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ABSTRACT: We construct the supersymmetric effective action at order o’? of the abelian
open superstring. It includes the o/# terms in the abelian Born-Infeld action, and in
particular the leading derivative correction of the form 9*F*. Besides linear supersymmetry
this sector of the open string effective action also has a nonlinear supersymmetry. The terms
0*F* and their fermionic partners have an arbitrary coefficient, and we discuss the possible
fate of such coefficients when higher orders in o’ are included.
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1. Introduction

The tree-level effective action of the open string, with or without Chan-Paton factors, has
drawn a lot attention recently [fll. Without Chan-Paton factors it corresponds, for slowly
varying fields, to the Born-Infeld action [f]. Its supersymmetric completion can be obtained
quite elegantly using k-symmetry [J-[f]. With Chan-Paton factors the action is known
only for some low orders of o/ [[{]-[[3J]. The complications in this case are partly due to
the fact that for a nonabelian gauge theory [D,D|F = [F, F], so that the approximation
in which derivatives of the fields are ignored can no longer be made. That such derivative
terms are also present in the abelian case is clear from string scattering amplitudes, e.g.
the four-point function, as mentioned in the early papers on the open string effective
action [B, [[9]. Nevertheless not much is known about this extension of the Born-Infeld
action at the present time.

In this paper we will investigate these higher derivative terms in the context of super-
symmetry. The motivation for this is, besides the intrinsic interest in the string effective
action, that these terms also have a relation with the nonabelian extension of the Born-
Infeld action. One way to approach this problem is by using k-symmetry, in which linear
and nonlinear supersymmetry arise from the gauge fixing of a local fermionic symmetry.
Recent efforts in this direction have not been successful [[4, [J], but alternatives are under
investigation [[L6]-[1g]. It should be realized that the higher-derivative contributions of the
abelian effective action do not fit in the present rx-symmetric formulation [BJ-[f]. Thus a
supersymmetric, and eventually a k-symmetric, formulation of these terms could be helpful
in solving the nonabelian problem.



In this paper we take a first step in this direction, which is to obtain all terms in
the abelian effective action through order o’* by imposing supersymmetry. The result
is that there are two different independent supersymmetric invariants. The first invari-
ant consists of terms at order o’? and o4, respectively of the form F* and F® and their
fermionic partners, and is the contribution to the Born-Infeld invariant through this or-
der. The second invariant involves only terms at order o/%: 9*F* and their fermionic
partners. The terms with two derivatives, 9?F° and their fermionic counterparts, turn
out to be inconsistent with supersymmetry. Furthermore, all conceivable terms at o’?
with a higher number of derivatives are removable by field redefinitions and therefore
trivial.

In discussing the higher derivative contributions to the open string effective action it

is useful to introduce some notation. We write such terms as

'm

['(m,n) = 92 (8”Fp + 8n+1Fp72)7(’yX) , (1.1)
where g is the gauge coupling constant of dimension —(d — 4)/2. Henceforth we will set
g = 1. The powers in ([.1) are related by 2p — 2m +n — 4 = 0. We will denote the
terms at order o/™ and with n derivatives by (m,n). In this paper we do not consider
fermion-dependent contributions beyond the bilinear fermion terms in ([L.1f).

The Noether procedure we employ to find the supersymmetric deformations of the
super-Maxwell action is an iterative procedure. At a given order in o’ it yields a number
of apparently independent superinvariants, all determined up to a multiplicative constant.
For example, the (4,4) terms we will discuss have an arbitrary coefficient a(4,4) that is
not fixed by supersymmetry. However, some of these coefficients might be determined by
pursuing the Noether procedure for higher values of m and n. One can also use input
from string theory. We will limit ourselves to the contributions to the effective action that
follow from the open string tree-level S-matrix. The tree-level correlation functions that
one derives from the effective action should reproduce these string amplitudes, which allows
one to fix the previously undetermined coefficients. In particular, the (m,2m — 4) terms
should reproduce the o’-expanded 4-point function. For m odd, this expansion contains
a coefficient 72¢(m — 2). It is hard to see how the Noether procedure could determine
such coefficients in the absence of algebraic relations between the values of the Riemann
zeta-function for odd integer arguments. Therefore these terms should all correspond to
separate independent superinvariants, as we argued in [[1]. We will come back to these
points in the discussion.

