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Abstract

We describe properties of the M-theory five-brane containing Q coincident self-dual strings on its worldvolume. This is the
five-brane description ofQmembranes ending on the five-brane. In particular, we consider a Maldacena-like low energy limit in
the six-dimensional worldvolume which yields a near ‘horizon’ description of the self-dual string using light open membranes,
i.e., OM theory, in an AdS3 × S3 geometry.

 2002 Published by Elsevier Science B.V.

1. Introduction

The world volume description of the M-theory
five-brane has been the subject of much study, see
[1–3]. In some sense the five-brane is the M-theory
analogue of a D-brane in that open membranes may
end on five-branes [4,5]. Just as for D-branes there
exists an effective description that describes the low
energy worldvolume dynamics of the brane. For the
five-brane this has the field content of a (2,0) tensor
multiplet consisting of a self-dual two form, five
scalars and symplectic Majorana spinors. (Throughout
this Letter we will restrict ourselves to a single
M5-brane; the correct worldvolume description of
coincident M5-branes is not known.) The covariant
equations of motion were found using various methods
in [3]; the remarkable feature of these equations
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is the non-linear self-duality constraint. This gives
a non-linear, interacting theory on the five-brane
worldvolume. The non-linearities are governed by
the eleven-dimensional Planck length, �p, which is
associated to the tension of the M-theory branes.

There are string-like solutions to these equations [6]
that are charged with respect to the self-dual two-
form. These solutions, known as self-dual strings,
have the interpretation of the ending of a membrane
on the five-brane. As such it is the M-theory analogue
of the BIon [7].

Recently, there have been attempts to investigate
the five-brane in a particular limit where the Planck
length is taken to zero and at the same time the
background field strength on the five-brane becomes
near-critical. This leads to a new effective scale,
�6, on the five-brane in the limit, while decoupling
the brane from the background eleven-dimensional
supergravity. This has been called open membrane
(OM) theory, [8–10]. One way of describing this limit,
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given in detail in [9], is through a conjectured effective
metric on the five brane worldvolume called the open
membrane metric, GOM

µν . This metric it was argued,
is the metric as seen by open membranes ending on
the five-brane and is the natural analogue of the open
string metrics on the D-branes. The crucial property
of the OM limit is that the open membrane metric
scales in such away that the effective open membrane
tension given by �−2

p GOM
µν is fixed. This limit is the

M-theory analog of the noncommutative open string
limit, [11]. Thus the OM theory has been conjectured
to be the UV-completion of the (2,0) theory with
constant background three form. As such it would
subsume all the decoupled noncommutative theories
on D-branes and NS5-branes [8,9,12].

It is not certain how one should view the open
membrane metric given that it is not derived from a
fundamental theory of membranes. Being pessimistic
one might simply say that it is just a convenient way
to encode the OM limit. It seems very natural however
that given there is an open string metric such an object
will lift to some sort of open membrane metric in
M-theory. (We will discuss the quantitative evidence
for this metric when we introduce its precise form in
the following section.)

A conceptual drawback of the above OM limit is
that the near-critical field must be switched on by hand
by introducing an an external source of delocalized
(smeared) membranes, which breaks the five-brane
ISO(5,1) symmetry. This raises the natural question
whether one could also create an environment with
critical field by going close to a single localized
open membrane, that is the above-mentioned self-dual
string soliton.

In what follows we wish to describe the five-
brane worldvolume region near the core of the self-
dual string in a low energy, ‘near horizon’ limit a la
Maldacena [15]. In the geometric picture where the
five-brane is embedded in a flat eleven-dimensional
target space this region is a tube with the topology
R2 × R+ × S3 that extends away from the five-brane
such that the radius of the transverse three-sphere goes
to zero far from the five-brane. We shall refer to this
tube region as the near horizon region. There is three-
form field strength trapped inside the tube, which turns
out to be near-critical (see below (9)). By considering
the effective open membrane tension in this limit, it
turns out that the dynamics in the tube region is that of

OM theory expanded around AdS3 × S3. The germ of
this idea was suggested already in [16].

