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Mapping Quantitative Trait Loci in Plant Breeding Populations:
Use of Parental Haplotype Sharing

Ritsert C. Jansen,* Jean-Luc Jannink, and William D. Beavis

ABSTRACT (2001) developed multiple-QTL models (MQMs) for
multiple related populations derived from the diallel ofApplied breeding programs evaluate large numbers of progeny
pairwise crosses among three inbred parents A, B, andderived from multiple related crosses for a wide range of agronomic

traits and for tens to hundreds of molecular markers. This study was C: A � B, A � C, and B � C. Three additive QTL
conducted to determine how these phenotypic and genetic data could allele substitution effects are estimable from popula-
be used for routinely mapping quantitative trait loci (QTLs). With tions segregating from these crosses, �AB, �AC, and �BC,
dense maps, haplotype sharing of parents in a certain region is a good respectively. Jannink and Jansen (2001) showed that a
indicator for QTL-allele sharing, albeit not 100% perfect. With this reduction in the number of estimated parameters could
in mind, an approximate and simple method has been developed be achieved if �AC � �AB � �BC. This parameter reduc-
where ancestral genome blocks in the parents of the crosses can be

tion defined REDUCED vs. FULL models. Differencesidentified via haplotype analysis and where the effect of a putative
in the likelihoods of these models provided evidence ofQTL is then modeled and estimated per ancestral genome block. A
epistatic interaction occurring between the locus ana-simulation of an early-generation maize breeding scheme demon-
lyzed and other loci in the genetic background (Janninkstrates the potential of the present approach for QTL detection in

existing breeding programs. With this new QTL mapping strategy, and Jansen, 2001). At the same time, assuming additive
the power, precision, and accuracy associated with large numbers of gene action, the REDUCED model detected QTL with
progeny may be attained, inferences about QTLs can be drawn across higher power than the FULL model.
the breeding program rather than being limited to the sample of This method requires multiple crosses in a diallel
progeny from a single cross, and results may be much more valuable for structure, and its applicability is therefore restricted. In
marker-assisted breeding because the QTLs apply to agronomically this paper we propose to broaden the applicability of
challenging situations in the field.

reduced parameter models by focusing on short genome
segments, determining the DNA-marker haplotype car-
ried by each parent on such a segment, grouping parents

In the practice of breeding for agronomically impor- that share common haplotypes, and formulating re-
tant crops such as maize (Zea mays L.) and soybean duced models in terms of haplotype effects. We coin

[Glycine max (L.) Merr.], the breeder annually gener- this new approach haploMQM. We apply the method
ates many crosses. Typically, a few elite inbred lines or to simulations with multiple related F2:3 populations and
varieties are crossed with a wide range of new inbred highlight possible strengths and weaknesses of the new
lines or varieties to generate a large number of segregat- approach.
ing crosses. For obvious reasons, the number of progeny
per cross is small (often around 10, seldom more than

MATERIALS AND METHODS50), but the total number of progeny tested is relatively
large. A commercial maize breeder, for example, may Model Parametrization
evaluate 1 000 to 10 000 F3 topcrossed progeny derived

Jannink and Jansen (2001) described MQMs and computa-from 100 to 200 crosses in replicated field trials. It is
tional methods for populations derived from a simple diallelnot unrealistic to assume that plant-breeding popula- among three inbred parents A, B, and C. Here, we reparame-

tions will be fingerprinted on a regular basis at 200 to trize the models of Jannink and Jansen (2001) to expand their
500 marker loci, and with chip technology soon at 1 000 models to arbitrary single-generation mating designs.We then
or more loci. Beavis (1998) advocated integration of show how these models apply when QTL alleles are not identi-
QTL mapping into existing breeding strategies. During fied to specific parents but to putatively conserved DNA-

marker haplotypes that may be carried by two or more parents.the past years, human and animal geneticists have devel-
We subsequently propose an additional reduced model inoped sophisticated methods for linkage and association
which population means are no longer estimated indepen-analysis; see for instance Yi and Xu (2001) for an exact
dently but depend on the allelic values attributed to the haplo-pedigree method and Meuwissen and Goddard (2000)
types segregating within populations.for an advanced haplotype-based association method,

