
 

 

 University of Groningen

Temporal organization of feeding in Syrian hamsters with a genetically altered circadian
period
Oklejewicz, M; Overkamp, Gerardus; Stirland, JA; Daan, S

Published in:
Chronobiology International

DOI:
10.1081/CBI-100106079

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Oklejewicz, M., Overkamp, G. J. F., Stirland, J. A., & Daan, S. (2001). Temporal organization of feeding in
Syrian hamsters with a genetically altered circadian period. Chronobiology International, 18(4), 657-664.
DOI: 10.1081/CBI-100106079

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

http://dx.doi.org/10.1081/CBI-100106079
https://www.rug.nl/research/portal/en/publications/temporal-organization-of-feeding-in-syrian-hamsters-with-a-genetically-altered-circadian-period(5735db9b-4ec2-4733-ab9b-9260fc118239).html


CHRONOBIOLOGY INTERNATIONAL, 18(4), 657–664 (2001)

TEMPORAL ORGANIZATION OF FEEDING IN

SYRIAN HAMSTERS WITH A GENETICALLY

ALTERED CIRCADIAN PERIOD

Malgorzata Oklejewicz,
1,* Gerard J. F. Overkamp,

1

J. Anne Stirland,
2

and Serge Daan
1

1
Zoological Laboratory, University of Groningen, The Netherlands

2
School of Biological Sciences, University of Manchester,

United Kingdom

ABSTRACT

The variation in spontaneous meal patterning was studied in three ge-

notypes (tau +/+, tau +/− and tau −/−) of the Syrian hamster with an altered

circadian period. Feeding activity was monitored continuously in 13 individu-

als from each genotype in constant dim light conditions. All three genotypes

had on average six feeding episodes during the circadian cycle (about 20h in

homozygous tau mutants and 22h in heterozygotes compared with 24h in

wild-type hamsters). Thus, homozygous tau mutant hamsters had signifi-

cantly more feeding episodes per 24h than wild types, and heterozygotes

were intermediate. The average duration of feeding bouts (FBs) was indistin-

guishable (around 30 minutes) among the three genotypes, whereas the inter-

meal (IM) intervals were significantly shorter for homozygote tau mutant

hamsters (99 minutes), intermediate for heterozygotes (116 minutes), and the

longest for wild-type hamsters (148 minutes). Thus, the meal-to-meal dura-

tion was on average 25% shorter in homozygous tau mutants (16% in hetero-

zygous) than in wild-type hamsters. The reduction of the circadian period

has a pronounced effect on short-term feeding rhythms and meal frequency

in hamsters carrying the tau mutation. (Chronobiology International, 18(4),

657–664, 2001)
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INTRODUCTION

Spontaneous food intake in rodents is usually characterized by a series of

discrete feeding episodes or meals, separated by intermeal (IM) intervals. This

organization of feeding is under homeostatic feedback control, and several mod-

els have been advanced to guide the unraveling of the control circuits (1). Liporeg-

ulatory mechanisms, gastrointestinal tract content, the central noradrenergic sys-

tem, and the ventromedial hypothalamus through lesioning studies have been

shown experimentally to be involved in the short-term regulation of feeding (2–

4). On the other hand, feeding behavior is also embedded in the endogenous

behavioral pattern controlled by the circadian pacemaker in the suprachiasmatic

nuclei (SCN; 5–8). While homeostatic feedback allows for a corrective control

mechanism, circadian control provides for anticipatory adjustment to environ-

mental change. The contribution of both to the organization of feeding behavior

is underscored by the effect of complete SCN lesions, which disrupts the tempo-

ral organization of feeding yet leaves total food intake unaffected (9).

The aim of the present study was to describe the spontaneous feeding pat-

tern in the Syrian hamster and to elucidate the contribution of the circadian pace-

maker to the temporal organization of feeding. In particular, we were interested

in defining the effect of an acceleration of the circadian cycle due to a single

locus change in the Syrian hamster genome (10). In the homozygous tau mutant,

the endogenous circadian cycle of locomotor activity is about 20h, a 17% reduc-

tion compared to the wild-type cycle of 24h. In this study, the spontaneous feed-

ing activity was recorded in the three genotypes of hamster (homozygous tau

mutants, heterozygotes with a circadian period of approximately 22h, and wild-

type hamsters). If the circadian system controls the short-term organization of

feeding, the feeding cycle in mutant hamsters is expected to shorten by decreas-

ing the duration of feeding and/or the IM interval.