We of course expect similar results to hold for
many other worldvolume solitons, such as a q-brane
soliton in a p-brane will give rise to open q-brane
theory [8,12] in a geometry which is conformal to
AdSq+1 × Sp−q (with conformal factor playing the
role of a running brane coupling), where the anti-
de Sitter space corresponds to the directions of the
worldvolume electric field strength and the sphere to
the directions of the worldvolume dual magnetic field
strength. Related ideas concerning the fuzzy geometry
of BIons have been explored extensively in [13]. We
wish to point out that here we are moving beyond the
low energy theory given by the (2,0) tensor multiplet
on the brane which becomes invalid deep in the throat
as pointed out in [13] for the case of the BIon.

Of course, there is a complementary picture of
this near horizon region given by the theory of Q
coincident membranes with a boundary [14].

By examining the absorption behavior of the self-
dual string we find that the near horizon region of the
self-dual string decouples from the asymptotic region
in the low energy limit.

In summary, the AdS3 OM theory provides a
near horizon description of the self-dual string that
decouples from the rest of the five-brane in the
prescribed limit.

The outline of the Letter is as follows. In Section 2
we review the five-brane equations of motion and their
self-dual string solution. We then describe in detail
the low energy, near horizon limit. In Section 3 we
compute the self-dual string absorption cross section
and show its vanishing in the limit. We conclude in
Section 4.

2. Self-dual strings in the M5-brane and a
Maldacena style limit

The bosonic equations of motion of the five-brane
in flat eleven-dimensional spacetime are given by the
scalar equation (µ= 0, . . . ,5; i = 6, . . . ,11):

(1)Gµν∇(g)
µ ∂νφ

i = 0

and the following nonlinear self-duality condition:

(2)
√− detg

6
εµνρσλτHσλτ = 1 +K

2
(
G−1)

µ
λHνρλ.
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Here φi are the five transverse scalars in a static gauge,
H = db the three-form worldvolume field strength,
gµν = ηµν + ∂µφ

i∂νφ
i the induced metric, ∇(g)

µ the
corresponding covariant derivative and, finally, the
scalar K and the tensor Gµν are given by

(3)K =
√

1 + �6
p

24
H2,

(4)Gµν = 1 +K

2K

(
gµν + �6

p

4
H2
µν

)
.

The constant �p is the eleven-dimensional Planck
length, which is the only parameter of the theory.
Thus, the five-brane field equations are reliable as an
effective description of M-theory dynamics only for
energies smaller than �−1

p .
To describe the self-dual string solution we decom-

pose the five-brane worldvolume coordinates xµ into
the x0, x1, which are the coordinates of the string
worldsheet, and the remaining four coordinates, de-
noted by ym,m = 1, . . . ,4, which are coordinates of
the space transverse to the string. Going to radial co-
ordinates we introduce r2 = ymym. For the self-dual
string solution, the fields are functions of r only.

As shown in [6] the equations of motion (1) and (2)
can be solved by the following:

φ6 = �pf, H01p = 1
4
�−2

p ∂pf,

(5)Hmnp = 1
4
�−2

p εmnpq∂qf,

where f is a harmonic function on the transverse
space:

(6)f = 1 + Q�2
p

r2 .

The parameterQ is essentially the charge of the string
as evaluated by integrating the H-flux over the S3 sur-
rounding the string. Since the field strength is self-dual
one can show that the electric and magnetic charges
are equal. The fermions and remaining overall trans-
verse scalars φ7,...,11 are zero. This solution preserves
8 of the 16 five-brane worldvolume supercharges [6].

This solution has the interpretation of a semi in-
finite membrane ending on the five-brane. The energy
of this configuration is therefore infinite corresponding
to the fact that the tension of the string will be given
by the tension of the membrane times the membrane

extension out of the five-brane. In order for the string
to have finite tension one regulates the solution by de-
manding that the membrane is not infinite but ends on
another five-brane some finite distance, L, away (mea-
sured in the flat target space metric). The solution is
still good for sufficiently largeL and r . The string ten-
sion becomes:

(7)Tstring = �−3
p L.

