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Summary. A formal derivation of the optical demands of the neural superposition eye is 
presented. The treatment is based on a lattice description of the visual system using a 
tt(orizontal) and V(erticM) axis. 

Hence a relation for the interommatidial angles along these axes can be derived and the 
close connection between eye shape and facetlens pattern emerges. Possible generaleonse- 
quenees for insect visual systems are discussed. 

A. Introduction 

During the last decemlium the eye of the fly has become a central theme in 
the s tudy of the visual system of insects. Both anatomical and optical investiga- 
tions have converged into the neural superposition theory of fly vision (for reviews 
see Kirschfeld, 1971; Trujillo-Cen6z, 1972; BrMtenberg and Strausfeld, 1973). 
The optical requirements accordingly put  to the structure of the eye of the fly 
are the topic of this paper. 

In  the struggle for the derivation of the ultimate relations it proved to be 
useful to t reat  the visual system of the fly as a set of two-dimensionM lattices. 
As a corollary of the lattice approach we developed an index notation scheme, 
of which some applications have been described elsewhere (Stavenga, 1975; 
Stavenga and Beersma, 1975). t tere we will restrict ourselves to the lattice 
structure of the neural superposition eye. 

B. Lattices 

The pat tern of the facetlenses in the cornea of a number of insect species has 
been discussed by BrMtenberg (1967, 1970) and Trujillo-CenSz (1972). In  the 
housefly the facetlens pat tern  varies over the surface of the eye. Fig. 1 (modified 
from Braitenberg, 1970) diagrammatically shows a par t  of the left eye as viewed 
from the outside (see also Trujillo-Cen6z, 1972). In  order to emphasize the lattice 
structure we have drawn horizontal and vertical lines through the facets, so 
defining a H - V  coordinate system. 

The facetlenses can be regarded as points of a lattice (Kittel, 1968), drawn 
in Fig. 2. We notice tha t  the cross-section of a facetlens is a proximity or Wigner- 
Seitz (primitive) cell. Actually the shape of a Wigner-Seitz cell is determined by 
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Fig. 1. Pattern of faeetlenses in the cornea of the left eye of a housefly (sehematized). The 
H-axis points from anterior to posterior, the V-axis from ventral to dorsal. The two-dimen- 

sional lattice structure of the cornea is revealed by the horizontal and vertical lines 
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Fig. 2a--e .  Par t  of a centered rectangular lattice. From left to right are shown: (a) the so- 
called unit-cell, which is a rectangle with a lattice point in its centre and a point on each 
corner; (b) the primitive translation vectors a 1 and a2; (e) Wigner-Seitz or proximity cell 
which contains all points that  are closer to the central lattice point than to any other lattice 

point; note the similarity to the cross-section of a faeetlens 

t h e  ra t io  a2la I of t h e  m a g n i t u d e s  of the  p r i m i t i v e  t r a n s l a t i o n  vec tors  a 1 a n d  a 2 
(Fig. 2) 1 . 

A regular  lens shape  occurs (only) w h e n  a21a 1 equals  l lV3  , 1 or V ~. The  th ree  
possible  ideal  la t t ices  are  (Fig. 3): 

a) l a t t i ce  L~, regu la r  hexagons  " l y i n g "  on  t he  H-ax i s  ; 
b) l a t t i ce  Lb, squares  h a v i n g  d iagona l s  para l le l  to  the  H-  respec t ive ly  the  

V-axis ; 
c) La t t i ce  Lc, regular  hexagons  " s t a n d i n g "  on  the  H-axis .  
The  sets of open  a n d  closed circles i n  Fig.  3 r ep re sen t  t he  r e t i nu l ae  b e h i n d  

the  faeet lenses .  A r e t inu l~  (Fig. 4) is t he  set  of e ight  v i sua l  sense cells fo rming  

1 A Wigner-Seitz cell is obtained as follows: connect a given lattice point to all nearby 
lattice points; the lines normal to and bisecting these eonneeting lines enelose the Wigner- 
Seitz cell. I t  is also called a proximity cell because it eontMns all points that  are closer to the 
central lattice point than to any other lattice point (cf. Kittel,  1968), see Fig. 2. The faeetlens 
pattern of Fig. 1 has been obtained by constructing the Wigner-Seitz cells in a centered 
rectangular lattice with constant a2 but  with gradual decreasing a r 
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Fig. 3. The three possible regular facetlens patterns. L a, L b and Lr occur at az/a i equal to 
1/]f3, 1 and V3 respectively; see text 
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Fig. 4. Retinula lattice. The retinula sense cells R 1 to R s are represented by the rhabdomere 
pattern in the distal part of the retinula. Actually only the rhabdomere of R~ is present 
distally; the rhabdomere of R s is located proximally, basal to that of R~. Horizontal and 
vertical lines (interdistanee % and e h respectively) reveal that the retinula also can be 
considered as a part of a centered rectangular lattice. The relative H*- and V*-axes are 
parallel or antiparallel to the principal H- and V-axes, depending on the quadrant of the eye. 