We now reparametrize these multipopulation models inand Jannink et al. (2001) for a recent review. These terms of the effects of QTL alleles carried by inbred parents
methods can be used after some modifications for analy- rather than in terms of allele substitution effects within each
sis of plant breeding data. Recently, Jannink and Jansen segregating population. We define two parents as intercon-

nected if, in the system of inbred crosses studied, there exists
R.C. Jansen, Groningen Bioinformatics Centre, Inst. of Mathematics a path of crosses joining them. For example, in the two-popula-
and Computing Sci., POB 800, NL-9700 AV, Groningen, The Nether-
lands; J.L. Jannink, Dep. of Agronomy, Iowa State Univ., Ames, IA

Abbreviations: DH, doubled haploid; haploIM, haplotype interval50011-1010, USA; W.D. Beavis, NCGR, 2935 Rodeo Park Drive East,
mapping; haploMQM, haplotype multiple quantitative trait lociSanta Fe, NM 87505, USA. Received 17 Apr. 2002. *Corresponding
model; haploMQM�, reduced haplotype multiple quantitative traitauthor (r.c.jansen@cs.rug.nl).
loci model; IM, interval mapping; MQM, multiple quantitative trait
loci model; QTL, quantitative trait loci.Published in Crop Sci. 43:829–834 (2003).
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tion system {P1 � P2; P2 � P3}, parents P1 and P3 are intercon- segregate in a population, they can said to be crossed. Two
haplotypes are interconnected if there is a path of crossednected. In the system {P1 � P2; P4 � P3}, P1 and P3 are not

interconnected. An interconnected system of populations, haplotypes joining them. For haplotypes to be interconnected,
it is sufficient that they be carried by interconnected parents.then, is one in which all parents are interconnected. An impor-

tant property of such a system is that N � P � 1, where P is However, haplotypes can be interconnected even if they are
not carried by interconnected parents. Consider the nonin-the number of inbred parents and N is the number of derived

populations. The maximum number of estimable QTL effect terconnected system of parents {P1 � P2; P4 � P3}. Assume
that we have P1(H1), P2(H2), P4(H2), and P3(H3) where theparameters from a system of interconnected populations is N.

A more parsimonious parametrization that is always possible haplotype carried by the parent is given in parentheses. Haplo-
types H1 and H3 are then interconnected. Note that in evaluat-for such a system is therefore to fix the effect of the allele

carried by one arbitrary parent to zero and then to estimate ing haplotype interconnectedness, two new situations arise.
First, if both crosses P1 � P2 and P1 � P4 were made, haplotypesthe effects of the alleles carried by other parents as deviations

from the fixed parent. From this point of view, the FULL H1 and H2 would be contrasted twice. Second, if the cross P2 �
P4 were made, haplotype H2 would be contrasted to itself.model described above corresponds to a parametrization in

which the interconnectedness of the diallel is ignored, and Without loss of generality, haplotypes involved in such repli-
cated or identity contrasts can be considered interconnectedeach cross is considered separately. The REDUCED model,
haplotypes.on the other hand, recognizes the interconnectedness of the

Given these parametrizations, we distinguish the follow-diallel between parents A, B and C, arbitrarily fixes the effect
ing models:of the allele carried by one parent to zero, and estimates two

further parameters: the effects of the alleles carried by the
two remaining parents. From the perspective of parameter (i) Interval Mapping (IM)
reduction between FULL and REDUCED models, we distin-
guish strongly and weakly interconnected systems of popula- yij � �i � �ixij � eij,
tions. In the former, N � � P, while in the later N ≈ P. The

where yij is the phenotype for individual j in segregating popu-diallel is a good example of strongly interconnected popula-
lation i, �i is the intercept for population i, �i is effect of thetions because it maximizes N relative to P, N � P(P � 1)/2,
QTL allele carried by an arbitrary parent of population i (theassuming no reciprocal crosses. Finally, among populations in
effect of the allele carried by the other parent is set to zero),a set available for analysis, not all will be interconnected.
and eij � N(0, 	2

e) is an error residual for individual j (the errorIt will therefore be necessary to distinguish interconnected
variance, 	2

e, is assumed equal across populations; it can alsosubsets and parameterize each independently.
be taken unequal in cases of higher heritability). The indepen-In the development given above, we have identified QTL
dent variables xij depend on the QTL genotype carried byalleles according to the inbred parent from which they origi-
individuals ij. Table 1 shows parameterizations for variousnate. Consider now two inbred parents that have retained the example populations. In practice, QTL genotypes remain un-same genomic block from a common ancestor. Rather than observed, the xij are stochastic, and probabilities for the possi-identifying distinct QTL alleles for each parent, it would be ble QTL configurations are calculated using flanking markers.more parsimonious to identify the single QTL allele carried For missing QTL or marker information, Jansen and Stamby the common ancestor. To be able to benefit from this (1994) have shown that maximum likelihood estimates for the