Most of the information on derivative corrections concerns bosonic terms only. In [RI]
it was shown that terms (m,2) vanish for all m. Our calculation of (4,2) confirms this
and extends it to the corresponding fermionic terms. In [PI] the bosonic part of (4,4)
was constructed explicitly. More recently, Wyllard [PJ] obtained the (m,4) terms using
the boundary state formalism. Further work has been done in [R3, 4] with the Seiberg-
Witten map and noncommmutativity. Information about the fermionic contributions can in
principle be obtained from calculating superstring scattering amplitudes involving external
fermions. The required formalism can be found in [BJ], and applications using the four-



point function to orders a/™, m < 4 can be found in [[[5, R6]. The recent determination of
the string five-point function and its relation with the nonabelian Born-Infeld action [[L2]
concerns bosonic terms at order o’? only.

This paper is organized as follows. In section P we will briefly discuss our method,
the main results on linear and nonlinear supersymmetry are given in section J Finally,
in section [], we discuss the general structure of the web of supersymmetric derivative

corrections.

2. Constructing o' corrections

In this section we review our method of imposing supersymmetry order by order in «’.
A more detailed exposition of this iterative (or Noether) procedure can be found in [[L1].
Starting point is the d = 10, N = 1 supersymmetric Maxwell lagrangian'!

1 1
Lo = _ZFabFab + 5)2&)( (21)
The equations of motion are simply
Oalap = @X =0, (22)

supersymmetry is realised linearly on the fields:

d0Aq = €YaX,
1
dox = 5 Fayave. (2.3)

Closure of the supersymmetry algebra requires the fields to be on-shell and involves a field
dependent gauge transformation of the gauge field:

[6061’60 eg]Aa = 2€1@62Aa - aa(2E11§{E2) 5
1

_ 7_ _
[60 61?6062]X = 261@62X - <§€17a62’7a - melmzbcdeefyabcde) aX . (24)

This lowest order action also has a nonlinear supersymmetry:

SoA, =0,
dox = 1. (2.5)

The iterative procedure consists of two steps. Let the £ for k¥ < m be known. The first
step in obtaining the term L,, is to write down all possible terms of order a’™, i.e., terms
that have the correct dimension and are Lorentz and gauge invariant. We limit ourselves

to terms that are at most of quadratic order in the fermions. lagrangians are defined up to

"We work in Minkowski spacetime and write spacetime indices as lower indices. Our conventions for
the vy-matrices follow [ﬁ] x is a Majorana-Weyl spinor and inert under gauge transformations. L, is the
contribution of order o’™ to the effective action. Similarly, &,, indicate supersymmetry transformations of
order o/ ™. If we want to indicate the part of £,, with n derivatives we write L (m,n), similarly for §(m, ).



total derivatives and field redefinitions. The possibility for the latter arises when a term is
proportional to the lowest order equation of motion (R.2) for one of the fields. If such a term
is present in L, it can be removed by a field redefinition of order m. The price one pays is
that the contributions £,, with n > m are modified. We deal with this ambiguity, at each
order in o/, by not allowing in the lagrangian any terms that are proportional to the order
o'? field equations, or terms that can be rewritten as such by means of a partial integration.
Furthermore, we determine how the remaining terms are related by partial integrations and
keep only an independent subset. This leaves us with a minimal Ansatz for £g in which
each term has an arbitrary coefficient that will be determined in the second step.

The second step is to vary the fields in this Ansatz with the supersymmetry transfor-
mation rules dg. In addition we need to vary the lower order terms in the lagrangian, say
Ly, k < m, with the appropriate transformation rules §,,_; both were already obtained in
a previous stage of the iterative procedure. Having done this, we are left with two types of
variations. On the one hand there are terms which are proportional to the lowest order field
equation or that can be rewritten as such using a partial integration. On the other hand
there are variations that cannot be rewritten in this way. The first set can be eliminated
by new transformation rules §,, of Ly, the second set must be set to zero by solving the
resulting equations for the unknown coefficients in the Ansatz.

