polynomial approximation of
the time-evolution operator in Eq.~21! may be calculated as
follows. First we repeat the scaling procedure described
above. Then we substitute in Eq.~21! L5 ixiLi1 ,
t5z/iLi1 , T85Z8/iLi1, and V5viLi1 and compute
the Fourier expansion coefficients~i.e., the coeffi-
cients of the Chebyshev polynomial expansion! of the
function

f ~x,z,Z8,v!5
Z8

2iLi1
eix(z2Z8)H vZ8

sin@~v1x!Z8/2#

~v1x!Z8/2

3
sin@~v2x!Z8/2#

~v2x!Z8/2
1 i Fsin@~v1x!Z8/2#

~v1x!Z8/2

3cos@~v2x!Z8/2#2
sin@~v2x!Z8/2#

~v2x!Z8/2

3cos@~v1x!Z8/2#G J . ~22!

We have written Eq.~22! in a form that emphasizes that
f (x,z,Z8,v) has no singularities as a function of21<x
<1.

According to the general theory, the coefficients of the
formal expansion off (L,t,T8,V) in terms of Chebyshev
polynomials are given by Eq.~13!, i.e., by the Fourier cosine
transform off (cosu,z,Z8,v) with respect tou. In practice the
expansion coefficientsSk(tiLi1) are most easily calculated
by performing a fast Fourier transform~FFT! @20#. For the
sinusoidal source, Eq.~20!, we have

Sk~ tiLi1!5 i 2k (
n50

N21

e2p ink/Nf S cos
2pn

N
,z,Z8,v D ,

~23!

whereN is the number of points in the FFT. The symmetry of
f „cos(2pn/N),z,Z8,v… guarantees that the coefficients
Sk(tiLi1) are strictly real.

The numberN serves two purposes. FirstN has to be
chosen such that the sum overn in Eq. ~23! yields an accu-
rate~i.e., better thank) approximation to the integral in Eq.
~13!, for all relevantk. Second, since we have to truncate the
series atK8, N has to be sufficiently large so that we can find
K8 for which uSku,k for all k.K8. In our numerical experi-
ments K8 is in the range 1000–10 000 and it is the first
condition that determines the value ofN. In Fig. 3, we show
lnuSk(z52000)u as a function ofk obtained by usingN5222

points in the FFT~this calculation takes less than 32 s on a
Pentium III 600-MHz mobile processor, using 14-15 digit
arithmetic!. From Fig. 3 it is clear that forz52000 we can
truncate the series ifK8 is a little larger thanz. Thus, as in
the case where the expansion coefficients correspond to the
Bessel functions, we fix the numberK8 by requiring that
uSk(tiLi1)u.k for all k<K8. The results for N
5220,221,222 differ in the noisy, irrelevant part (n.z1100)
only. The noise level can be reduced further by increasingN.

Putting all pieces together, the one-step algorithm to com-
pute the em field at timet is given by

C~ t !'FJ0~ tiLi1!I 12(
k51

K

Jk~ tiLi1!T̃k~L/iLi1!GC~0!

2FS0~ tiLi1!I 12(
k51

K8

Sk~ tiLi1!T̃k~L/iLi1!GJ.

~24!

The numerical procedure to compute the contribution of both
terms in Eq.~24! is the same and involves real numbers only.

In principle, sources with a more complicated time depen-
dence G(t) can be synthesized by computing
*2`

` g(v) f (x,z,Z8,v)dv, where g(v) is the Fourier sine
transform ofG(t) but this requires two nested Fourier trans-

FIG. 3. Dependence of the expansion coefficientsSk(z52000)
on the orderk.

ONE-STEP FINITE-DIFFERENCE TIME-DOMAIN . . . PHYSICAL REVIEW E67, 056706 ~2003!

056706-5



forms and may result in a substantial computational cost.
Another option is to choose the form of the current pulse
such that the integral in Eq.~21! can be worked out analyti-
cally. For instance, for the Gaussian pulsed source defined by
@2,3#

J~r ,t !5s~r !e2a(t2t0)2
, ~25!

the formal expression for the contribution of the source reads

E
0

t

e(t2u)LF~u!du5A p

4a
e(t2T8)L1L 2/4a@erf„Aa~ t2t0!

