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A B S T R A C T

Lopsidedness is a common feature in galaxies, both in the distribution of light and in the

kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a

disc lying off-centre in a dark halo, and circling around the halo centre. We search for families

of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these

orbits. Several of our models show strong lopsided gas kinematics, especially those in which

the disc spins around its axis in a retrograde sense compared with its motion around the halo

centre. We are able to reproduce the H I velocity map of the kinematically lopsided galaxy

NGC 4395.

The lopsidedness in our models is most pronounced in the models where the halo provides

a relatively large fraction of the total mass at small radii. This may explain why the gas shows

lopsidedness more frequently in late-type galaxies, which are dominated by dark matter.

Surfaces of section show large regions of irregular orbits in the models where the halo density

is low. This may indicate that these models are unstable.

Key words: galaxies: formation – galaxies: individual: NGC 4395 – galaxies: kinematics and

dynamics – galaxies: structure – dark matter.

1 I N T R O D U C T I O N

It has long been known that many disc galaxies are lopsided.

Baldwin, Lynden-Bell & Sancisi (1980) were among the first to

note that many galaxies show large-scale asymmetries in the

optical images and the gas distributions. Richter & Sancisi (1994)

examined a large sample of approximately 1700 global H I profiles,

and concluded that at least 50 per cent of all disc galaxies show

significant asymmetries. This result has recently been confirmed by

Haynes et al. (1998), who studied 104 H I profiles of spiral

galaxies. Matthews, Van Driel & Gallagher (1998) studied H I

profiles of 30 extreme late-type spiral galaxies. These authors

found that approximately 75 per cent of the galaxies in their sample

have more or less asymmetric profiles, and inferred that

lopsidedness is more common among these very late-type spirals.

Swaters (1999) studied a sample of 75 late-type galaxies in H I

and red light, finding a high incidence of lopsidedness in both the

distribution of gas and its kinematics. Swaters et al. (1999)

presented global profiles, rotation curves and velocity fields for two

of these, DDO 9 and NGC 4395 (of type Im and Sm, respectively),

which are both kinematically lopsided, although neither has nearby

companions. In these and other kinematically lopsided galaxies,

the rotation curves level off at a constant velocity on one side of the

galaxy, while they keep on rising on the other side. The contours of

the velocity fields are more strongly curved on the side with the flat

rotation curve, and the H I profile is also asymmetric.

Many galaxies are also lopsided in their light distribution. Rix &

Zaritsky (1995, hereafter R&Z) studied K-band images of 18 disc

galaxies and found that approximately one-third of them were

significantly lopsided. R&Z argue that lopsidedness should be

more common in the H I distribution than in the stars, because of

the longer dynamical time-scales in the outer part of the disc.

Zaritsky & Rix (1997) followed up with I-band imaging of a larger

sample of 60 galaxies, finding ,30 per cent of them to be lopsided.

Rudnick & Rix (1998) explored earlier-type systems of type S0 to

Sab, and found roughly 20 per cent of them to be lopsided discs.

The relation between lopsidedness in the distribution of starlight

or gas and an asymmetric velocity field is not at all clear. NGC 891

shows a strongly lopsided gas distribution, with gas extending

much further from the centre on the southern than on the northern

side. However, up to the radius where the H I stops on the northern

side, the kinematics are almost perfectly symmetric with no

obvious deviations from circular motion; beyond that, the rotation

curve on the south side remains flat (Sancisi & Allen 1979;

Swaters, Sancisi & Van der Hulst 1997, their fig. 2). In contrast,

both the stellar light and the H I distribution in DDO 9 and NGC

4395 are fairly symmetric, but the velocity fields are quite lopsided

(Swaters et al. 1999). Kornreich et al. (2000, 2001) compare
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morphological and kinematical lopsidedness in two samples, each

of nine spiral galaxies, and find little or no correlation between the

different parameters they measured. In the latter paper, they state

that ‘normal morphology is not an indicator of normal kinematics

and, conversely, that perturbed kinematics do not necessarily

manifest as perturbed optical morphology’. Swaters (1999) looked

at the H I distribution and kinematics of 73 late-type dwarf galaxies

and found 19 galaxies with stronger kinematical than morpho-

logical asymmetries, 18 where the lopsidedness is stronger in the

density and five with comparable asymmetries in both (chapter 3,

table A2).

The origin and persistence of lopsidedness in galaxies have not

yet been explained in a satisfactory way. In both the radio and near-

infrared surveys, the asymmetries affect large parts of the discs;

they are not small, localized irregularities. The fact that so many

galaxies, including isolated systems, are lopsided argues against

transient effects. Lopsidedness may be a general and intrinsic

feature of disc galaxies.

Baldwin et al. (1980) suggested a model in which the gas and

stars of a lopsided disc move in an axisymmetric potential on a

series of initially aligned elliptical orbits. Owing to differential

precession, this lopsidedness will wind up into a single leading

spiral arm and slowly disappear. These authors estimate that the

asymmetry in their model can persist for ,5 Gyr, but claim that

this lifetime is too short to explain the observed frequency of

lopsidedness in nature. Another drawback is that, since the orbiting

gas conserves its angular momentum, the inferred rotation curve

must be significantly higher on the ‘short’ side of the disc.