source of parsimony, we need to detect when inbred parents parameters �i, �i, and eij can be obtained within each population
carry common genomic blocks. Assume that this task can be by an expectation-maximization procedure using weighted re-
done so that, among a set of P parents, we now can identify gression.
H haplotypes (H 
 P) for a genomic block in a given region
of the genome. Consequently, we are interested in the effects (ii) Haplotype Interval Mapping (HaploIM)of the QTL alleles carried by the H haplotypes. In a process
analogous to the one described above, we can determine inter- The effect of the allele defined by one arbitrary haplotype

is set to zero, the effects of the alleles of other haplotypesconnected sets of haplotypes as follows. If two haplotypes

Table 1. Parametrization of the family mean and quantitative trait loci (QTL) component of interval mapping (IM), haplotype interval
mapping (haploIM), and reduced haplotype multiple-QTL models (haploMQM�) as determined by population, parental haplotypes,
and the genotype at a QTL.

Population† QTL Genotype‡ IM HaploIM§ HaploMQM�

1. P1(H1) � P2(H2) MM �1 �1 �
MP �1 � �12 �1 � �2 � � �2

PP �1 � 2�12 �1 � 2�2 � � 2�2

2. P1(H1) � P3(H3) MM �2 �2 �
MP �2 � �13 �2 � �3 � � �3

PP �2 � 2�13 �2 � 2�3 � � 2�3

3. P2(H2) � P3(H3) MM �3 �3 � 2�2 � � 2�2

MP �3 � �23 �3 � �2 � �3 � � �2 � �3

PP �3 � 2�23 �3 � 2�3 � � 2�3

4. P5(H1) � P6(H2) MM �4 �4 �
MP �4 � �56 �4 � �2 � � �2

PP �4 � 2�56 �4 � 2�2 � � 2�2

5. P1(H1) � P5(H1) MM �5 �5 �
MP �5 � �15 �5 �
PP �5 � 2�15 �5 �

No. of parameters 10 7 3

† Maternal then paternal parent are given with the haplotype identity that they carry.
‡ Maternal (M) or paternal (P) derivation of the QTL is indicated.
§ The haploIM and haploMQM parametrizations arbitrarily fix the value of the QTL allele carried by H1 to zero.
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are estimated as deviations from the fixed one. Consider an here focus on such situations. To determine haplotypes, we
use a window of four adjacent markers. Parents are groupedindividual in the segregating population obtained by crossing

two parents, say P1 and P2. The model is according to their haplotype and the allelic effects of the
parental haplotypes are estimated from the data on the multi-

yij � �i � �h1(k) x1ij � �h2(k) x2ij � eij. ple populations using the models described above.
When analyzing multiple small populations, cofactor pa-The parameters are the same as in IM, save that allele effect

rametrization in MQMs can be problematic due to the large�h1(k) is the effect of the QTL allele defined by haplotype h1
number of parameters involved (e.g., one cannot fit simultane-of P1 in interconnected system k, and �h2(k) is that of haplotype
ously 30 marker cofactors to a population with 10 offspringh2 of P2. Table 1 shows parametrizations for example popula-
only; such simultaneous fitting would be possible in popula-tions derived from parents with identified haplotypes at a
tions with 50 offspring, but if 60 such populations were ana-putative QTL locus; in this example �h1(k) is set to zero, whereas
lyzed, the computational burden would be excessive). Haplo-�h2(k) and �h3(k) are free and written in short notation as �2
type-based combining of cofactor parameters should reduceand �3. At the map location under study and within each
this problem substantially. Thus, haploIM can be extended topopulation, probabilities for the three possible QTL configura-
haploMQM by adding haplotype-based marker cofactors. Fortions (MM, MP, PP) are calculated using flanking markers as
each marker cofactor, the local haplotypes form the basis forin IM.
the reduction of parameters associated with that marker, in
the same way as shown in Table 1. Since the clustering of(iii) Haplotype Multiple-Quantitative-Trait-Loci
parents is based on local haplotypes, clustering is likely to beModels (HaploMQM)
different for each marker cofactor and different from the

The exposition above is in terms of a single QTL only. clustering at the focal QTL.
Multiple-QTL models allow statistical control of genetic back-
ground noise due to QTL on other portions of the genome that

Procedure for Quantitative Trail Loci Analysisare segregating in the population using multiple regression on
marker cofactors (Jansen and Stam 1994; Jannink and Jansen We here briefly describe the haploMQM procedure (the
2001). approaches for haploIM and for haploMQM� are identical,

except that in the former no cofactors are used and in the latteryij � �i � �h1(k) x1ij � �h2(k) x2ij � �c�
c
h1(kc) xc

1ij
independent intercepts are not estimated for each population).