1L/2Aa…1erf~Aat02L/2Aa!#J

[p~L,t,t0 ,a!J. ~26!

As in the case of the sinusoidal source, also for the Gaussian
pulsed source the coefficients in the Chebyshev polynomial
expansion can be calculated by the FFT ofp(x,z,z0 ,a).

We end this section by making some general comments
on the one-step approach. First, it is important to note that in
this approach the time dependence of the source is taken into
account without actually sampling it as a function of time
~see the example in Sec. IV!. Furthermore, the treatment of
the source term presented above trivially applies to the
scattered-field formulation@2,3#. In the more general case
where there are electrical or magnetic losses in the system,
the matrixL is no longer skew symmetric but still normal.
ThenL still has a complete set of eigenvectors but~some of!
the eigenvalues ofL may have a nonzero real part. We leave
for future research the problem of determining the conditions
under which the series expansion~15! converges sufficiently
fast for practical applications.

IV. ILLUSTRATIVE EXAMPLE

We consider a system, infinitely large in they and z di-
rections, for which«51 andm51. Under these conditions,
the Maxwell equations reduce to two independent sets of
first-order differential equations@21#. The solutions to these
sets are known as the transverse electric~TE! mode and the
transverse magnetic~TM! mode@21#. As the equations of the
TE and the TM mode only differ by a sign, we can restrict
our considerations to the TM mode and obtain the result for
the TE mode by reversing the time.

From Eq. ~1! it follows that the magnetic fieldHy(x,t)
and the electric fieldEz(x,t) of the TM mode in the one-
dimensional~1D! cavity of lengthL are solutions of

]

]t
Hy~x,t !5

]

]x
Ez~x,t !, ~27!

]

]t
Ez~x,t !5

]

]x
Hy~x,t !2Jz~x,t !, ~28!

subject to the boundary conditionEz(0,t)5Ez(L,t)50 @21#.
Note that constraints~2! are automatically satisfied.

Following Yee@1#, to discretize Eqs.~27! and ~28!, it is
convenient to assignHy to odd andEz to even numbered

lattice sites, as shown in Fig. 4. Using the second-order
central-difference approximation to the first derivative with
respect tox, we obtain

]

]t
Hy~2i 11,t !5d21@Ez~2i 12,t !2Ez~2i ,t !#, ~29!

]

]t
Ez~2i ,t !5d21@Hy~2i 11,t !2Hy~2i 21,t !#2Jz~2i ,t !,

~30!

where we have introduced the notationA( i ,t)5A(x
5 id/2,t). The integeri labels the grid points andd denotes
the distance between two next-nearest neighbors on the lat-
tice ~hence the absence of a factor 2 in the denominator!. We
define then-dimensional vectorC(t) by

C~ i ,t !5H Hy~ i ,t !, i odd

Ez~ i ,t !, i even.
~31!

The vectorC(t) contains both the magnetic and the electric
field on the lattice pointsi 51, . . . ,n. As usual, thei th ele-
ment of C(t) is given by the inner productC( i ,t)
5ei

T
•C(t), where ei denotes thei th unit vector in the

n-dimensional vector space. Using this notation~which
proves most useful for the case of two dimensions and three
dimensions for which it is rather cumbersome to write down
explicit matrix representations!, it is easy to show that Eqs.
~29! and~30! can be written in form~8! where the matrixL
is given by

L5d21(
i 51

n21

~eiei 11
T 2ei 11ei

T!, ~32!

and we immediately see thatL is skew symmetric by con-
struction. Thus, we are in the position to apply the one-step
algorithm to this problem.