The only stellar-dynamical models of disc galaxies that develop

strong lopsided asymmetries are models with many counter-

rotating particles (Zang & Hohl 1978; Sawamura 1988; Sellwood

& Merritt 1994). However, counter-rotation is only rarely observed

in disc galaxies (see, e.g., Kuijken, Fisher & Merrifield 1996). Syer

& Tremaine (1996) present fluid models for thin, scale-free,

lopsided discs; their solutions are gravitationally self-consistent,

and the distortion is stationary in inertial space. Galli et al. (2001)

show that these configurations are secularly stable. In these discs, a

lopsided surface density implies lopsided kinematics. Earn &

Lynden-Bell (1996) reach a similar conclusion in their work on

self-gravitating lopsided discs: the velocity field of a lopsided disc

should itself be asymmetric. Such a model cannot account for the

symmetric rotation curves of systems such as NGC 891.

Zaritsky & Rix (1997, hereafter Z&R) tried to explain

lopsidedness as a result of recent accretion of small satellite

galaxies on the parent galaxy. Using results of N-body simulations

by Walker, Mihos & Hernquist (1996), Z&R conclude that

lopsidedness can be caused by accretion of a satellite within the last

1 Gyr. Using this lifetime and the observed frequency of

lopsidedness, they obtain an upper limit on the accretion rate.

However, the accretion rate can be much lower if the lopsidedness

is more persistent, or if there are other mechanisms responsible for

it. In particular, R&Z point out that the winding problem is avoided

if the potential of the galaxy is lopsided itself, with the gas and stars

just responding; they do not address the question of how to find a

lopsided potential in the first place.

Recently, attention has been drawn to models in which the dark

halo accounts for an asymmetry in the overall galaxy potential.

Weinberg and collaborators (Weinberg 1991, 1994; Vesperini &

Weinberg 2000) have shown that lopsided modes of oscillation in a

spherical system may have very long decay times, so that

asymmetries in the galactic halo can persist long after the original

disturbance.

Jog (1997) showed that even a small lopsided perturbation of the

galaxy halo can cause strong asymmetry in the density of disc gas,

in a sense opposing the perturbation in the halo. Investigating the

self-consistent response of the disc, Jog (1999) showed that the

gravity of the disc indeed opposes the lopsidedness of the halo. As

a result, the disc becomes strongly lopsided only in its outer parts,

where the halo is dynamically dominant. However, Jog does not

show model rotation curves.

Levine & Sparke (1998, hereafter L&S) presented a model to

explain lopsidedness, with the disc lying off-centre in the dark halo

and orbiting around its centre. This model has some aspects in

common with that presented by de Vaucouleurs & Freeman (1973)

for off-centre bars in galaxies such as the Large Magellanic Cloud.

The N-body simulations by L&S showed that when the rotation of

the disc is retrograde with respect to its motion around the centre

of the halo, the disc can remain off-centre for many rotation

periods. The retrograde disc appears to settle into a circular orbit

close to the core radius of the halo, inside which the halo density is

roughly constant; a prograde disc drifted slowly inward towards the

centre of the halo.

This paper will explore particle orbits in the L&S model; we

investigate the kinematics of gas moving in such a model galaxy.

We explain our model potential in Section 2. In Section 3, we

present surfaces of section, rotation curves and velocity fields. We

show that orbits in this model can account both for discs with a

lopsided surface density but symmetric kinematics, and for objects

such as NGC 4395, in which the velocity field is more distorted

than the surface density. We also explore the effects of changing

the basic model parameters. In Section 4 we present a discussion of

our conclusions.

2 K I N E M AT I C S O F A L O P S I D E D M O D E L

L&S presented N-body simulations of a model for lopsided

galaxies, consisting of a disc of particles rotating around the centre

of a massive dark halo, represented by a fixed spherical potential.

Here, we compute stable, closed, non-crossing periodic orbits in an

analytical representation of the potential of this model. Assuming

that the gas in the disc moves on those orbits, we find the resulting

velocity-field and rotation curves. We expect the disc particles to

follow paths that oscillate about these stable periodic orbits, and

use surfaces of section to explore the regions of trapped orbits.

Although L&S found that the retrograde-spinning disc remained

off-centre in the halo longer than the prograde disc, we consider

both cases.

2.1 A model for the gravitational potential

Our model consists of a flat disc and a spherical halo. We confine

our attention to orbits in the plane of the disc. The disc is an

axisymmetric Kuzmin–Toomre disc of mass MKT, lying in the x–y

plane. Its potential at distance R from the disc centre in that plane is

given by

FKTðRÞ ¼ 2
GMKTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 2 1 R2

c

q ; ð1Þ

where G is the gravitational constant and Rc is the scalelength of

the disc. We define our units such that G ¼ 1 and Rc ¼ 1. In the

simulations of L&S, the disc was truncated at radius RtD ¼ 10. Its
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total mass is then given by

Mð, RtDÞ ¼ MKT 1 2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 R2
tD/R2

c

q
0B@

1CA:

The halo is spherically symmetric and has a pseudo-isothermal

form. The density at distance r from its centre is given by

rHðrÞ ¼
rc

1 1 ðr/ rcÞ
2
; ð3Þ

where rc is the central density and rc is the core radius of the halo,

the radius where the density falls to half the central value. The

velocity VH of a circular orbit at radius r in this halo is given by

V2
HðrÞ ¼ V2

1 1 2
rc

r
arctan

r

rc

� �� �
: ð4Þ

The circular velocity rises linearly in the centre and approaches the

asymptotic velocity V1 at large radii:

V2
1 ¼ 4pGrcr2

c : ð5Þ

The halo described by equation (3) has infinite mass, but L&S

truncated the halo at rtH ¼ 20. Its total mass is then given by

Mð, rtHÞ ¼
V2

1

G
rtH 2 rc arctan

rtH

rc

� �� �
: ð6Þ

We define our unit of mass such that the total mass in the truncated

model (disc 1 halo) is unity. We define Md as the fraction of the

total mass that is in the truncated disc ð0 # Md # 1Þ. The mass of

the truncated halo is then 1 2 Md. We also need to know the

contribution from the halo to the mass in the inner regions of the

disc. We define h as the fraction of the total mass within a sphere of

radius r ¼ 2 from the disc centre that belongs to the halo. While the

halo as a whole is much more massive than the disc, the disc

dominates within these inner parts.