MATERIALS AND METHODS

Male Syrian hamsters (Mesocricetus auratus) were bred at the Zoological

Laboratory, Haren, The Netherlands. Wild-type hamsters (tau +/+) were paired

with homozygous tau mutants (tau −/−) to produce heterozygous (tau +/−) mu-

tants. Crosses of tau +/− hamsters were then set up to generate the experimental

animals (tau +/+, tau +/−, and tau −/−). Breeding was performed under constant

light conditions and ambient temperature (23°C ± 2°C) with food and water

available ad libitum. General locomotor activity was monitored under constant
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dim red light (less than 0.5 lux) for 10 days to determine the circadian phenotype

of the hamsters.

At 10 weeks of age, experimental male hamsters (13 individuals from each

genotype) were transferred to individual recording cages (25 × 25 × 40 cm) in a

temperature controlled (23°C ± 0.5°C) room. The room was continuously illumi-

nated by dim red light (Philips, 36 W/15 red tube lights) with intensities from

0.1 to 0.5 lux. The experiment was carried out from October to December. Wood

shavings were used as bedding material; food and water were available ad libi-

tum and checked at random times once per week.

A passive infrared detector placed on top of the entry to the feeding tube

recorded feeding activity. The feeding tube was separated from the rest of the

cage by a Plexiglas wall and connected via a wire mesh tunnel (5.5 cm diameter

and 3 cm long). This allowed exclusive recording of feeding activity inside the

feeding tube. Feeding was recorded automatically in 2-minute time bins by a

recording system based on the personal computer (ERS).

For each hamster, 10 days of feeding activity were analyzed (examples are

shown in Fig. 1). All nonfeeding intervals longer than 400 minutes represented

the resting phases of the daily cycle. These were clearly distinguishable from IM

intervals during the activity phase (Fig. 2) and were omitted from the analysis.

A 20-minute IM criterion (e.g., 11,12) was applied to the data as follows: Any

2-minute time bins with feeding separated by fewer than 10 bins without feeding

were considered to belong to the same meal or feeding bout (FB). Single time

bins with feeding activity separated by more than 10 bins from the prior and the

next time bins with feeding were discarded. Most of these cases occurred when

the hamster occasionally visited the feeding tube without eating.

Medians of individual FB and IM interval durations were tested for statisti-

cal significance among genotypes by one-way analysis of variance (ANOVA)

Figure 1. Examples of feeding activity recordings for two individuals from each genotype. The

quantitative data are double plotted on a 24h scale for wild-type hamsters (A; tau +/+), on 22h for

heterozygous hamsters (B; tau +/−), and on 20h for homozygous tau mutant hamsters (C; tau −/−).



660 OKLEJEWICZ ET AL.

Figure 2. Frequency distribution of (A) all feeding bouts and (B) intermeal interval for wild-

type (tau +/+), heterozygous (tau +/−), and homozygous tau mutant hamsters (tau −/−).

and post hoc Tukey test. The rhythmicity in feeding activity was calculated by

chi-square periodogram time series analysis (13). All data are presented as means

plus or minus the standard errors unless stated otherwise. Significance was ac-

cepted at P < .05 (two tailed).

RESULTS

All hamsters showed a robust circadian rhythm of feeding activity (Fig. 1).

Food intake clustered into clear FBs separated by shorter IM intervals and longer

(more than 400 minutes) nonfeeding episodes (Fig. 2). Despite exposure through-

out their life only to constant illumination, about 80% of hamsters had a sharp

onset of daily feeding, as presented in Fig. 1, and none of the hamsters became

arrhythmic. The circadian period of feeding activity ranged from 23.8h to 24.9h

for tau +/+ (mean ± SD; 24.5h ± 0.3h), from 21.4h to 22.0h for tau +/− hamsters

(21.8h ± 0.2h), and from 20.0h to 20.7h for tau −/− (20.3h ± 0.2h).
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The number of FBs per 24h varied significantly among the three genotypes

(P < .01, ANOVA; Table 1). When expressed per circadian cycle tau +/+, tau +/−,

and tau −/− had similar numbers of FBs (P = .6, ANOVA; Table 1). A total of

2463 FBs was recorded over 10 days for the three genotypes (from n = 13 ham-

sters per genotype), and their durations are presented in Fig. 2A. The peaks of

the distributions for the three genotypes are similar. The individual medians of

FBs were not statistically different among genotypes (P = .4, ANOVA; Table 1),

and on average, all hamsters fed for about 30 minutes during a single FB.