First we briefly discuss the aspects that are relevant for
the comparison among the Yee algorithm, the Suzuki-
product-formula-based unconditionally stable algorithms
@9,10#, and the one-step approach. From Eq.~9! it follows
that the em fieldsC(t) change according to

C~ t1t!5etLC~ t !2E
t

t1t

e(t1t2u)LF~u!du, ~33!

whereF( i ,t)5Jz( i ,t) if i is even andF( i ,t)50 otherwise.
In practice we approximate the source term in Eq.~33! by a
standard fourth-order quadrature formula@24# and obtain

FIG. 4. Positions of the two TM-mode field components on the
one-dimensional grid. The distance between two next-nearest
neighbors is denoted byd.
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C~ t1t!5etLC~ t !1
t

6
@etLF~ t !14etL/2F~ t1t/2!

1F~ t1t!#. ~34!

We replaceetL/2 and etL in Eq. ~34! by an approximation
Ũ(t/2) andŨ(t), respectively. For this purpose we will use
the unconditionally stable algorithmsT2S2 andT4S2 ~see
Ref. @10# for more details!. T2S2 (T4S2) is second-
~fourth-! order accurate in the time stept. Both are second-
order accurate with respect to the mesh sized.

In the presence of the current source, the application of
the Yee algorithm requires considerable additional work. The
Yee algorithm is second-order accurate in both the mesh size
and the time step. This is due to the use of a staggered grid,
both in space and time. From the point of view of time inte-
gration, the latter presents some problems that are absent in
all other time-integration methods discussed in this paper.
Indeed, to complete one time step with the Yee algorithm we
need to know the values of sayEz(t) and Hy(t2t/2), not
Hy(t), and the proper, time-shifted, values of the current
contributions in Eq.~34!. If a current source is present it is
reasonable to start withC(0)50. Then we use the one-step
algorithm to compute time-shifted values of the current con-
tributions in Eq.~34!. Note that because the time dependence
of the source, Eq.~20!, is known explicitly, these calcula-
tions need to be carried out only once. The Yee algorithm can
now be used for time stepping. To compare the final result of
the Yee algorithm with those of the one-step method we have
to know the numerically exact values of bothEz(t) and
Hy(t2t/2). The latter can be obtained by another applica-
tion of the one-step algorithm. We also usedT4S2 with a
very small time step to perform these time shifts and ob-
tained the same results.

In Fig. 5, we show a typical result of a one-step calcula-
tion on a grid ofn55001 sites withd50.1 ~corresponding to
a physical length of 250.1), and a current source placed at
i 52500 to eliminate possible artifacts of the boundaries. The
frequency of the source is set to 1 (V51) and the number of

periods the source radiates is set to 4~i.e., T54). If C(0)
50, which is the usual case if a current source is present, the
one-step algorithm requiresK8 matrix-vector operations~i.e.,
C8←MC) to computeC(t). The standard Yee,T2S2, and
T4S2 algorithms require, respectively, 1, 1.5, and 6LC op-
erations per time step.

We define the error of the solutionC̃(t) for the wave

form by iC̃(t)2Ĉ(t)i /iĈ(t)i , whereĈ(t) is the vector of
the em fields obtained by the one-step algorithm. In Fig. 6,
we present results of numerical experiments with the four
different time-integration algorithms, for the same system
used to compute the results shown in Fig. 5. We compare the
solutions of the Maxwell equations att5100, i.e., well be-
fore the wave fronts reach the boundaries~see Fig. 5!. In
these calculations, we have used two different sets of time
steps, namely,t50.1/2n for n50,1, . . . ,7 andt50.01p/2n

for n50,1, . . . ,6. Onpurpose, the former has been chosen
such that the time at which the source is turned off (T
54p in this example!, divided byt, is not an integer. Then
it is conceivable that the discrete sampling of the source term
may introduce artifacts because approximation~34! does not
correctly sample the source term near the end pointT. In the
latter case, these artifacts should not be present. According to
the rigorous bounds on the error of theT4S2 algorithm the
error should vanish witht4 @9–11#. The erratic behavior of
the first set ofT4S2 data~see Fig. 6! and deviation from the
t4 dependence are manifestations of the ‘‘inappropriate’’
choice of the time step in relation to the pulse durationT. As
we use a fourth-order accurate approximation to compute the

FIG. 5. The fieldEz(x,t5100) generated by a current source at
x5125 that oscillates at frequencyV51 during the interval 0<t
<4, as obtained by the one-step algorithm~24! with K852090
(K50 in this case!.