For Rc ¼ 2 kpc and a total mass of 1011 M(, our time unit

corresponds to 4.22 Myr and our velocity unit to 464 km s21.

The halo is centred at the origin, while the disc centre is placed

at a distance Dx on the positive x-axis. The combined potential in

the x–y plane is then given by

Ftotðx; yÞ ¼ FHðx; yÞ1 FKTðx 2 Dx; yÞ;

where FH is the halo potential. The halo is much more massive

than the disc, so we let the whole system rotate around the origin at

an angular velocity VP equal to the circular rotation velocity in the

halo potential at the radius Dx of the disc centre:

V2
P ¼

V2
1

Dx 2
1 2

rc

Dx
arctan

Dx

rc

� �� �
: ð8Þ

Now, we look for orbits that are closed in the corotating frame.

Defining the angular momentum vector V ¼ VPêz, the equation of

motion in this frame is

€r ¼ 27Ftot 2 2ðV � _rÞ2 V � ðV � rÞ; ð9Þ

where the second and third term on the right-hand side are the

Coriolis and centrifugal forces, respectively. The effective

potential Feff ;Ftot 2 1
2
V2

Pðx
2 1 y 2Þ is defined as the sum of the

gravitational potential and a ‘centrifugal potential’. Orbits in this

system admit an isolating integral of motion, the Jacobi integral:

EJ ¼
1
2
j_rj

2
1 Feff ð10Þ

(see Binney & Tremaine 1987, section 3.3.2).

2.2 Finding orbits for gas flow

We assume that gas in our model moves in stable, closed and non-

crossing orbits. The flow is then smooth and laminar, without major

shock fronts. We used the method of surfaces of section to find

closed orbits (see, e.g., Binney & Tremaine 1987, sections 3.2–

3.5). For a range of values of EJ, we integrated orbits with different

initial conditions, such that we probe the entire phase space. Each

time the orbit crosses the x-axis with vy . 0, we mark its

x-coordinate and x-velocity in an xẋ-diagram. The simple closed

orbits that we seek always cross the x-axis at the same point, with

the same velocity; they will appear in the diagram as single points.

We then check whether the orbits are stable, using a method first

proposed by Hénon (1965). Also, we check that orbits do not cross

each other. We can then imagine filling with gas all the stable orbits

that do not cross each other, to make a model velocity field or a

rotation curve. Gas would not generally be found on unstable orbits

or orbits that cross each other, so we ignored those orbits. However,

stars could still be trapped around stable crossing orbits.

For the integrations, we used a variable-order, variable-step

Adams method, implemented in FORTRAN77. This method

maintains high accuracy during the long integrations needed to

make the surfaces of section. We made use of subroutines from the

NAG library, using double-precision variables, and a tolerance of

10210; a smaller tolerance slowed down the calculations and did

not improve the accuracy of the integrations.

3 M O D E L R OTAT I O N C U RV E S A N D

V E L O C I T Y F I E L D S

The parameters of our seven models are given in Table 1. The disc

scalelength Rc is 1 by definition, and the disc and halo truncation

radii RtD and rtH are 10 and 20, respectively.

For all models, we consider both orbits that circulate the disc

centre in a prograde and retrograde sense with respect to the disc’s

motion around the halo centre.

3.1 The starting model

Model A was inspired by one of the most successful runs in L&S.

Table 1. Values of parameters for the different models. Md is
the fraction of the total mass in the truncated disc; Rc is the disc
scalelength; rc is the halo core radius; Dx is the distance
between halo and disc centre; RtD is the truncation radius of the
disc; rtH is the truncation radius of the halo; h is the contribution
from the halo to the total mass within a sphere of r ¼ 2 around
the disc centre.

Model Md Rc rc Dx RtD rtH h

A 0.092 1 2 2.5 10 20 19 per cent
B 0.092 1 2 1.5 10 20 25 per cent
C 0.092 1 2 5 10 20 8 per cent
D 0.186 1 2 2.5 10 20 9 per cent
E 0.046 1 2 2.5 10 20 33 per cent
F 0.092 1 1 1.5 10 20 37 per cent
G 0.092 1 4 4 10 20 8 per cent
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They found that a retrograde spinning disc sank towards the halo

centre until the most tightly bound particles of the disc orbited at a

radius close to the halo core radius. We chose Md ¼ 0:092, rc ¼ 2

and Dx ¼ 2:5, so that the disc centre lies just outside the halo core.

The halo contributes 19 per cent of the total mass within a distance

r ¼ 2 from the disc centre. Fig. 1 shows a contour plot of the

effective potential Feff in the corotating coordinates.

In the region near (2.5,0), the potential is clearly dominated by

the disc.

When the Jacobi integral is low, the surfaces of section in Fig. 2

show two simple closed orbits.