The individual medians of IM intervals were significantly longer for the tau

+/+ genotype than for the mutant hamsters (P < .001, ANOVA; Fig. 2B). Tau +/−

hamsters had intermediate IM intervals, which did not significantly differ from

those of tau −/− hamsters (P > .05, Tukey test). In addition to this analysis, we also

calculated IM intervals with the criteria of 5 and 7 bins to test whether the chosen

10-bin criterion (see Material and Methods) affected our conclusions. The differ-

ence in IM intervals among genotypes with both 5 and 7 bins was still highly

significant (P < .001, ANOVA). The mean values decreased by 3 and 6 minutes for

tau +/+ and tau −/− hamsters, respectively, with the criteria of 5 time bins.

The feeding cycle defined as the meal-to-meal interval reflects the differ-

ence in the duration of IM intervals among genotypes. Total time spent feeding

reflects both the frequency and the duration of meals. Tau −/− hamsters spent

significantly more time on feeding per 24h than tau +/+ hamsters (P < .0002,

ANOVA; Table 1). Heterozygotes were intermediate, but did not significantly

differ from either homozygote (P > .05, Tukey test). In contrast, the total feeding

time per circadian cycle was not statistically different among the genotypes (P =

.25, ANOVA; Table 1).

DISCUSSION

The mutation of the circadian period in tau mutant hamsters has clear con-

sequences on the organization of the feeding pattern. The duration of a single

Table 1. Characteristics of Feeding Patterns (Mean ± SEM) for Three Genotypes

of Hamsters

tau +/+ tau +/− tau −/−

Number of feeding bouts per 24h 5.6 (0.2) 6.5 (0.4) 6.9 (0.3)
a

Number of feeding bouts per circadian cycle 5.6 (0.2) 6.0 (0.4) 5.8 (0.3)

Feeding bout (minutes) 28.1 (2.4) 31.3 (1.8) 30.8 (1.4)

Intermeal interval (minutes) 148.0 (7.6) 115.6 (8.4) 99.5 (3.7)
a

Feeding cycle (h) 2.9 (0.2) 2.4 (0.2) 2.2 (0.1)
a

Total feeding time (h ? 24h
−1

) 2.8 (0.2) 3.7 (0.2) 4.0 (0.2)
a

Total feeding time (h ? cycle
−1

) 2.8 (0.2) 3.1 (0.1) 2.9 (0.1)

a
Significant variation among genotypes, P < .05.
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meal was similar for all circadian phenotypes, but the time between meals was

shortened on average by 33% in homozygote mutants and by 22% in heterozy-

gote tau mutants compared with wild-type hamsters.

It is well established that the organization of spontaneous short-term feed-

ing serves the energetic needs of the organism. The short-term feeding and activ-

ity rhythms have been extensively studied in strictly ultradian organized herbivo-

rous microtine rodents, characterized by diurnal as well as nocturnal feeding

(14,15). The ultradian organization of physiology and behavior in these species

is equally pronounced in light-dark cycles and in continuous illumination. In

Syrian hamsters exposed to continuous lighting conditions throughout their life

to evoke more pronounced ultradian organization of feeding behavior (16), all

genotypes of hamster had feeding bouts organized within the subjective night.

Further, in comparison with Microtus species, Syrian hamsters showed a strong

circadian organization of feeding behavior that was not damped out in prolonged

constant conditions.

The temporal organization of feeding in the three hamster genotypes re-

flects the energetic requirements. Homozygous and heterozygous tau mutant ge-

notypes have a higher average metabolic rate (oxygen consumption per 24h)

compared with wild-type hamsters (17,18). Thus, they would be expected to have

higher overall rates of food intake. If the intake during feeding is the same across

genotypes, we expect tau mutants to spend more time feeding. Indeed, the daily

feeding time was longer in the tau mutant than in wild-type hamsters. At the

same time, the metabolic rate per circadian cycle was not distinguishable among

the three genotypes, which corresponds well with the similar duration of feeding

per circadian cycle reported in the present study.

Effects of circadian period mutations on high-frequency rhythms have pre-

viously been demonstrated in Drosophila per mutants (19). In the tau mutant

hamster, Loudon et al. (20) showed that the luteinizing hormone and cortisol

interpulse intervals were longer than in wild-type hamsters rather than shorter.

Electrophysiological measurements of ultradian rhythmicity within the circadian

pacemaker revealed no difference between genotypes in periods in the ultradian

range (21). Both results are in contrast with our results on the feeding cycle.

The present study demonstrates that the change in frequency of circadian

oscillations modifies the timing of onset of short-term feeding cycles in hamsters

carrying the tau mutation by about 25% in tau −/− and by about 16% in tau

+/− hamsters compared with wild-type hamsters. This suggests that, in addition

to its control over circadian organization of feeding behavior, the circadian pace-

maker modifies the ultradian timing of food intake in the Syrian hamster.
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