FIG. 6. The erroriC̃(t)2Ĉ(t)i /iĈ(t)i at time t5100 as a
function of the time stept for three different FDTD algorithms. The
current source is positioned at the center of the system, and oscil-
lates at frequencyV51 during the interval 0<t<4 ~see Fig. 5!.

Ĉ(t) is the vector obtained by the one-step algorithm, usingK8

52090 matrix-vector operationsC8←MC. C̃(t) is obtained by
one of the FDTD algorithms. Plus signs, Yee algorithm@1,2# using
t50.1/2n for n50,1, . . . ,7;crosses, second-order unconditionally
stable algorithmT2S2 @9,10# using t50.1/2n for n50,1, . . . ,7;
stars, fourth-order unconditionally stable algorithmT4S2 @9,10# us-
ing t50.1/2n for n50,1, . . . ,7;open squares, Yee algorithm using
t50.01p/2n for n50,1, . . . ,6; solid squares,T2S2 using t
50.01p/2n for n50,1, . . . ,6; open circles, T4S2 using t
50.01p/2n for n50,1, . . . ,6.Lines are a guide to the eye only.
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contribution of the source term, this effect is too small to
affect the results of the second-order integrators.

The rigorous bound on the error between the exact and
T4S2 results tells us that this error should vanish witht4

@9–11#. This knowledge can be exploited to test if the one-
step algorithm yields the exact numerical answer. Using the
triangle inequality we can write

iC~ t !2Ĉ~ t !i<iC~ t !2C̃~ t !i1iC̃~ t !2Ĉ~ t !i , ~35!

< c̃t4tS 11E
0

t

iJ~u!iduD 1iC̃~ t !2Ĉ~ t !i , ~36!

whereC̃(t) and Ĉ(t) are the results of theT4S2 and the
one-step algorithm, respectively, andc̃ is a positive constant

@11#. As the numerical data in Fig. 6 show thatiC̃(t)

2Ĉ(t)i→0 as t4, we can be confident that the one-step
algorithm yields the correct answer within rounding errors.

From the data in Fig. 6 it is clear thatT2S2 is the least
efficient of the three FDTD methods: It uses about a factor of
1.5 more arithmetic operations and yields errors that are
larger than those of the Yee algorithm. However, this conclu-
sion does not generalize as the Yee algorithm yields the larg-
est errors of the three methods if the initial em field distri-
bution is random, as illustrated in Table I@27#. The error on
the Yee-algorithm result is expected to vanish ast2 for suf-
ficiently smallt and, as shown in Fig. 6, it does. However, as
Fig. 6 also shows, unlesst is made sufficiently small (t
<0.0125 in this example!, the presence of the source term
changes the quadratic behavior to almost linear.

To obtain the data of Fig. 6, the one-step algorithm re-
quiresK852090 matrix-vector operationsC8←MC. This
implies that for allt,t/K8, the FDTD algorithms will per-
form more C8←MC operations than the one-step algo-
rithm. This is the case ift,0.05 for the Yee algorithm and is
always the case forT4S2 because the latter uses a factor of
6 moreC8←MC operations than the Yee algorithm.

The answer to the question that which of the algorithms is
the most efficient crucially depends on the error level that
one finds acceptable. Taking the data of Fig. 6 as an example
we see that if one is satisfied with an error of more than
2.5%, one could use the Yee algorithm, though we recom-

mend to use the one-step algorithm because then the time-
integration error is negligible. The Yee algorithm is no com-
petition forT4S2 if one requires an error of less than 1% but
T4S2 is not nearly as efficient as the one-step algorithm.
These conclusions seem to be quite general, i.e., we have not
been able to construct counterexamples. Moreover, as we
will see below, the one-dimensional case is rather favorable
with respect to the efficiency of the FDTD algorithms.