We will now examine the near horizon of this
solution using the conjectured open membrane metric.
The tensor Gµν is conformally equivalent to the open
membrane metric, which is given by [9,17,19]:

(8)GOM
µν =

(
1 − √

1 −K−2

K2

)1/3(
gµν + �6

p

4
H2
µν

)
.

This was first determined in the near-critical limit
in [9] by analyzing the scaling properties of the
OM limit, and also by invoking IIB/M-theory duality.
Away from the critical limit, the conformal factor
can be fixed by demanding that GOM

µν evaluated on
a probe five-brane in the background of the SUGRA
dual to OM theory [10] is independent of the three
form deformation of the solution. This is discussed at
length in [17] where the idea is based on generalising
the known properties of open string metrics [18].
Perhaps most naturally, one may also consider its
dimensional reduction and map it to the open string
metric for the D4-brane as was also done in [17,
19]. These three different approaches are all consistent
which encourages us to believe in the form of this open
membrane metric.

We note, however, that the near horizon geome-
try only requires the near-critical behavior of the con-
formal factor; in fact the near horizon geometry of
the self-dual string was identified up to the conformal
scale already in [16], though the precise definition the
limit below was not appreciated at the time. A confor-
mally related metric was introduced in [20] that had
advantages in simplifying the equations of motion and
was used in studying a different strong coupling limit.

The scaling limit we wish to consider is a low
energy limit, where we keep fixed the energy on the
self-dual string fixed as we send �p to zero. In two
dimensions scalar fields have dimension zero so a
vacuum expectation value of such a scalar, describing
the separation of a string from the stack, is rT 1/2

s ,
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where Ts is the tension of the self dual string as given
by (7). Thus, as one requires r/�3/2

p to be fixed (L is
obviously fixed).

We wish to compare this limit to the near horizon
limit for a stack of membranes in M-theory. The
fixed energy on a stack of membranes associated
with separating off a single membrane from the stack
by a distance r is given also by r/�

3/2
p . This may

be computed either by considering the Higgsing of
D2-branes and then going to strong coupling and
invoking SO(8) invariance, or by directly Higgsing
the scalar fields on the SO(8) invariant membrane.1
Moreover, from (5) we see that this limit implies that
the tube region close to the self-dual string, which
is the region we are interested in examining, is cut
out and kept fixed in the fixed eleven-dimensional
background. This is obvious given the interpretation
of the self-dual string as arising from the membrane.
Thus we are led to the following low energy and near
horizon limit:

�p → 0,
r2

�3
p

= u fixed,

(9)Q= fixed.

After inserting the solution, (5) into the open mem-
brane metric (8) and then taking the above limit we
obtain:

(10)

ds2(GOM) = �2
p
(
Q−2/3v2(−dt2 + dx2)
+Q2/3v−2 dv2 +Q2/3 dΩ2

3
)
,

where we have performed the trivial coordinate trans-
formation, v = Q−1/3u so as to put the line element
in the canonical form for AdS3 × S3. Here the radii of
these two spaces are equal and given by

(11)RAdS =Q1/3�p =RS3 .

We wish to analyze the energyE(r) of an object lo-
cated at distance r corresponding to an open membrane
excitation scaling as 1/�p. It is, however, the energy ω
at infinity that we wish to associate with the energy on
the self-dual string and keep fixed. Taking into account

1 A physical (fixed) scalar in three dimensions has scaling
dimension half. Thus the vacuum expectation value of such a scalar
corresponding to the separation of the membrane is given by r/�3/2

p .

the red-shift these two energies are related by:

ω=E(r)

√
−GOM

t t (r)

= �−2
p E(r)Q−2/3r2

(12)= �pE(r)Q
2/3u= fixed.

Thus such energies as measured at infinity are fixed as
the limit is taken even though the energies locally at r
diverge.