In calculating the new transformation rules at order o’™ one will find that some vari-
ations may be quadratic in the lowest order equations of motion. In that case there is an
ambiguity in the choice of the new transformations d,,. Regardless of this choice, such
variations always give rise to transformation rules that contain a lowest order equation of
motion. Therefore these terms do not play a role in checking the closure of the super-
symmetry algebra at order o/™. If such transformations are applied to some L when
constructing an invariant at order m + k, they give variations that can automatically be
supersymmetrized. Their contribution to the order m + k transformation rules need not
contain a lower order equation of motion and therefore these terms are important when
pursuing the Noether procedure to higher orders. Note however that this last issue does
not yet play a role at order a’* and should not bother us in this paper.

The procedure is applied for both linear and nonlinear supersymmetry.

3. Results

In the end we are left with all possible deformations of the lagrangian and the supersym-
metry tranformation rules at a certain order in o, up to field redefinitions. In this section
we will give the action and study the algebra of the linear and nonlinear supersymmetry
transformations. The transformation rules themselves are given in appendix f]

3.1 Orders !, o/? and o/3

It is well known that there are no nontrivial supersymmetric deformations of (R.1)) at order

o’1, i.e. all terms allowed by supersymmetry can be removed by field redefinitions. In [R§]

12

the terms at order o/“ were obtained by using the Noether procedure. For completeness,

4

and since we need these results at order o’*, we review them here.



Following the steps outlined in the previous section, one first writes down an Ansatz
for the lagrangian; these are all terms of the form F*, 9?F3, 9*F?, 9°F and fermionic
partners. All of these terms turn out to be removable by field redefinitions, except for F'*
and its fermionic counterpart OF2yyx: Lo = L(2,0)- Imposing supersymmetry fixes the
coefficients in this Ansatz up to one overall multiplicative constant. The result is:

a0’
Ly = T{ — FupFopbegFeg + 4 FocFpqFopFreq —
-8 FabFac )Z%&:X -2 Fabaach X'ybch} . (31)

Of course, these terms are the same as the ones obtained from the Born-Infeld invariant?.

2 contributions; they are given in the

The supersymmetry transformations also receive o'
appendix [A. From the point of view of supersymmetry the coefficient a(z,0) s arbitrary.
At tree-level the string four-point function sets a () ~ 2.

At order o/? there are no supersymmetric contributions. This might be inferred by
taking the abelian limit of the results of [[[3, [[1]. However, since it is not obvious that
every supersymmetric abelian action allows a nonabelian supersymmetric extension, it is
important to check this directly in the abelian context. This has been done in [R(] by
superspace methods, and we have verified this result by an independent calculation using

the method of section P

3.2 Order o'*

We now turn to the main topic of this paper: the a’? contributions. There are three
nontrivial sectors in the Ansatz: (4,0), (4,2), (4,4). The structures with more derivatives
are removable by field redefinitions. Furthermore, it turns out that this is also the case for
the bosonic terms (4,2), i.e., the terms 92F®, but not for their fermionic partners, which
are of the form 92>F3y~vyy. In applying the method of section P we need the variations
00L 4,0y as well as 62L5 ). In the cases (4,2) and (4,4) only the variation J is needed.
The results of the Noether procedure are the following: in the sector £ 4 ) with F% and
OF*x~x the only terms allowed by supersymmetry are those needed for the ‘continuation’

’2_ie. the Born-Infeld invariant. Thus there appears no new

of the invariant of order «
invariant, independent of the lower orders. Furthermore, the fermionic terms in L4 2y of
the form 93F3yyy are not supersymmetrizable. Finally, in the section L 4,4y there does
appear a new invariant. We have verified that the bosonic terms of this invariant are the
same as those of [P3, [[J] up to field redefinitions. We however disagree with [Pf], where
both bosonic and fermionic terms are determined by comparison with the string four-point
function.