V. SCATTERING FROM
A THREE-DIMENSIONAL OBJECT

We now consider a more complicated but realistic prob-
lem of em scattering in three dimensions. In the preceding
section, we already showed that the one-step algorithm is
very efficient if a current source is present. In the sequel we
put J(t)50 and demonstrate that the same conclusion holds
if the source is absent. First we write the Maxwell equations
~1! as

]

]t
Z~ t !5HZ~ t !5S 0 h

2hT 0DZ~ t !, ~37!

whereh is given by

h5S 0
1

Am

]

]z

1

A«
2

1

Am

]

]y

1

A«

2
1

Am

]

]z

1

A«
0

1

Am

]

]x

1

A«

1

Am

]

]y

1

A«
2

1

Am

]

]x

1

A«
0

D .

~38!
We discretize Eq.~37! by placing the em fields on the

vertices of the Yee lattice, as indicated in Fig. 7. On this
lattice, the elements of the vectorC(t) are given by

TABLE I. The erroriC̃(t)2Ĉ(t)i /iĈ(t)i at time t5100 as a
function of the time stept for three different FDTD algorithms. The
initial values of the em fields are random, distributed uniformly

over the interval@-1,1#. Ĉ(t) is the vector obtained by the one-step
algorithm, using K52110 matrix-vector operationsC8←MC.

C̃(t) is obtained by one of the FDTD algorithms. Yee, Yee algo-
rithm @1,2#; T2S2, second-order unconditionally stable algorithm
@9,10#; T4S2, fourth-order unconditionally stable algorithm@9,10#.

t Yee T2S2 T4S2

0.100 0.9931011 0.1531011 0.1331011

0.010 0.1331011 0.7931010 0.2931023

0.001 0.1931021 0.8331022 0.2931027

FIG. 7. Unit cell of the Yee grid.
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C~ i , j ,k,t !55
Xx~ i , j ,k,t !5Am~ i , j ,k!Hx~ i , j ,k,t !, i even, j odd, k odd

Xy~ i , j ,k,t !5Am~ i , j ,k!Hy~ i , j ,k,t !, i odd, j even, k odd

Xz~ i , j ,k,t !5Am~ i , j ,k!Hz~ i , j ,k,t !, i odd, j odd, k even

Yx~ i , j ,k,t !5A«~ i , j ,k!Ex~ i , j ,k,t !, i odd, j even, k even

Yy~ i , j ,k,t !5A«~ i , j ,k!Ey~ i , j ,k,t !, i even, j odd, k even

Yz~ i , j ,k,t !5A«~ i , j ,k!Ez~ i , j ,k,t !, i even, j even, k odd,

~39!

where we introduced the notationA( i , j ,k,t)5A(x5 id/2,y
5 j d/2,z5kd/2,t) and the origin of the coordinate system is
chosen such that its coordinates (i , j ,k) are all even. Through
this arrangement, the EM fields automatically satisfy the
boundary conditions~3! if the number of lattice points in the
x, y, and z directions, to be denoted byLx , Ly , and Lz
respectively, is odd.

Approximating the differential operators that appear in
Eq. ~38! by the standard three-point difference formula, we
can write@9#

L5 ( 8
i 51

Lx22

( 8
j 51

Ly22

( 8
k51

Lz22

@L (x)~ i , j ,k!1L (y)~ i , j ,k!

1L (z)~ i , j ,k!#, ~40!

where the prime indicates that the stride of each summation
index is 2, and the superscripts (x), (y), and~z! refer to the
derivative with respect tox, y, andz, respectively. More ex-
plicitly, we have

L (x)~ i , j ,k!51
ei , j 11,kei 11,j 11,k

T 2ei 11,j 11,kei , j 11,k
T

dA«~ i 11,j 11,k!m~ i , j 11,k!

2
ei , j ,k11ei 11,j ,k11

T 2ei 11,j ,k11ei , j ,k11
T

dA«~ i 11,j ,k11!m~ i , j ,k11!

1
ei 11,j 11,kei 12,j 11,k

T 2ei 12,j 11,kei 11,j 11,k
T

dA«~ i 11,j 11,k!m~ i 12,j 11,k!