Examining the OM metric (10), naively, one would
think the whole metric is becoming of zero size
since we have �2

p multiplying the whole expression.
However, the important property of this limit is that the
open membrane theory on the 5-brane is kept finite as
can be seen by looking at the effective open membrane
tension given by

(13)�−2
p GOM

µν = fixed,

which is kept fixed in the limit but is a function
of u. This is just as for the usual OM theory only
there the background field, and thus the OM metric,
is a constant function [9]. Here we are performing
a similar limit, sending the tension to infinity but by
going to the near horizon region of the self-dual string
as described, the field strength increases appropriately
so that the scale of open membrane excitations remain
finite (though a function of u). Of course we only
expect to be able to believe this description when
the fields are slowly varying which would indicate
having a large RAdS (in plank units). This implies the
description is only valid when:

(14)Q	 1.

After the dust has settled, we see that in the limit
described above we are left with the OM theory on
(AdS3 × S3)Q. The subscript Q denotes that the radii
in plank units are proportional to Q1/3.

3. Absorption by the self-dual string

In this section we wish to calculate the cross section
for the absorption of massless scalars by the self-
dual string in the world volume of the M-theory
five-brane. We will adopt an entirely world volume
approach similar to that of [21–23]. We begin by
writing the equation satisfied by the s-wave with
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energy ω, φ(r, t)= φ(r)eiωt , of the linear fluctuations
of the four overall transverse scalars about the self-
dual string, (it is known that there are problems when
one considers higher angular momentum modes [23],
one must take care with the validity of the linearized
approximation, this is discussed in [13]):

(15)
(
ρ−3 d

dρ
ρ3 d

dρ
+ 1 + R6ω6

ρ6

)
φ(ρ)= 0,

where ρ = rω, R = Q1/3�p. Note, as pointed out
by [11] world volume solitons have a much sharper
potential than the Coulomb type potential typical of
brane solutions in supergravity; thus this scattering is
different to that of the string in six-dimensional super-
gravity. Nevertheless, for small ωR one may solve this
problem by matching an approximate solution in the
inner region to an approximate solution in the outer
region; this follows closely the supergravity calcula-
tion [24].

To approximate the inner region we change vari-
ables, z= (Rω)3ρ−2. Then (15) becomes:

(16)
(

4
d2

dz2 + (Rω)3

z3 + 1
)
φ(z)= 0.

This equation may be solved when z 	 Rω. This
implies ρ 
 Rω. In this region the solution becomes
simply:

(17)φ(ρ)=A cos
(
(Rω)3

4ρ2

)
+B sin

(
(Rω)3

4ρ2

)
.

The fact the fluctuation equation becomes a linear
wave equation with the coordinate change given by
the excited scalar of the background solution was
noted for the D-brane analogue in [21]. A and B are
undetermined constants.

Now, consider the substitution, φ(ρ)= ρ−3/4ψ(ρ).
Eq. (15) becomes:

(18)
(
d2

dρ2 − 3
4ρ2 + 1 + (Rω)6

ρ6

)
ψ = 0.

One can neglect the potential term when (Rω)6/ρ4


 1. This implies ρ 	 (Rω)3/2. In this region we
may solve the equation by Bessel functions, J (ρ), and
Neumann functions, N(ρ), as follows:

(19)φ(ρ)= ρ−1(A′J1(ρ)+B ′N1(ρ)
)
.

Here A′ and B ′ are undetermined constants.

We wish to calculate the ratio of fluxes between
the exterior and interior and so we need to find an
overlap region that allows us to fix A′ and B ′ in terms
of A and B . There is an overlap region, Rω 	 ρ 	
(Rω)3/2, when Rω 
 1. In this region we can match
the solutions provided:

(20)A=A′/2, B = 2
π

1
(Rω)3

B ′.

For small Rω the ratio of fluxes of interior to asymp-
totic regions is (neglecting numerical constants)

(21)P ∼ (Rω)6.

The formula for the absorption cross section in d

spatial dimensions is:

(22)σ = (2π)d−1P
ωd−1Ωd−1

,

whereΩD is the volume of the unit D-sphere. For our
case, d = 4 giving the following (up to a numerical
constant):

(23)σ ∼R6ω3.

If we return to the limit described previously, where
now we can identify R = �pQ

1/3 and ω is kept fixed,
we see that σ vanishes and the asymptotic region
indeed decouples.