One crosses the x-axis at x . 2:5, and circles the disc centre in a

prograde sense with respect to the motion of the disc around the

halo centre. The other is a retrograde orbit and crosses the x-axis at

x , 2:5. Both of these orbits are stable and surrounded by a family

of non-closed but regular orbits. Those appear as the concentric

curves, nested around the closed orbits.

As the Jacobi integral is increased, most of the retrograde orbits

remain regular, and regular orbits trapped about the simple closed

orbit continue to occupy a large area to the left. There are some

‘islands’ of orbits that close after multiple circuits; see, for

example, in panel (b), near (1.6,0) and (2.1,0), an orbit that closes

after two circuits. These do not occupy a large region in phase

space. The structure of the prograde orbits becomes quite

complicated. We see many small ‘islands’ of multiperiodic orbits

and we also find irregular or chaotic orbits; they fill a two-

dimensional area in the diagrams and produce ‘fuzzy’ regions such

as that to the right of x ¼ 4 in panel (d). For EJ ¼ 20:045, the

closed prograde orbit has shifted all the way to the edge of the

surface of section; for EJ ¼ 20:04 and higher, there is no closed,

simply periodic prograde orbit at all.

When EJ $ 20:04, the zero-velocity curve is not closed, so

orbits are no longer bound to the disc and particles could in

principle escape from the system. However, regular retrograde

orbits keep occupying a substantial region of phase space, until the

Jacobi integral rises slightly above 20.02, when there are no longer

any regular orbits in the disc. This helps to explain why the

retrograde-spinning disc could remain stable in an orbit just outside

the halo core in the simulations of L&S; even at high values of EJ,

many regular orbits trapped around the closed periodic orbits were

available to the simulation particles. In the prograde disc, although

closed orbits persist to larger radii than in the retrograde case (see

Fig. 3), even at EJ ¼ 20:045 (panel c) only a small part of the

phase space is occupied by orbits trapped around them. Thus it

Figure 1. Contours of constant Feff for model A. The disc centre lies at (2.5,0) and is marked by the diamond; the entire system is rotating counterclockwise

around the origin, marked by the cross.
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would be much more difficult to populate the prograde disc self-

consistently with simulation particles.

In the top panels in Fig. 3, we show the families of stable simply

closed orbits, both prograde and retrograde, as seen in the frame

corotating with the disc, out to the radius where the closed orbits

begin to cross each other.

Near the disc centre, where the potential of the system is

dominated by the axisymmetric potential of the disc itself, the

orbits are nearly circular. At larger radii, the prograde orbits

become elongated in the x-direction. The retrograde orbits remain

quite circular, but the geometric centre shifts to larger x-values,

away from the halo centre.

In the middle panels, we plot the rotation curves along the x-axis,

as they would be measured by an inertial observer, relative to the

velocity of the centre of the disc. The dashed curves correspond to

circular orbits in the disc alone, without the halo present. For the

prograde orbits, the rotation curve is fairly symmetric, but it always

lies below that of the isolated disc; if the mass of the galaxy were

calculated from this rotation curve, it would be underestimated.

The retrograde curve shows the interesting feature that on the side

closer to the halo centre, it rises all the way to the last non-

intersecting orbit, while on the other side it becomes flat. The

expected shape of the global profiles in H I will depend on how

much gas is present on these orbits. Generically, the peak on the

Figure 2. Surfaces of section for y ¼ 0 and vy $ 0 for model A. Note that the scales differ between the panels. The value of the Jacobi integral is indicated in

each panel. The dashed curve is the zero-velocity curve, where vy ¼ 0. Simple closed orbits are indicated by triangles. All coordinates are measured in a frame

corotating with the disc centre.
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side where the rotation curve is flat will be higher, while the side

with the lower peak has a sloping ‘shoulder’ to high velocity.

In the panels at the bottom, we plot the rotation curves along the

minor axis of the system, perpendicular to the axis of symmetry.

These curves are exactly symmetric. The prograde curve now rises

significantly above that for an isolated disc, while the retrograde

curve is almost indistinguishable from it.

In Figs 4 and 5, we plot contours for the velocity component

along four different directions.

These figures would correspond to velocity maps if the galaxies

were observed with the line of sight parallel to these directions.

The numbers on the contours are the actual velocities along the

orbits; an observer would measure all velocities multiplied by a

factor sin i, where i is the inclination angle. The prograde maps

(Fig. 4) show clear signs of the elongation of the outer orbits, but

the overall asymmetries are mild and affect mainly the outer parts.

The retrograde maps (Fig. 5) however, show strong signs of

lopsidedness. Except when the line of sight is parallel to the x-axis

Figure 3. The upper panels show closed orbits as seen in the corotating frame for model A. The middle panels show the rotation curves along the x-axis. The

velocities are measured in an inertial frame, relative to the disc centre. The dashed curves show the theoretical rotation curve for an isolated Kuzmin–Toomre

disc of the same mass, without the halo present. The lower panels show the symmetric rotation curves along the axis x ¼ 2:5. The left-hand panels are for the

prograde orbits, the right-hand ones for the retrograde orbits.
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(bottom right), the contours in these maps are quite straight on one

side, and strongly curved outwards on the other side. In Fig. 6, we

show the velocity field of the lopsided galaxy NGC 4395, as

presented by Swaters et al. (1999). The similarity between this

velocity-field and the two upper panels in our Fig. 5 is striking.

From Figs 3–5, we conclude that asymmetries in the overall

galaxy potential do not necessarily produce strong signals in the

rotation curves or velocity fields; depending on the viewing angle,

the lopsidedness can be hidden. Conversely, a symmetric rotation

curve or velocity-field does not guarantee a near-symmetric

potential.