2
ei 11,j ,k11ei 12,j ,k11

T 2ei 12,j ,k11ei 11,j ,k11
T

dA«~ i 11,j ,k11!m~ i 12,j ,k11!
,

~41!

and the expressions forL (y)( i , j ,k) and L (z)( i , j ,k) follow
from Eq. ~41! by symmetry. Note that we use the triple
( i , j ,k) to label theLxLyLz unit vectorsei , j ,k . The (i , j ,k)th
element ofC(t) is given by the inner productC( i , j ,k,t)
5ei , j ,k

T
•C(t). It is easy to check that by construction, the

matrix L given by Eq.~40! is skew symmetric.
As an example we show results of scattering of an em

wave packet by a three-dimensional scaffold@28# of dielec-
tric material ~see Fig. 8!. As the results of the one-step
method and FDTD calculations are visually indistinguishable
on the scale used to prepare the snapshots, we only show the
results of the former. In Fig. 9, we show 2D projections of

FIG. 8. Cut of the scaffold structure used in the simulation. The
scaffold structure is built from square 0.530.5 rods with a spacing
of 0.5. Dielectric constant of the rods:«54.

FIG. 9. Energy density distribution of the em field as a function
of (x,y56,z). The simulation box measures 12312312. The co-
ordinates of the left-bottom corner are~0,6,0!. The scaffold struc-
ture ~see Fig. 8! is located in the domain (8<x<12,0<y<12,0
<z<12). The form of the initial wave packet is given by Eq.~42!,
with the center located atr05(3.5,6,6)T, the parameters that deter-
mine the width given bys5(3,0.75,0.75)T, and wave vectork
5(6,0,0). Left,t50; right, t56.4.
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the energy density distributions of the em field att50 ~left
hand side! and t56.4 ~right hand side!, respectively. The
initial wave packet is defined by

Hx~ t !5sin@k~x2x02t !#e2(x2x02t)10/sx
10

3e2(y2y0)2/sy
2
e2(z2z0)2/sz

2
, ~42!

i.e., a product of two Gaussians in they andz directions and
a function with a much sharper cutoff in thex direction. The
other components of the em field have been determined nu-
merically, taking into account that, in vacuum, the Fourier
components of the em fields are related to each other through
the Maxwell equations with«5m51 andJ(t)50.

These and other calculations~results not shown! for dif-
ferent systems have been used to compare the computational
efficiency of different FDTD algorithms with the one-step
method described in this paper. In Fig. 10, we show the
results of such a comparison for the case shown in Figs. 8
and 9. These results are representative, i.e., not intentionally
selected to favor one particular method.

A quantitative analysis of the efficiency can be made as
follows. We assume that the time stept is sufficiently small
such that the error of thenth-order algorithm is proportional
to tnt ~see Fig. 10!. We perform a calculation for a particular

time t̃ and compute the errorã by comparing the result with
the one of the one-step algorithms~with K chosen properly,
see above!. As we haveã5at̃nt̃ we can determine the con-
stanta. Let one time step takeW matrix-vector operations of
the typeC8←MC. For a 3D calculation we haveW51,
W52, andW510 for the Yee,T2S2, andT4S2 algorithm,
respectively~the actual number of floating-point operations
carried out by our algorithms agrees with these estimates!.
Let Ñ denote the number ofC8←MC operations it takes to
obtain the solution at timet̃ with error ã. We have t̃

5Wt̃/Ñ and ã5aWnt̃ n11/Ñn. We can now calculate the
number of operationsN it will take to compute the solution
at timet with accuracya. Using the scaling properties of the
error we havea5aWntn11/Nn and eliminating the constant
a yields

N5ÑS ã

a
D 1/nS t

t̃
D (n11)/n

. ~43!

In practice, for each algorithm we first have determined the
numbersn, Ñ, ã, and t̃ in Eq. ~43! before we can use Eq.
~43!. This can be done by making one numerical experiment
per algorithm for a reasonable choice of the time step. The
one-step algorithm computes the solution at timet using K
operations and, as we have seen above,K scales linearly with
t. On the other hand, as Eq.~43! shows, annth-order algo-
rithm requires of the order oft (n11)/n operations. Thus, for
large t, the one-step algorithm will be~much! more efficient
than the FDTD algorithms.