The action at order o4, L4 = L4,0) + L(4,4), reads:

(a 2,0 )20/4
L) = %{ = 2 FyFpcFeqFaeFepFup — 12 Fop FpeFeaFaaFepFep —

- abFachchdFefFef - 128ancheFabee X%de +

2Up to a field redefinition.



+ T2 Fop FeqFye Fye X7a0eX + 18 Ou FycFaeFep Fiuf XVbedX +
+ 120, Fye Fae Fop Fae XVedf X} (3.2)
Liga) = 6(4,4)0/4{ — 8 Fup Fpc0q0e F oy 040 Frop — 8 FpOcFqOcFy O:.0c Fyp +
+ 32 Fp0cF0q0e Fy 040 Frop + 16 Fp O Fye 0y Fro p 0q O Fye +
+ 40400 Fq00 0y Fee XVd0eX — 4 0aFpc0a0iFef XVoeO0cOaX +
+ 4 Foy,0c0aF e f XVabeO0c0a0r X + 8 Fup0c0aFye X10:040:X +
+ 204 Fpc000a0e Fhe Xva0e X } (3.3)

Note that the overall coefficient of L) is uniquely fixed by supersymmetry in terms of
a(2,0), the coefficient a4 4) is unrelated. String theory tells us that at tree-level a(y 4y ~ .

3.3 Nonlinearly realised SUSY

Nonlinear supersymmetry arises from the breaking of N = 2 supersymmetry to N = 1:
the superstring effective action corresponds to the worldvolume theory of a D9-brane, and
D-branes break half of the N = 2 supersymmetry. In the k-symmetric formulation of the
Born-Infeld action it arises from the gauge-fixing of the local k-symmetry. The presence of
this nonlinear symmetry can be taken as an indication that a k-symmetric formulation is
possible, but there is certainly no proof of such a relation.

The nonlinear supersymmetry is quite restrictive in the sectors without extra deriva-
tives: (2,0) and (4,0). For instance, in (4,0) one finds the result L4 (B-2), plus one
additional term which is invariant under the nonlinear symmetry (up to variations which
vanish on-shell) all by itself. It is to be noted that in the sector (4, 2) it is possible to impose
nonlinear supersymmetry. Similarly, in (4, 4) nonlinear supersymmetry is not restrictive at
all, and many combinations of terms are invariant under (P.5).

3.4 Closure of the algebra

The supersymmetry algebra can only be evaluated on the vector field, due to the absence of
higher fermion terms in the action and transformation rules. We find, for all contributions
of order /™, m < 4:

(015 0] Aa = 26102 Ay — 04 (261 Ae2) + (3.4)
+a(4,4) Ou{ + 32 0:0qFerOcFup Fey €176 + 16 0c04 FepOcFeyp Fup €17p€2 +
+80:04F fOF Fay €17p€2 + 16 Oc FgyyOc FpcO0c Frq €17vp€2 +
— 16 0o FgpOe F0f Feq €17p€2 + 4 0gOn FyeOg Fae Fh f €1Vbcdef€2 +
+4040n FypcOg FraFef €1Vocdef€2 — 4 0g FocOnFeOg Frf €1Vbcde €2} -

Note that the terms without extra derivatives do not modify the gauge transformation
in the algebra. This is simply due to the absence of a derivative in the corresponding
transformation rules. Nevertheless, the required cancellations for closure, and the fact that
all remaining terms combine into a gauge transformation, is an important check on our
result.



The algebra of the nonlinear transformations reads [[:

61(2,0)0/2 _ _
[5771757]2]Aa = 9 (771(377214& - 811(7714772)) ) (35)

which does not have modifications at order a’%. Note that this is just the usual supersym-
metry algebra, occurring at a higher order in o’ . This proves that the nonlinear symmetry
is indeed a supersymmetry.

The mixed algebra takes on the form:

/2
G

A
[557 577] a 30

3a(abache(5ache€’ybn + 2achf€'Ydef77)) . (3.6)

4. Discussion and conclusions

Our present knowledge of the open string effective action is represented in figure . Black
dots indicate the sectors (m,n) for which both bosonic and fermionic terms have been
established. The dots (m,0) for all m form the Born-Infeld action, for which the result is
known to all orders in the fermions [B]-[B]; for the single dot (4,4), presented in this paper,
only the terms bilinear in the fermions are known. White dots without diagonal lines are
known to be empty. These include all points (m,2(m — 1)), that would correspond to the
three-point function. We have also put a white dot for all points (m,2), although strictly
speaking the absence of these contributions has only been established for the bosonic terms.