� �c�
c
h2(kc) xc

2ij � eij, Conceptually, the procedure for haploMQM is identical to
the MQM procedure described in detail in Jansen (2001, p.where the summation occurs over c marker cofactors. For
581–590). Three markers were chosen per chromosome to beeach cofactor c, a set kc of interconnected haplotypes have
candidate cofactors, leading to 3 � 10 � 30 candidate cofactorsbeen identified. Note that inbred parents will have received
across the entire genome. Using all candidate cofactors, wegenomic blocks from different ancestors in different portions
calculated a bias-adjusted residual variance that was used forof the genome. Consequently, the partitions of haplotypes into
all further estimations on the population. We used backwardinterconnected sets (k, k1, k2, and so on) will not be identical.
elimination to retain in the model only those cofactors that
explained a significant proportion of the variance. To deter-(iv) Reduced Haplotype Multiple-Quantitative-Trait-Loci
mine whether to retain a cofactor in the backward eliminationModel (HaploMQM�)
procedure, we used a threshold T such that Prob(Fdf1,df2 � T) �

This model is identical to haploMQM, except that separate 0.02, with degrees of freedom df1 equal to the number of
intercepts are no longer estimated for each population. In- parameters of the cofactor and df2 equal to the residual de-
stead, differences in population means are assumed to derive grees of freedom in the all-cofactor model. To locate a QTL,
from the different haplotypes segregating in each population. we then scanned the full genome in 5-cM steps. We first calcu-
Thus, in this model, differences in population mean contribute lated the likelihood of the data in the presence of a QTL but
to the estimate of haplotype QTL allele effects. Index i is without parameter reduction due to haplotyping (LFull), and
dropped from the �i parameter in the models above and the with parameter reduction (LHaplo). Procedures without haplo-
model becomes: typing used the likelihood ratio to quantify QTL likelihood:

yij � � � �h1(k) x1ij � �h2(k) x2ij � �c�
c
h1(kc) xc

1ij LRQTL � 2 log(LFull/LnoQTL).
� �c�

c
h2(kc) xc

2ij � eij. Procedures with haplotyping used the likelihood ratio:

LRQTL � 2 log(LHaplo/LnoQTL) and
Implementation Issues

LRQTL � 2 log(LHaplo�/LnoQTL�).
To fit a QTL at a certain map position under study, a

window around this map position is defined. The different Large values of the LRQTL statistic indicate support for
the presence of a QTL using the haplotype model. Note thatparental haplotypes in this window are identified. If two par-

ents share the same haplotype, then we assume that they the no-QTL likelihood is different in the haploMQM and the
haploMQM� cases. In particular, since haploMQM� modelstransmit the same QTL allele to their offspring. The window

can be based either on a fixed map size, say 5 or 10 cM, or the population means using QTL and cofactors, the likelihood
LnoQTL� includes no contribution of the putative QTL to theon a fixed number of markers, say four. In the latter case, the

possible number of haplotypes can be very large (e.g., 24 for modeling of population means. In general, then, LnoQTL� can
be quite a bit smaller than LnoQTL.haplotypes of four biallelic markers and 54 for haplotypes of

four five-allelic markers). However, if parents are derived To determine genome-wide significance thresholds for
these statistics, one can perform simulation runs on popula-from few ancestors, then the number of different haplotypes

will be smaller than the number of parents, leading to the tions generated without genetic variance or permutation. In
the present discussion, an ad hoc approach was utilized forsituation of strongly interconnected haplotypes that enables

a large reduction in the number of estimated parameters. We illustrative purposes just by taking a much more stringent
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threshold per test: (approximate) thresholds for QTL detec- genotypes (five alleles per marker) from these linkage blocks.
This was accomplished by assigning marker alleles to the link-tion at � � 0.001 per test: �2(60; 0.001) ≈ 102 for IM, �2(15;