As an illustration we use the data of Fig. 10. For the
one-step algorithm we haveK'50142t. If we require an
error of 1% ~i.e., a51022) we find N534t3/2, N586t3/2,
N576t5/4, for the Yee,T2S2, andT4S2 algorithm, respec-
tively. Plotting these expressions forK andN as a function of
t ~results not shown!, we find that the one-step algorithm
outperforms the FDTD algorithms ift.3. The latter state-
ment is rather sensitive to the accuracy of the time-
integration algorithm that one finds acceptable. For instance,
if one would like to have an error of at mosta51023, we
find N5107t3/2, N5272t3/2, N5135t5/4, for the Yee,T2S2,
and T4S2 algorithm, respectively, and the one-step algo-
rithm is more efficient than the FDTD algorithms ift.1.
Furthermore, as shown in Fig. 11, we conclude that for
longer times none of the FDTD algorithms can compete with
the one-step algorithm in terms of efficiency. TheT2S2 al-
gorithm is always~much! less efficient than the other two
FDTD algorithms and has therefore been omitted in Fig. 11.
For t520, the one-step algorithm is a factor of 10 faster than
the Yee algorithm. Thereby, we have disregarded the fact that
the Yee algorithm yields results within an error of 0.1%
while the one-step algorithm gives the numerically exact so-
lution. It is evident that theÑ, ã, and t̃ in Eq. ~43! may vary
from problem to problem but the scaling ofN with t will not.
Therefore we may conclude that, for long times, the one-step
algorithm can be orders of magnitude more efficient than
current FDTD methods, even if we are content with a poor
accuracy of the latter.

FIG. 10. Error analysis of the one-step algorithm, the Yee@1,2#
algorithm, and two unconditionally stable algorithms@9,10#. The
data have been obtained from the simulation of the scattering of the
em field on the scaffold structure~see Figs. 8 and 9!. Shown is the

error a5iC̃(t)2Ĉ(t)i at t56.4 as a function of the number of
timesN the operationC8←MC is carried out. The computational
effort of each of the four methods is proportional toN. The one-step
algorithm with K5320 ~indicated by the arrow! was used to gen-

erate the reference solutionĈ(t). Crosses,C̃(t) obtained by the
fourth-order unconditionally stable algorithmT4S2 @9,10# for t

51021, t51022, and t51023; open squares,C̃(t) obtained by
the standard Yee algorithm fort51022, t51023, t51024, t

51025, and t51026; open diamonds,C̃(t) obtained by the
second-order unconditionally stable algorithmT2S2 @9,10# for t
51022, t51023, t51024, t51025, and t51026. Lines are a
guide to the eyes.
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VI. CONCLUSION

We have described a one-step algorithm to solve the time-
dependent Maxwell equations. We have presented numerical
results for a 1D system with and a 3D system without a
current source and compared these results with the ones ob-
tained by using the conventional Yee algorithm and two un-
conditionally stable algorithms. The latter offer rigorous con-
trol over the errors and have been used to produce the
reference data. In all cases the one-step algorithm reproduces
these results. Typically, the one-step algorithm is more than
an order of magnitude faster than the FDTD algorithms. This
roughly matches our expectations based on a count of the
number of arithmetic operations for the different methods.
Overall our conclusions are in concert with those drawn on
the basis of numerical experiments with the Schro¨dinger
equation@17#.

For some applications it will be necessary to use a better
spatial discretization than the most simple one employed in
this paper. It is straigthforward to adopt the approach used in
the case of the unconditionally stable algorithms@10#. This
will not affect our general conclusions regarding the effi-
ciency of the different methods. Currently the mathematical
justification of the one-step method requires that the matrix
L is skew symmetric. This is of particular importance if we
want to treat other~e.g., absorbing! boundary conditions by
the same approach. Many practical applications use other
types of boundary conditions@2# than those adopted in this
paper. The problem of incorporating these boundary condi-
tions is left for future research.