Order in o’ - =
% 0 1 2 3 4 5 6 7 8 9 10
It e 0000000
Bo 0050000
S 000000
o 60000
2 00
W o060

Figure 1: Structure of the abelian open superstring tree level effective action. Black dots indicate
nonempty sectors of which the explicit form is known. Empty white dots correspond to sectors that
are known to be empty up to field redefinitions, already taking into account conjecture 1. Yellow
dots indicate sectors that are known to be nonempty, but have yet to be constructed explicitly.
Slashed white dots indicate sectors that should be empty by conjecture 2. The red arrows indicate
the known supersymmetry transformation rules.

3In addition, it turns out that all terms that one could possibly write down in this sector can be removed
by field redefinitions.



As far as we know there is, in this order by order superinvariant, no way to exclude a priori
the presence of a fermionic contribution in these sectors. Nevertheless, we make here the
first conjecture:

Conjecture 1. If the bosonic part of the sector (m,n) vanishes, then also the fermionic
contributions of that sector

The white dots also include all points (m,4) for m odd. In [PZ] the bosonic part of
(m,4) was obtained for all m; it vanishes for m odd. In favor of this conjecture is our result
for (4,2). The conjecture implies that the terms (m,0), m odd, all vanish. This is obvious
for the bosonic terms, but it has to be checked for the fermionic terms. This could be done
for instance by starting with the explicit form of the Born-Infeld action given by [f]] and by
doing the field redefinitions needed to eliminate all fermionic contributions at odd orders
in «. For the higher derivative terms a useful check would be (5,4).

There are many sectors which are known to be present but for which the complete
contribution to the effective action is presently unknown. These yellow dots include all
points (m,2m — 4) corresponding to the four-point function, all points (m,4), m even [R2],
and we would add to these all points (m,2m — 4k + 4) (for m > 2k — 1 to avoid n = 2)
which correspond to higher derivative contributions to the open string 2k-point function.

The remaining points are white with diagonal lines, and correspond to contributions to
the string 2k + 1-point functions for £ > 1. Everything we know so far about the effective
action would be consistent with the vanishing of these contributions, which would imply
the vanishing of the open string 2k + 1-point function without Chan-Paton factors. Note
that present knowledge confirms this conjecture for terms with 0, 2 and 4 extra derivatives.
Thus we make a second conjecture?:

Conjecture 2. The tree level open string odd-point function without Chan-Paton factors
vanishes.

Since this is a conjecture about string theory, it cannot be checked by using super-
symmetry alone. For the effective action it implies that there are no terms with an odd
number of fields (either bosons or fermions).

With these conjectures in mind we analyze the supersymmetry transformations that
connect the dots in figure [ We have drawn arrows to indicate the known supersymmetry
transformations. As a first example we consider the terms (m,0), m even, i.e., the Born-
Infeld invariant. These terms are invariant under the transformations do, d(2,0), (4,0 - - -»
depending only on the single parameter a3 ). Note that we indicate these transformations
by a repeated addition of the same arrow, and not by drawing new arrows from (0,0)
to (m,0) for each m. In this way we denote that all these terms contribute to the same
invariant. Similarly, the point (4,4) is the leading term in a new sequence of supersymmetry
transformations that continues to the points (4k,4k), involving the parameter a4 4). It is
clear that all points on the diagonal (m,2m — 4) will lead to at least one new sequence of
arrows or supersymmetry transformations, involving parameters @, 2,—4). The question

is now, whether these new ‘independent’ invariants will remain independent when the

1t is a pleasure to thank A. Tseytlin for an interesting correspondence on this point.