0.001) ≈ 38 and �2(37; 0.001) ≈ 69 for haploIM, and haploMQM age blocks, linkage block by linkage block, from a multinomial
distribution with frequencies of marker alleles: 0.55, 0.24, 0.12,can be used in Simulations 1 and 2. The degrees of freedom

used to determine the �2 threshold derive from the number 0.06, and 0.03, respectively. For example, the original genotype
111221 contains three linkage blocks, 111, 22, and 1. A markerof parameters estimated by each model. The IM procedure

estimates 60 QTL parameters, one for each family; in Simula- allele is randomly assigned to each linkage block. Thus, after
sampling marker alleles for linkage blocks, the original geno-tion 1, an average of 15 haplotypes were distinguished for any

given locus so that 15 allelic effects needed to be estimated; type 111221 could become 444113. The multiallelic state of
marker loci is similar to the polymorphism index that has beenin Simulation 2, the average number of haplotypes distin-

guished was 37. In our simulations the number of QTL param- observed in simple sequence repeat markers in maize (Senior
et al., 1996). Finally, a QTL allele was placed in the middleeters varied little across the genome. In other simulations,

where the degrees of freedom for the QTL (dfQTL) may vary of linkage groups 1 to 5. If the linkage block surrounding the
middle of the linkage group carried marker allele 1, then amore notably, it can be better to divide QTL likelihoods by

the local dfQTL for graphical display and use local thresholds favorable allele (denoted �) was placed there, else an unfavor-
able allele (denoted �) was placed there. The phenotypic�2(dfQTL; 0.001) or determine such thresholds by simulation

or permutation. effect of a QTL was such that each QTL was expected to
contribute 15% to the total phenotypic variation in a popula-Two further likelihood ratios could be of interest:
tion where all five QTLs were segregating (heritability of 75%;

LRHaplo � 2 log(LFull/LHaplo). populations where less than five QTLs segregate will have
lower heritability).Large values of the LRHaplo statistic indicate problems with the

haplotype parametrization that could be due to failure of
Step 2: Select Sixty Parent Pairsmarker haplotypes to correctly group parents in terms of the

QTL allele that they carry or due to strong QTL � genetic Pairs of parents for multiple crosses were selected from the
background interaction such that the same QTL allele would base population. The 400 lines in the base population can
have divergent effects in the different families in which it be crossed amongst each other in various combinations. In
segregates. One can also calculate Simulation 1, pairs of parents were selected in such a way that

the two parents of a cross were ≈10% related, that is, ≈90%LRMeans � 2 log(LHaplo/LHaplo�).
of the 1010 marker loci are polymorphic in each population.

Large values of LRMeans indicate failure of the QTL and se- In Simulation 2, pairs of parents were selected so that the two
lected cofactors to predict differences among population parents of a cross were ≈45% related.
means. Such a failure could be due to the presence of QTL
undetected by the mapping procedure or due to epistatic ef- Step 3: Generate Sixty F2:3 Populations
fects on family means not accounted for by the models pre-

Parents were crossed to generate offspring. The markersented. In the calculation of LRQTL, the fact that LHaplo� is smaller
profile and genetic value of each progeny was determinedthan LHaplo is compensated for by the fact that LnoQTL� is smaller
based on the markers and QTL segregating between its par-than LnoQTL.
ents, using the laws of Mendelian segregation and recombina-
tion. Each population consisted of 10 offspring in Simulation

Simulating Early Generation Progeny Tests 1, and 50 offspring in Simulation 2.
in Maize Breeding

Step 4: Randomly Sample Two Hundred Markers AvailableEarly generation progeny tests in maize breeding are often
for Analysisreferred to as first- and second-year topcross tests. We simu-

lated marker and trait data for 60 related F2:3 populations of As a last step in the simulation procedure, the set of 1010
size 10 each, with one QTL on each of chromosomes 1 to 5. markers was reduced: in each of the simulations, 200 loci were
Note that a basic property of the testcross design is that it randomly sampled from the genome and only these marker
eliminates dominance as a source of genetic variance. To data were available for analysis. This resembles currently
mimic the genome of maize, the genome in our simulation available marker density.
consisted of 10 linkage groups, each containing 101 biallelic
marker loci with 2-cM map distance between adjacent pairs

RESULTS(using Haldane’s mapping function). The genotype and pheno-
type data were generated in a number of steps as follows. Analyzing Simulated Early Generation Progeny