3.2 Changing the distance from the disc to the halo centre

In the simulations by L&S, the spinning disc continued to sink

towards the halo centre, as long as it was outside the core radius.

The prograde disc sank further inwards than the retrograde one. To

investigate whether the orbital structure of our model could explain

why the disc does not stay far outside the halo core, we changed the

separation Dx between the disc and halo centres, keeping all other

parameters the same as in model A.

(i) Model B: Dx ¼ 1:5. In this model, the disc lies inside the halo

core, so the halo now contributes a larger fraction, 25 per cent, of

the total mass within r ¼ 2 from the disc centre. In Fig. 7, we show

the surfaces of section.

We chose the values for EJ such that the zero-velocity curves in

each panel have approximately the same size and shape as in the

respective panels in Fig. 2. At low values for the Jacobi integral, the

surfaces of section show qualitatively the same behaviour as in

model A; there are two orbit families, one prograde (on the right of

the surfaces of section) and one retrograde (on the left), and almost

all orbits are regular. As the Jacobi integral is increased, the closed

prograde orbit again shifts to the edge of the surface of section,

while the closed retrograde orbit remains in the centre of its family.

Compared with model A, orbits trapped around the closed prograde

orbit continue to occupy more of the phase space on the right-hand

side of the figures, almost until the zero-velocity surface becomes

open to the right of the figure. There are only very few islands of

Figure 4. Contours of constant velocity along the prograde orbits of model A. The velocities are measured in an inertial frame, relative to the disc centre. The

directions of the velocities are measured by f, the angle between the velocity and the x-axis. The labels on the contours are in units of 0.01.
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multiperiodic orbits and even at larger EJ, the only irregular orbits

are those that are not bound to the disc. This probably explains why

also the prograde disc in L&S becomes stable within the halo core

radius, and does not sink much further into the core. The retrograde

side again remains regular up to high values of EJ.

In Fig. 8, we show the closed orbits together with the rotation

curves along the x-axis and the contours of vy, which show the most

pronounced asymmetries.

The prograde orbits are now less elongated than in model A, and

their rotation curve lies close to the curve of the isolated disc. Note

that in this case, the prograde rotation curve along the x-axis also

becomes flat on the side furthest from the halo centre, and keeps

rising on the other side. The model velocity map of vy is fairly

symmetric. The rotation curve along the minor axis (at x ¼ 1:5Þ

rises only slightly above the curve for an isolated disc.

The retrograde orbits are slightly more lopsided than in model A,

and the asymmetry in the rotation curve along the x-axis and in the

velocity map of vy, is more distinct.

(ii) Model C: Dx ¼ 5. In model C we put the disc at Dx ¼ 5, far

outside the halo core. This model shows similar behaviour to

models D and G, and we refer the reader to Fig. 9 for an impression

of the surfaces of section. The prograde side shows highly irregular

behaviour, even well before the zero-velocity curve becomes open.

Large areas in the surfaces of section are occupied by multiply

periodic and irregular orbits. The region occupied by regular orbits

trapped around the closed retrograde orbit also starts shrinking at

relatively low values of EJ, when all orbits are still bound to the

disc. The irregularity of the surfaces of section probably explains

why L&S found that even the retrograde disc is not stable when far

out of the halo centre. Too few of their simulation particles could

follow orbits trapped around the simple closed orbits.

The rotation curves and velocity maps are like those of Fig. 10.

The prograde closed orbits become highly elongated along the

x-axis at large radii, showing high velocity gradients where the

orbits change from circular to elongated. Overall, they are fairly

symmetric. The retrograde orbits are only slightly lopsided, and the

asymmetries in the rotation curves and velocity maps are mild.

We conclude that changing the offset of the disc from the halo

centre affects the prograde orbits most strongly. As we increase

the offset, the outer orbits become highly elongated, and high

velocity gradients develop where the orbits change from circular to

Figure 5. Same as Fig. 4, now for the retrograde orbits of model A. Note that the scales along the axes are different from Figs 3 and 4.

Kinematics of lopsided galaxies 1071

q 2001 RAS, MNRAS 328, 1064–1080

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/328/4/1064/1083151 by R
ijksuniversiteit G

roningen user on 18 D
ecem

ber 2018



elongated. The prograde side of the surfaces of section becomes

complicated, with few regular orbits trapped around the closed

orbits. Hence a prograde disc is unlikely to survive unless it is well

within the halo core.

The retrograde orbits and rotation curves are less affected, and

become only slightly less asymmetric as we increase the offset. At

low separations, the velocity map of vy is highly asymmetric, while

increasing the offset makes the asymmetry less pronounced. As the

disc is moved away from the halo core, fewer retrograde orbits are

trapped around the closed periodic orbit.

3.3 Changing the disc mass

Changing the mass of the disc in our models has similar effects on

the kinematics to those of changing the offset of the disc from the

halo centre. We expect a model with a heavy disc to produce

qualitatively the same behaviour as a model with the disc far out

from the halo centre. Indeed, the strength of the asymmetries in our

model kinematics appears to be closely related to the relative

densities of the disc and the halo, that is, to the parameter h.

(i) Model D: Md ¼ 0:186. In model D, the disc is twice as heavy

as in the previous models. The offset between the disc and the halo

centre is the same as in model A: Dx ¼ 2:5. The halo now has a

much smaller influence on the inner parts of the disc, with h ¼ 9

per cent. The potential well of the disc is now much deeper, so we

need to examine lower values for EJ to see similar orbits.