Noether procedure is pursued to higher orders. Consider for example the point (8,8). This
point can be reached from (0,0) by applying the arrow (4,4) twice, but also by applying
the arrow (2,0) and then (6, 8) (or vice versa). These contributions need to be cancelled by
the &g variation of L(gg). In principle, there are now two possibilities: they can either be
cancelled separately, or not. In the latter case we need both contributions at the same time,
and then there must be relations between the coefficients a4 4ya(4,4) and a(gya(sg). So it
is indeed possible that a priori independent invariants are related to each other at higher
orders in the iteration. Note however that at least a9y and a4 4) will remain independent
to all orders. The reason is that a(; ) and a(44) can be changed independently by rescaling
o/ and the extra derivatives, respectively.

Now we invoke our knowledge of the string tree-level 4-point function [[L1]]. In the tree-
level effective action the coefficients a(;, 2,,,—4) for m even contain factors 7™, and therefore
the coefficients a3y, a(4,4) and a(gg) are, in string theory, all proportional to powers of 7.
The relations between these coefficients alluded to in the previous paragraph are therefore
possible in the string theory context. Independence of these coefficients would imply that
there are more supersymmetric invariants than required by string theory.

At odd m, and also at even m for m large enough, the situation is different. At odd
m the string four-point function has a factor 72¢(m — 2). This implies that the coefficients
A(m,2m—4), for m odd, will remain independent to all orders in the Noether procedure,
since there are no (known) relations between the values of the Riemann (-function for odd
values of its argument. At certain even values of m one finds, besides powers of 7, also
terms with (-functions. An interesting example is the point (10,12). We can reach it with
supersymmetry transformations through (6,8) by applying (4 4, from (8,12) by applying
d(2,0), and from (5,6) by applying d(5). Now it should be noted that at (8,12) the string

four-point function has two separate kinematic structures: one proportional to 7 °

, and
one proportional to m2((3)2. The three different ways of arriving at (10, 12) therefore lead
to two kinds of terms: those with 7!2 and those with 7*¢(3)2. These must belong to two
separate supersymmetric invariants. Again, the minimum requirement is that these are
part of the invariants containing (4,4) and (5,6), anything else leads to an accumulation

of more and more invariants not required by string theory.

The minimum assumption is therefore that supersymmetry requires independent co-
efficients at (4,4), and at (m,2m — 4) with m odd, the points where 72((m — 2) appears.
This leads to the conjecture:

Conjecture 3. The sectors Ly 4y and L, 21,—4), m odd, contain the leading contribu-
tions to separate superinvariants. There are no other invariants starting at L, ) for any
m, n.

The independent coeflicients in the maximal extension of supersymmetric Maxwell
theory in d = 10 are, according to these conjectures, a(z0), @(4,4) and gy 2,—g) for m
odd. The tree-level open string effective action corresponds to a particular choice of these
coeflicients. The independence of a(3¢) and a4 4) implies that the Born-Infeld action for
slowly varying fields is a separate invariant.



The issues that we raised above clearly need to be addressed. It is probably not possible
to continue the Noether procedure we used much further, due to the rapidly increasing
number of possible terms in the lagrangian at higher orders in a’. One should therefore
look for other methods of tackling these issues. In particular, it would be interesting to
see whether more information on the structure of the superinvariants can be obtained
from string theory considerations. Another possibility would be to set up the Noether
procedure in d = 10 N' = 1 on-shell superspace. A clear advantage of this setting is that
field redefinition ambiguities do not arise, since all fields are constrained to satisfy their
lowest order equations of motion. Finally, the persistence of the non-linear supersymmetry
in the higher-derivative terms is a strong indication that a x-symmetric formulation of the
all-order effective action exists. Given the success of k-symmetry in clarifying the structure
of the supersymmetric Born-Infeld action, it is conceivable, if not likely, that it will yield
similar striking results when applied to this problem.
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A. Transformation rules

In the appendix we will give the complete set of transformation rules for all orders o’™, m <
4. As discussed in section [, we give only those transformations that do not vanish on-
shell. These are needed to establish the existence of an invariant, but do not change the
supersymmetry algebra.