In summary, our results indicate that the main features of
the one-step algorithm for solving the time-dependent Max-
well equations are the following~1! applicable to systems
with spatially varying permittivity and permeability and cur-
rent source,~2! no need to sample the time dependence of the
current source,~3! very accurate time integration,~4! effi-
cient method to compute the em fields at particular times,

~5! may be used for time stepping with~very! large time
steps~6! implementation is as easy as for the FDTD algo-
rithms.
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APPENDIX: TECHNICAL ISSUES

Truncation of the series expansion ofetL in terms of the
Chebyshev polynomials at theKth term@i.e., Eq.~18!# yields
a Kth-order polynomial approximation inL 0, . . . ,L K. One
might wonder why not use the corresponding Taylor polyno-
mial instead of the more complicated Chebyshev recursion.
Numerical instability is the main reason for not using the
Taylor expansion@23#, a point that we illustrate by comput-
ing the time evolution of a 1D Gaussian wave packet. The

TABLE II. The error ETaylor5iUTaylorC(t50)2Ĉ(t)i /
iĈ(t)i for different timest and different numbers of terms in the
polynomial expansion. The initial value of the em fields is a Gauss-
ian wave packet„C(t50)}exp@2(x2x0)

2/4#, x05125…, centered
around the middle of the system~see Fig. 5!. Also shown is the

error EChebyshev with respect to the reference solutionĈ(t) ob-
tained by the one-step algorithm usingK5300 expansion coeffi-
cients. An entry with value - MP - indicates that the result is exact
to machine precision.

t K ETaylor EChebyshev

2.0 50 0.4831021 0.5431023

2.0 55 0.1131021 0.1131024

2.0 60 0.1531022 0.7331027

2.0 70 0.9431025 0.13310211

2.0 140 0.61310215 - MP -
2.0 200 0.61310215 - MP -
2.0 205 - Overflow - - MP -
3.0 80 0.2331017 0.9631026

3.0 85 0.4331016 0.1331027

3.0 90 0.6031015 0.1031029

3.0 95 0.6431014 0.62310212

3.0 100 0.5231013 0.25310214

3.0 120 0.2131022 - MP -
3.0 140 0.3331027 - MP -
3.0 160 0.3331027 - MP -
3.0 180 0.3331027 - MP -
3.0 190 - Overflow - - MP -
4.0 100 0.20310116 0.4531025

4.0 120 0.26310113 0.13310212

4.0 140 0.1331019 - MP -
4.0 160 0.3531013 - MP -
4.0 170 0.1531012 - MP -
4.0 172 - Overflow - - MP -
5.0 140 0.54310122 0.21310211

5.0 160 0.13310119 - MP -
5.0 165 - Overflow - - MP -

FIG. 11. The number ofC8←MC operationsN needed to com-
pute the solution of the 3D Maxwell equation at timet for the
system shown in Figs. 8 and 9. Solid line, one-step algorithm;
dashed line, Yee algorithm@1–3# yielding a solution within 0.1%
error; dotted line,T4S2 algorithm@9,10# yielding a solution within
0.1% error.
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system we consider is identical to the one used in Sec. IV.
For convenience the vector of initial values is normalized to
1. The algorithm based on the Taylor expansion is defined by

UTaylor5 (
n51

K
tn

n!
L n. ~A1!

In Table II we compare the Taylor-expansion algorithm with
the Chebyshev algorithm. It is obvious that the instability of
the Taylor algorithm makes it unsuitable for integrating the
Maxwell equations over extended time intervals. Note that

the values ofK that yield high precision are very close to the
values ofK for which the numerical instabilities occur.

Although the Taylor series is accurate for eigenvalues of
L close to zero, this is clearly not sufficient to accurately
approximate the matrix exponentialetL. The Chebyshev ex-
pansion on the other hand, guarantees equal maximum error
over the whole interval of eigenvalues ofL. Therefore, for
the same number of terms in the expansion, it is a much
better approximation toetL than the truncated Taylor series.
As Table II demonstrates, numerical instability renders the
Taylor expansion useless ift.4. The Chebyshev expansion
does not suffer from this limitation.
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