i* and ]* are relative indices (see Stavenga, 1975; Stavenga and Beersma, I975) 

pa r t  of one and  the  same o m m a t i d i u m  (cf. Bra i tenberg ,  1970). Note  t h a t  a re t inu la  
can also be rega rded  as a l a t t i ce  of the  centered rec tangu la r  type .  According  to  
the  neura l  superpos i t ion  t heo ry  of the  eye of the  f ly  the  e ight  visual  sense cells 
ind ica ted  in Fig.  3 b y  the  closed circles have  para l le l  visual  axes, i.e. t h e y  look in 
the  same d i rec t ion  (Kirschfeld,  1971; Truji l lo-Cen6z, 1972; Bra i t enberg  and 
Strausfeld,  1973). The corresponding opt ical  demands  will be der ived  below. 
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Fig. 5. Optics of the neural superposition eye. Shown is a set of seven ommatidia of which 
one of the peripheral retinula cells R1-6 of the peripheral ommatidia and the two central 
retinula cells R 7 s of the central ommatidium have parallel visual axes. Those cells were 
indicated in Fig:  3 with a black circle. Actually the facetlens pattern L c (Fig, 3) has been 
redrawn together with the horizontal and vertical axes H* and V* and the facetlattice lines. 
The distance between these lines in the horizontal and vertical direction is D h and D v respec- 
t ive ly . - - In  the facetlens of the central ommatidium the retinula lattice of Fig. 4 is depicted 
(el. Fig. 3). This has been done for the sake of clarity; in fact, the retinula is localized prox- 
imally to the facetlens. But since the light receiving tips of the rhabdomeres coincide with 
the back focal plane, projection of the i'habdomere tips onto the faeetlens is permitted if one 
considers only those lightrays which share the focal point F of object space: all those rays 
are in image space propagated parallel to the (drawn) visual axis. The distance of F to the 
lens is the focal d is tance/ . - -Al though the visual axis of the central ommatidium is given 
only, the other axes are easy to imagine. The visual axes of a vertical column of ommatidia 
determine a plane. These vertical planes intersect the central visual axis in I h. The angle 
between the planes is ~h-~  Dh/-Rh, where R h is the distance from I h t o  the cornea. Similarly, 
horizontal rows of ommatidia determine planes which intersect the central visual axis in I v. 

The angle between these planes is %----Dv/R v, where R v represents the distance from I v to 
cornea.~An analogous treatment can be given for the visual axes of the receptor cells located 
within one and the same ommatidium.--The neural superposition eye demands that  % is 
equal to the angle between adjacent vertical planes which are determined by the visual axes 
of cells arranged in vertical columns, and that  % equals the angle between horizontal planes 
(determined by the visual axes of horizontal rows of cells), or ~h = eh/f and % =  %/f (cf. 
Fig. 4).--Note that  the distances to the lens of I h and I v, being R h and R v respectively, 
approximate the radii of curvature of the eye surface in horizontal and vertical directions 

C. The Optical Requirements of the Neural Superposition Eye 
I n  o rde r  to  d e r i v e  t h e  consequences  of n e u r a l  supe rpos i t i on  for  t h e  opt ics  of 

such  an  eye,  we cons ider  F ig .  5 showing  a se t  of face t lenses  t o g e t h e r  w i t h  t h e  

local  v e r t i c a l  a n d  ho r i zon t a l  l a t t i ce  l ines (eft F ig .  1 and  3). T h e  d i s t a n c e  b e t w e e n  
t h e s e  l ines is D h and  D v r e spec t i ve ly .  N o w  t h e  v i sua l  axes  of a c o l u m n  of o m m a -  

t i d i a  a long  t h e  V*-ax i s  t o g e t h e r  d e t e r m i n e  an  i m a g i n a r y  plane.  (For  de f in i t ions  
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of the relative H*- and V*-axes, see Stavenga, 1975.) The angle between those 
planes belonging to adjacent columns of ommatidia we call ~h. Similarly the axes 
of rows of ommatidia along the H*-axis determine planes between which the 
angle is ~v. The points of intersection of these planes with the visual axis of the 
central ommatidium are I h and I v respectively (Fig. 5). The distance of these 
points to the cornea is called R h and R~ respectively. 