A.1 Linear supersymmetry

The variation of the gauge field reads:

/2

Ay = Evax + —2OY 1§ Fevax — 16 FueFog evay —
a = €YaX t 9 { 6 Fq cd €Ya X 6 I cd €YdX

3

- 4Fache €YedeX T+ chFef E’YacdefX} +

2 14
A2,0%

+ 1024

{+96 Fachchdee €YeX — 128 FabechdFde €YeX T
+ 104 FchbcheFde €YaX + 18 FchchdeFde €Ya X +
+ 32 Fop FeaFeeFap €vpepX + 24 FapFealecabef €vpesx +
+ 32 Fabechchf E’YdefX — 16 Fachdeeng E")/cdeng -

-6 Fchchdeng E’yadeng — 16 Fchbcheng E’yadefgx -
4

1
- gFachdFengh EVbedefgh X + ngchengFhi G’Yabcdefghix} +

+a(4,4)0/4{ -+ 20 8bF}:daaabae}Qd g’YeX + 28 8bacF10LdabadF1ce E’YeX -
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— 28 040cFuaOpO0cFue €YeX + 8 Oy FeqOaOpOcFef €defX +
+ 2000y FeaOpOcFef €VaefX + 4 Op0cFaeOp0cF g €Vadefg X +
+ 4 Fpc00040e Fye €Ya0ex + 12 0p FoaOpOe Frq €Ya0e X +

+ 4 0p FaOp0c Feq €YeOax — 84 Op FraOaOc Fre €740e X +

+ 72 0p FeaOaOp Free €406 X — 40 Op FeqOpOcFue €Ya0e X +

+ 8 0p Fd000c Foe €7e0ax + 40 Op FraOpOc Foe €7e0ax +

+ 8 0p Fd0a0p Fre €7e0uax — 8 OpFucObOcFige €Yalex +

+ 16 Op FucOp0aF e €Ya0e X — 8 OpFuc0c0aFpe €Yd0 X +

+ 4 Fypc000p0aFef €YeefOax — 8 OpFeaOpOcFef €YadeOpx +
+ 8 0p FdO0cOc By f €VadeOf X + 4 Oy FeqObOcFef €YaefOax +
+ 600 FeqOuOpFef €YeacOp X + 4 0pFeaOaOpFef €eefOax +
+ 20 Feq0a0cFof €YeqrOc X + 4 OpFcqOp0c F'rg €YacdrgOex +
+ 16 FpcOp0aF e €Ye0c0aX — 56 Fyc000aFpe €e0c0ax +

+ 24 FopOp0c Flge €Ya0c0eX — 80 FyeOoOp Fige €Ya0c0e X —

— 4 Fpc0q0c Fie €70040e X + 84 FypcOp0qFye €Yc0a0e X —

— 116 Fyc0q0c Fup €7c040eX + 24 Op FqOp Fre €00a0e X —
— 16 Oy FeaOcFre €70040eX + 8 OpFeaOpFre €Ye0aOaX —

— 8 0pFeaOcFre €7e0a0ax + 64 Op FaOa Fre €1e0p0ax +

+ 8 Op FeaOcFae €7e0p0ax — 16 Oy FocOp Fue €Ya0c0e X +

+ 56 Op FucOcFae €Ya0p0eX — 16 Op FocOaFe €e0c0ax —

— 80y FucOaFee €7e0p04x — 4 Fap0c0qF e €VoefOcOax —

— 2 Fpe000aFef €pee0a0rX — 8 FpcOpOaFe s €Vace0a0fX —
— 8 Fpc0a0eFif €Vacf0a0eX — 4 Fyc0aOaFef €YoefOcOaX —
— 400 FpcOaFef €Ypee0aOr X — 4 00 FyeOaFef €ypefOcOax +
+40pFeqOpFef €Vede0aOpX + 4 O0pFeaOc Fyf €YacaOeOpx +
+ 8 Op FdOcFe f €YadeOpOf X + 4 Fye040e F'f g €Yabe fgOaOeXx +
+ 205 FeqOe F'rg €YacdfgOpOe X + 16 FupOc Fye €7q0p0:0: X +
+ 32 Fy . 0qFye €Ya0:040eX + 4 FocOaFe f €pee0aOadx} -