Again, most retrograde orbits are regular up to high values for

EJ. The prograde side of the plots becomes distorted, with a large

irregular region starting from EJ ¼ 20:09. For a limited range in

EJ, there is an additional prograde family of closed orbits, visible in

Fig. 9(c) near (3.8,0). Orbits trapped around these closed orbits

occupy only a small region in phase space and are not expected to

play an important role in any realistic model.

The same reasoning that we used in discussing model C leads us

to suspect that a massive prograde disc will not be stable, and that it

will sink towards the halo centre rapidly. In contrast, a retrograde

disc might be stable when orbiting just outside the halo core.

In Fig. 10, we show the orbits, the rotation curves along the

x-axis and the contours of vy in this model. Non-crossing periodic

orbits extend to larger distances from the disc centre than they did

in model A. The prograde orbits become highly elongated at larger

radii, and their major-axis rotation curve lies far below the curve

for an isolated disc. The contours of vy show strong velocity

gradients in this region, but overall are quite symmetric. The

rotation curve along the minor axis is symmetric, but shows a large,

abrupt rise in velocity at the radius where the orbits change from

circular to elongated.

The retrograde orbits look similar to those in the previous

models. The asymmetries in the rotation curve along the x-axis,

and in the velocity map of vy , are less severe than in models A

and B.

(ii) Model E: Md ¼ 0:046. Model E, with a low-mass disc of

Md ¼ 0:046, shows many similarities with our model B. Its

surfaces of section show few irregular orbits, with many orbits

trapped around the closed orbits. Because of the regularity of the

surfaces of section, we expect that a low-mass disc with either

prograde or retrograde spin will be stable near the halo core radius

in N-body simulations.

The closed prograde orbits are only slightly elongated; the

rotation curve along the x-axis becomes flat on the side more

distant from the halo centre, and keeps rising on the other. The

velocity maps are only mildly asymmetric. The rotation curve

along the x-axis for the retrograde orbits is again clearly lopsided,

and the velocity maps are generally highly asymmetric.

3.4 Changing the halo core radius

L&S noted that when the halo core radius was small ðrc ¼ 0:5Þ,

both the prograde and retrograde disc sank towards the halo centre

rapidly. Decreasing the core radius of the halo has the effect of

compressing the material in the halo, and thus of increasing its

central density.

(i) Model F: rc ¼ 1. In model F, the halo core radius is rc ¼ 1,

half the size of that in model A and equal to the disc scalelength.

The disc centre lies at Dx ¼ 1:5, just outside of the halo core. The

halo now contributes 37 per cent of the total mass within r ¼ 2

from the disc centre.

In Fig. 11 we show the surfaces of section. There are again very

few irregular orbits. In panel (a), we recognize the two familiar

families of prograde and retrograde orbits. In panel (b), the original

prograde family has shifted to the right, and a large portion of the

prograde side, around x ¼ 1:8, is now occupied by a third family of

orbits. These orbits have a loop that appears as an additional,

narrow island in the far left-hand corner of this panel, near (0.5,0).

At EJ ¼ 20:06 (panel c), the original prograde family has

disappeared; meanwhile, the third orbit family has lost its loop on

the left-hand side of the surface of section, and has now become

simple-periodic itself. Because these orbits are simple-periodic

only for a limited range in the Jacobi integral, within which they

cross each other abundantly, we do not use them to make model

rotation curves or velocity maps. However, the fact that such a

large part of phase space is occupied by this family gives an

indication of why the prograde disc was not stable in the

simulations by L&S. Only at low values for the Jacobi integral can

many stars be on orbits trapped around the closed prograde orbit; as

Figure 6. Velocity map from Gaussian fits to H I line profiles at each point

in the lopsided galaxy NGC 4395. Dark shading indicates the receding side,

contour levels are 260–380 km s21, in steps of 10 km s21. Map kindly

provided by Rob Swaters, from Swaters et al. (1999).
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the Jacobi integral is increased stars follow different orbits,

resulting in strong mixing in the disc.

The retrograde side of the surfaces of section remains regular up

to high values of EJ. The range where we see closed retrograde

orbits ð20:1 & EJ & 20:03Þ is approximately twice as large as the

range where the familiar closed prograde orbits exist

ð20:1 & EJ & 20:065Þ. This difference is more extreme than in

the previous models.

In Fig. 12, we show orbits, rotation curves and velocity maps

in this model. Neither the prograde or the retrograde closed

orbits extend more than one scalelength from the disc centre.

This would explain why neither the prograde nor the retrograde

disc was stable in the simulations of L&S; only particles in a

small central part of the disc can be trapped near the simple

closed orbits.

Both the prograde and the retrograde rotation curves along the

x-axis have a flat part on one side and a rising part on the other. The

appearance is similar to the retrograde orbits in our models B and

E, but with more extreme asymmetry. The minor-axis rotation

curves deviate only slightly from the curve of an isolated disc. The

velocity maps are very asymmetric, especially the retrograde map.

(ii) Model G: rc ¼ 4. Model G, with a large halo ðrc ¼ Dx ¼ 4Þ,

shows similar behaviour to our models C and D. The surfaces of

section show many irregular orbits on the prograde side, while the

retrograde side again stays regular to high values of EJ. As in model

D, the prograde orbits become highly elongated along the x-axis;

Figure 7. Surfaces of section for y ¼ 0 and vy $ 0, as in Fig. 2, but now for model B. The disc centre now lies at x ¼ 1:5.
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the rotation curves and velocity maps look like those in Fig. 10,

with high velocity gradients where the orbits change from circular

to elongated. The retrograde orbits are only slightly lopsided, and

the rotation curves and velocity maps are hardly asymmetric.