4. Discussion

In summary, we have defined a Maldacena-like
low energy limit on the M-theory five-brane such that
the near horizon region of a self-dual string becomes
near-critical and gives rise to a AdS3 phase of the
OM theory. This describes the emerging stack of Q
membranes from the five-brane perspective.

Now, in the above discussion we have neglected
the ambient gravity. To decouple this brane system
from gravity, one takes �p to zero with v2/�3

p fixed
where v is now the eleven-dimensional distance from
membranes. A strictly rigorous analysis is not possible
since there is no supergravity solution, however, for
large Q, one may ignore the back reaction of the
single M5-brane and we have a decoupled AdS4 × S7

spacetime with radius of curvature (using the naive
estimate) going like Q1/6 with the AdS3 × S3 is
embedded inside whose radius of curvature goes like
Q1/3. A similar set up is described in [14].
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By compactifying the whole system, one introduces
a plethora of various decoupled open brane theories [8,
9,12] with coupling moduli. We expect all these to
give rise to similar behavior as the one found here,
though presumably the conformal invariance is broken
in most of these cases. This of course requires the
identification of the appropriate open brane metrics
and coupling; as done in [17].

One might imagine that we are describing simply
the usual stack of Q coincident membranes in the
limit. This is not the case however because crucially
the membranes have a boundary which is of course
the five-brane. They must end on the five-brane in a
smooth way that also conserves flux. It is this that
essentially alters the geometry of the membranes.

Finally, we wish to entertain the following possi-
bility. One may imagine that the low energy effective
action of the self-dual string may be determined by
writing down the action corresponding to goldstone
modes of the self-dual string, or using the more pow-
erful superembedding formalism of [25] which was
applied to the self-dual string in [5]. As such it will
be an N = (4,4) SCFT in 1 + 1 dimensions. Actu-
ally knowing what the precise SCFT is problematic
because of how one determines the Q dependence.
The approaches described above actually only gives
the action when Q = 1 but allows one to determine
the supersymmetry. This is similar to the problem of
knowing what the conformal theories are for any of
the M-theory branes, at the moment the only thing
known about them is the supersymmetry and proper-
ties determined by the assumed duality with eleven-
dimensional supergravity. It would be interesting to
see if the work of [26] could be useful in describing
this non-Abelian self-dual string theory. One signifi-
cant objection to this proposal is that the solution is
singular and has infinite tension unless regulated by
the arbitrary cut off L as indicated here. Nevertheless,
if such a low energy effective action exists and could
be trusted; it would indicate a low energy duality be-
tween the two descriptions of the decoupled region.

As an aside we wish to point out that the six-
dimensional five-brane theory should not be thought
of as the Q→ ∞ limit of the AdS3 version of the OM
theory that we have found here, just as one should not
think of the ten-dimensional type IIB string theory as
the large N limit of the five-dimensional anti-de Sitter
string theory. The flat limit instead consists of uplifting

to the maximally symmetric theory in the higher
dimension, where the brane charge can be set equal
to zero. In fact, in analogy with the type IIB string
theory, we expect the AdS3 OM theory to be given
in terms of a curvature expansion for large R with
an essential singularity at 1/R = 0. In type IIB this
pole origins from the singularity in the string tension
in the curvature expansion of string theory about the
ten-dimensional flat vacuum [27]. When expanded
about the five-dimensional anti-de Sitter vacuum the
string tension is traded for the cosmological constant
by letting it absorb powers of the string coupling
(dilaton). As a result the string tension can be sent
to zero at fixed Planck length and radius (which
corresponds to sending the string coupling to zero). In
the resulting tensionless phase the original singularity
thus has translated into the singularity at 1/R = 0.

One also might be worried that in fact the OM
theory does not really decouple from the background
due to its thermal properties; as was suggested for
NCOS theories in [28]. It was not clear there what
such a thermal analysis revealed about OM theory as
such it remains an open question. The relation if any
to the usual AdS3 ×S3, CFT coresspondence [29], also
remains undetermined.
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