The variations of the fermion are:

a,0)a’?
39

1

O0X = 5Yav€lFup + { + FapFealeaYave — 4 FapFeaFac Yoa€ +

1
+ 6 FachdFef Wabcdefe} +

04/2

a.0)

+ 1024

{ —12 FabFachchdFef Yef€ + FabFachchdFef Vef€ —
— 8 Fup by FeqleeFyr Vepe + 64 FupFucFypabree Fap Yepe +

— 11 —



1
+ g FabFachdFengh Yedefgh€ — 4FachdFaerngh Yedefgh€ +

1
+ @ FachdFenghFij 'Yabcdefghije} +

+a(4,4)0/4{ — 87Vap€ FucOqFef0y0.0qF e — 16 Yap€ FeqOe by 0q0e0f Fop —
— 8€0aFpcOpFge0a0cFae + 2 Vab€ FeaOeOf FapOcOf Feq +
+ 72 Yap€ FqOc0c Fo p 0. 01 Fog — 40 Yap€ FrqOe0c Fouf a0 Fre +
+ 16 Yap€ FeqOc0c Fyf0q0e Fyp — 56 Yap€ FrqOeOp Foc0e0f Fyg +
+ 2491 € Foc0q0c Fy f0q0f Fre — 16 Yap€ FucOqOeFy 040 Fry —
= 274p€ Fopy0c0qF o 0c0qF e — 4 Yabed€ FaeOfO0gFpc0p0y Flye —
— 4 Yabed€ FaeOr0gFpc0e0r Fiyg — Yabedef€ FabOgOnFeaOyOnFey —
— 127,4€ OcFeOcFap 0O Fap + 8 Yap€ O Fige0gFep 0. 05 Fop +
+ 64 Yap€ OcFge0qFo 0.0 Fyp — 48 Yap€ Ol g0y FygOcOc Fyp —
— 56 Vap € OcF g0 FaqOe0f Fre + 64 Yap€ O FigeOf Faq0c0f Fye —
— 16 V4p€ OcFgeOq Flf 0eOf Fye — 8Yap€ OcFige0qFa 0.0 Fye —
— 47 € 0cFaqOp Fof0.0qF oy — 16 Yap€ OcF g0 Fyf 005 Fge —
— 6Yap€ OcF e 0 Fup0c0p Fe + 4 Yabed€ OcFo 0 f FygOe Oy Freq —
— 4 Yaped€ 0cFyf 0y Fyc 00y Fae + 16 Yape 0o FyqOc Fiyp 0.0 Fyp —
— Yabedef€ Og FupOnFeaOgOn ey} - (A.2)

A.2 Nonlinear supersymmetry

The nonlinear supersymmetry transformations of the vector field are:

1 1
0A, = a(Q,O)O/Z{ + ZFab X — ngc ﬁVach} +

1

1
+a%270)0/4{ - 768 Fchdeng 1 YabedefgX + ﬁFchadFef N Yoedef X +

3 _ 1 _
+ ﬁFbCFchde MYadeX + 1_6Fabeche MYedeX +

1 3
+ 3_2Fchbche MYadeX — 6_4Fchchad NYaX —

1
- 1_6Fabechd ﬁrYdX} + (A3)

+a(4,4)0/4{ — 20 0y0cFaqa 17a0p0eX + 12 0y0cFoqg N60:0aX — 4 Op0cFae MadeOp0cX } -

The nonlinear supersymmetry transformations of the fermion are:

1 1
ox =n+ “(2,0)0/2{ + —FuFan+ o=

16 32 Fachd r}/abcdn} +

1 3
+aiy ) 0"4{ + ggfatalalean — eFapFacFyalean +

1 1
+ 5EF10LbF10LbF1ch1ef YedefTl — aFabFachdFef VedefT +

- 12 —



1
+ 61mfjabfjcdpjeffjgh Vabcdefghn} +

+agy 0 — 40005 Fe0a00Fean + 8 0005 FedOaOb Fee Yaen +
— 16 8aab}‘_’cdaaachbe Ydel — 2 8aab}‘_’cdaaab}‘_’ef VCdefn} . (A4)
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