The analysis of models with different sizes of the halo confirms

our conjecture that the shape of the orbits and the velocity contours

depends mainly on the relative densities of the disc and the halo, as

given by the parameter h. In model F, with a compact halo, the

rotation curves and velocity maps resemble those of models B and

E, which also both have a relatively high halo density. The rotation

curves along the x-axis show a flat part on the far side from the halo

core, and a rising side on the other side, for both the prograde and

retrograde orbits. The retrograde velocity maps of vy have strongly

curved contours on the right-hand side, but almost completely

straight contours on the other side.

Model G, with a large, extended halo, shows the same behaviour

as models C and D, which also have a low halo density. The

Figure 8. As in Fig. 3, the upper panels show closed orbits in the prograde and retrograde discs, and middle panels show the rotation curves along the x-axis, but

for model B, with the disc centre at (1.5,0). The bottom panels show contours of constant vy, corresponding to the upper left-hand panels in Figs 4 and 5.
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prograde side of the surfaces of section has large irregular regions,

and the closed orbits become highly elongated at large radii,

causing strong velocity gradients in the rotation curves and

velocity maps. The retrograde orbits, rotation curves and velocity

maps are only mildly asymmetric.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have investigated an analytical model for lopsided galaxies,

based on numerical simulations by Levine & Sparke (1998), in

which a disc orbits off-centre within a ‘dark matter’ halo. We have

constructed orbits, rotation curves and velocity maps in the

resulting gravitational potential; all of these show significant

asymmetries. The asymmetries show a clear correlation with the

relative densities of the halo and the disc; they are stronger in the

models where the halo contributes more of the mass in the inner

regions of the disc (models B, E and F).

In the retrograde case, the orbits, and hence the expected

distribution of stars or gas, are sometimes only slightly lopsided;

but the rotation curves and velocity maps can be highly

asymmetric. The rotation curves along the x-axis, the symmetry

axis of the lopsided system, keep rising on the side near the halo

centre but become flat on the outer side. Correspondingly, velocity

contours are straight on the side near the halo centre and curved on

the outer side. Generically, the peak of the global H I profile on the

side where the rotation curve is flat will be higher, while the side

Figure 9. Surfaces of section for y ¼ 0 and vy $ 0, as in Fig. 2, but now for model D. The disc centre lies again at x ¼ 2:5, but the disc mass is Md ¼ 0:186.
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with the lower peak has a sloping ‘shoulder’ to high velocity. This

characteristic asymmetry is similar to that in the velocity map of

the lopsided Sm galaxy NGC 4395 presented by Swaters et al.

(1999). This late-type system is one of the lowest-luminosity

galaxies to have a Seyfert nucleus, which in turn is the faintest

Seyfert 1 nucleus known (Filippenko & Sargent 1989), with MB ¼

210:3 or L ¼ 2 � 106 L( (Matthews et al. 1999). Presumably, a

central black hole is present in the nucleus.

The kinematics of our models are not unique but a general

feature, in the sense that different combinations of parameters can

give similar features in the rotation curves or velocity maps. We

can use the strength of the asymmetries to determine the parameter

h, the fraction of mass contributed by the halo within 2

scalelengths of the disc centre. For example, the velocity field of

the galaxy NGC 4395 looks similar to some of our retrograde

models. Comparing our Fig. 6 with the velocity maps of models A,

Figure 10. As in Fig. 8, the upper panels show closed orbits in the prograde and retrograde discs, middle panels show the rotation curves along the x-axis, and

lower panels contours of constant vy, but now for model D. The disc centre lies at x ¼ 2:5, and the disc mass is Md ¼ 0:186.
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B, E and F, we estimate that this galaxy has a value for h between

20 and 30 per cent. The rotation curves of these models lie always

close to the curves of the isolated disc (in other words, these

models are ‘maximum disc’); we can use the total width of the

rotation curve ðvmax 2 vminÞ as a measure of the disc mass. We

infer a total mass for the disc of NGC 4395 of approximately

3:5 � 109 M( within 8.5 kpc of the centre, taking Swaters’ distance

of 3.8 Mpc and inclination i ¼ 468. The blue magnitude of

Matthews et al. (1999) implies a mass-to-light ratio M/LB < 2,

which is reasonable for the stellar population of a late-type disc.

Although the simulations of L&S showed that prograde-

spinning discs sank more rapidly into the halo core than retrograde

ones, we may still expect to observe some lopsided prograde discs

as a transient phenomenon. In these, the gas distribution has a

pronounced egg-shaped appearance; but the rotation curve can be

very nearly the same on both sides of the galaxy, as is observed in

some real galaxies. In models where the halo density is lower

(models C, D and G), these prograde orbits become highly

elongated, and strong velocity gradients develop. These orbits are

probably not realistic for gas moving in such a galaxy.

It is interesting to compare our velocity fields with those found

by Schoenmakers (1999, chapter 6). He used epicycle theory to

derive velocity fields in a model with an offset between the disc and

halo centres. The mass ratio of his model is comparable with our

model E ðMd < 0:05Þ, but the offset is much smaller ðDx < 0:8RcÞ.