Tests in Maize Breeding
Step 1: Generate Base Population of Candidate Parents

Analysis of Chromosomes 6 to 10The following protocol was used for generating a base popu-
lation of inbred lines with different (re)combinations of ances- In the haploIM and haploMQM, the number of pa-
tral linkage blocks. First we crossed a hypothetical inbred rameters per QTL (or marker cofactor) is equal to the
parent homozygous for all markers (say, 11111 and so on) number of different parental haplotypes in the window
with a parent also homozygous for all markers but carrying under study. The haplotype-based models required, on
different alleles (say, 22222 and so on), and generated a set average, 15 and 37 parameters in Simulations 1 and 2,of 400 doubled haploid (DH) lines. For Simulation 2, we used

respectively, with little variability. In contrast, IM takesa higher recombination frequency of 0.2 between adjacent
60 allele-substitution parameters per QTL (as many asmarkers (instead of 0.02) to mimic more generations of recom-
there are populations). Under the null hypothesis, thebination. The resulting genotype of a DH line consisted of
likelihood-ratio test statistic at a fixed map positionlinkage blocks of 1s and of 2s of different size, for example,

111211222, and so on. Next, we generated multiallelic marker follows approximately a chi-squared (or F-like) distribu-
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Fig. 1. Results from two simulation studies of 60 related plant breeding F2:3 populations and 200 random markers on a 2000-cM genome and
with unlinked quantitative trait loci (QTLs) on each of chromosomes 1 to 5. (a) Parent pairs of the crosses were 10% related, but originated
from a base population with medium linkage disequilibrium level. Each population consisted of 10 offspring. (b) Parent pairs of the crosses
were 45% related, but originated from a base population with low linkage disequilibrium level. Each population consisted of 50 offspring;
see main text for a complete description of the simulated configurations and for the appropriate definitions of QTL likelihood. IM, interval
mapping; haploIM, haplotype interval mapping; haploMQM, haplotype multiple quantitative trait loci model; haploMQM�, reduced haplotype
multiple quantitative trait loci model.
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tion (Jansen, 1994) with degrees of freedom equal to Of course, a larger number of markers can be used, in
the number of parameters involved in the test and the particular if the marker map is dense. In our approach
expected value of this test is equal to the degrees of it is assumed that two parents with identical haplotype
freedom. On chromosomes 6 to 10, where there are in the window under study are identical by descent and
actually no QTLs present, the expectation for LRQTL is share the same QTL allele in this region. The probability
60 for procedures without haplotyping (IM in Fig. 1) and that this is indeed true increases when the haplotype is
15 and 37 for procedures with haplotyping (haploIM, based on more markers. However, with more markers
haploMQM, and haploMQM� in Fig. 1). These expecta- the window can become large. In the extreme case, all
tions were in fact observed (Fig. 1). An important conse- markers are used simultaneously for haplotyping, and
quence is that the threshold for genome-wide signifi- a 1:1 relation between haplotype and parent is estab-
cance in haploIM and haploMQM is much lower than lished, in which case no reduction of QTL parameters
that in multipopulation IM. is achieved. In general, there are also good reasons for

using a window with few markers. Such a window tends
Analysis of Chromosomes 1-5 to result in fewer haplotype classes, so that fewer QTL

parameters are required; preferably much less than theConsistent with the analysis of chromosomes 6 to 10,
number of populations to gain power over conventionalthe valleys out of which QTL likelihood ratio peaks
IM. It will be expected that there is an optimal balanceemerge are lower in the haploIM case than the IM case
between the pros and cons of using more or less markers(Fig. 1a). For the IM procedure, background likelihood
for haplotyping, and it is likely that the optimum canratio levels are so high that the peaks can scarcely be
change, for example, when different marker densitiesdistinguished. The lack of distinct peaks occurs despite

the fact that peaks using IM are generally slightly higher are used, or when different types of marker are used.
than using haploIM (Fig. 1a). The reason they are higher In breeding populations, biallelic markers (e.g., AFLP
is because haplotype identity does not guarantee QTL markers) are expected to be less informative in finger-
identity. When haplotyping misidentifies a QTL, the printing than multiallelic markers (e.g., microsatellite
resultant likelihood for the model will be lower. That markers). Preferably, less informative marker types are
decreased likelihood could be diagnosed using the available at a higher map density to achieve indirectly
LRHaplo ratio. Under the simulation conditions pre- a high multilocus information content. Finally, the more
sented, the LRHaplo statistic never reached very high lev- generations passed by since the founding ancestral lines,
els, indicating that identical haplotypes generally cor- the smaller the haplotypes shared and the denser the
rectly identified common QTL alleles. Fig. 1 shows that marker maps should be to tag ancestral blocks.
the lowered threshold of haploIM over IM potentially
increases the power of QTL detection using the haplo-
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