His velocity fields are less asymmetric than ours, even though the

Figure 11. Surfaces of section for y ¼ 0 and vy $ 0, as in Fig. 2, but now for model F. The halo now has a core radius of rc ¼ 1. The disc centre lies at (1.5,0).
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halo density in the inner parts of his model is higher than in any of

our models. This difference is probably caused by the fact that

Schoenmakers assumed that the offset between the disc and halo

remained static in an inertial frame. Also, because of the small

offset, the region where we expect to see a characteristic distortion

of the velocity field is very small.

Our models explain the findings of Odewahn (1996) and Matthews

et al. (1998) that lopsidedness is more common in discs of extreme

late type (Sd and later). Broeils (1992, fig. 9b of chapter 10) shows

that the ratio of the core radius of the dark halo to the optical radius

R25 is $1 for all but one of the systems of type Sd or later, while

showing a large scatter for earlier types. Since our models show the

most pronounced lopsidedness when the halo core is larger then the

disc scalelength, we expect most late-type discs, but a smaller fraction

of the earlier types, to be highly susceptible to lopsidedness. Just as in

the models of Jog (1997, 1999), we expect long-lived lopsidedness

to be more severe, and thus more easily detected, in systems where

the dark halo dominates the mass distribution.

Figure 12. As in Fig. 8, the upper panels show closed orbits in the prograde and retrograde discs, middle panels show the rotation curves along the x-axis, and

lower panels contours of constant vy, but now for model F. The disc centre lies at (1.5,0), and the halo now has a core radius of rc ¼ 1.
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We have calculated the closed orbits within the disc only until

they begin to cross each other, or are no longer closed. These orbits

are usually found only within ,2 scalelengths of the disc centre.

This is roughly the region probed by the optical studies of Zaritsky

& Rix (1997) and Rudnick & Rix (1998), but does not extend as far

out as some of the H I studies of giant disc galaxies. Gas and stars

may still circle the disc centre outside our orbits; we would still

expect lopsided kinematics there. Also, the disc would lie off-

centre with respect to any gas on orbits at larger distances that

circle the halo centre; but we do not make any detailed predictions

for these cases.

We do not know whether an off-centre disc can account for all

types of lopsidedness. The best test is to examine both the velocity

field and the distribution of stars and gas in the same galaxies.

Neither Swaters (1999) nor Kornreich et al. (2000, 2001) found any

appreciable correlation between morphological and kinematical

lopsidedness. The models of Syer & Tremaine (1996), Earn &

Lynden-Bell (1996) and Jog (1999), in which the centres of the disc

and halo remain coincident, predict that photometrically lopsided

discs should also be kinematically lopsided. Our model can

produce either photometric or kinematic lopsidedness, with very

little of the other.

In all our models, the rotation curves perpendicular to the

direction of lopsidedness (the x-axis) are symmetric, and the

velocity maps of vx are only mildly asymmetric. Thus even a quite

lopsided galaxy can look symmetric when seen from an

unfavourable direction. In the retrograde models, velocity

asymmetries are apparent for a fairly large range in viewing

angles; an offset of 308 from the x-axis is usually enough.

Kinematic asymmetries in the prograde discs are only visible for a

small range of viewing angles, within 308 of the most favourable

direction. Naturally, the asymmetry in the prograde orbits

themselves can be seen from any direction. The fact that

lopsidedness can be hidden by an unfavourable viewing angle

has important implications for the frequency with which it actually

occurs in nature. The actual fraction of all galaxies that is lopsided

may be higher than the 30–50 per cent inferred from kinematic

observations such as those of Richter & Sancisi (1994), Haynes

et al. (1998) and Matthews et al. (1998).

The rotation curves for the prograde models often deviate far

from the curves for an isolated disc of the same mass, even though

they are usually quite symmetric (these models are not maximum

disc); for example, in model A, where the prograde orbits are still

well-behaved, the actual maximum in the rotation curve differs up

to approximately 15 per cent from that for the isolated disc,

depending on the viewing angle. This effect will lead to incorrect

estimates for the disc mass, and to scatter in the Tully–Fisher

relation the between rotation speed and the luminosity of disc

galaxies.

What might be the origin of lopsidedness? Generically, galaxies

are widely believed to form by repeated mergers at early times,

while much of the disc material may represent late infall. Walker

et al. (1996), and Zaritsky & Rix (1997), proposed that merging a

small galaxy with a larger disc system should produce a lopsided

disc. If the fractions of dark and luminous matter are not the same

for all fragments, we may expect the centre of the disc to be

displaced from that of the dark halo. As an example, if the small

system is largely gaseous, and comes in with non-zero angular

momentum, then once it has merged with the luminous disc of the

larger galaxy, the centre of the combined disc will orbit that of the

halo.

Although the agreement of our model velocity fields with

observations is promising, the stability of our models remains an

important issue. For example, we have modelled the halo as a

fixed potential, ignoring dynamical friction between the disc and

whatever particles make up the unseen halo. However, it is not

clear that dynamical friction must cause the lopsidedness to

damp rapidly. Weinberg (1991, 1994) and Vesperini & Weinberg

(2000) found that some spherical galaxy models have long-lived

lopsided modes; once excited, these modes take many orbits to

decay. Taga & Iye (1998) have shown that a central massive

object can wander away from the centre of an initially spherical

stellar system. They found instability only when the central

object had no more than 10 per cent of the total mass; but

Weinberg’s work implies that somewhat larger masses should

suffer only weak damping. These indications are promising, but

further calculations will be needed to explore the stability of our

models.
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