The visual axes of the columns and rows of photoreceptor cells within one 
retinula also define planes which enclose angles. If it may be assumed, following 
Kirschfeld and Franceschini (1968), tha t  the light receiving site of the visual 
sense cells coincides with the focal plane of the faeetlens these angles equal ehff 
and ev/ / respect ive ly ,  where / is the focal distance, and e h and e, are the distances 
in the retinula lattice (Fig. 3). 

Now the basic statement of the neural superposition theory is that  the angle 
between the visual axes of neighbouring ommatidia equals the angle between the 
visual axes of corresponding photoreceptor cells within one retinula. 

Hence the optical requirements for the neural superposition eye are represented 
by (see Figs. 4 and 5): 

Dh _ ea 
~ h -  Rh / (1) 

D, _ % (2) 
~v = Rv / 

From these relations we derive 

and 

RI, _ Oh/~h 

Rv Dv / ev (3) 

~ h  _ _  e h  
. . . . .  (4) 
0~ v e v 

The ratio eh/e , determines the structure of the retinula lattice. Experimentally it 
appears that  always eh/e v ___y ~ (cf. Boschek, 1971; Franceschini and Kirsehfeld, 
1971a; Beersma et al., 1975). Furthermore, the ratio tCh/R v indicates the shape 
of the eye and Dh/D~ characterizes the facetlens pattern. 

Let  us consider now the lattice types of Fig. 3. In the case of lattice L a we have 
Dh/Dv=y3.  Hence, from Eq. (3) it follows, with eh/e~--V3, that  R h - ~ R  v. This 
means that  the eye must have a spherical shape, if lattice type L a exists. On the 
other hand, Dh/D~= l /V3 holds in lattice L c. Then Eq. (3) yields R~----RJ3 (see 
Fig. 5). This outcome implies that  in the case of the lattice L c the local shape of 
the eye must be oval, the curvature in horizontal directions being three times 
stronger than the curvature of the eyes vertically. (Note that  owing to the defini- 
tion of R h and R v these quantities not necessarily equal exactly the radii of 
curvature.) 

These results are revealing. I t  is well known that  in the housefly and blowfly 
frontally the eye is about spherical and laterally the shape is quite oval, while the 
facetlens pattern gradually changes from L a via L b into Le, going from posterior 
to anterior (Figs. 1 and 3; cf. Braitenberg, 1967, 1970; Trujillo-Cenhz, 1972). So 
it may be inferred that  the changing facetlens pattern over the eye of flies keeps 

3 J .  c o m p .  P h y s i o l .  
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pace with the varying local shape of the eye in order to fulfill the neural super- 
position principle. 

Furthermore Eq. (4) means tha t  the ratio of the angles ~h and % will equal 
(approximately) the value V ~ everywhere. Hence, although the facetlens pat tern  
can show important  variations, the arrangement of the visual axes essentially 
will be tha t  of a hexagonal lattice (eft Stavenga, 1975). The existence of this 
arrangement in the living blowfly has been proved in a brilliant way by Fran- 
ceschini (1975). 

The gained insight in the structure of the eye of the fly directly follows from 
the principle of neural superposition, by utilizing the fundamental  equality of the 
lattices in the cornea (or retina) and the retinula. 

D. Discussion 
We have investigated the optics of the neural superposition eye by applying 

a coordinate system with two axes. Braitenberg (1970) on the other hand, treating 
the cornea lattices found in the Drosophila eye and tha t  of the bee, i.e. the 
lattices L a and L c (Fig. 3), distinguishes three axes namely x, y, z and x, y, v, 
respectively; z conforms to our H-axis and v to the V-axis, while the x- and y-axes 
are parallel to oblique facet rows. Braitenberg (1970) criticizes Gemperlein (1969) 
who argues tha t  two axes are sufficient to describe the pat tern of facets of 
compound eyes, i.e. the d- and v-axes, which are identical to Braitenberg's x- and 
y-axes. Certainly Braitenberg is right in his criticism where he states tha t  in 
Gemper]ein's t rea tment  the fundamental  z(------H)-axis fails. Nevertheless, two 
axes do suffice, since as we have shown above, the lattices L a and L e are special 
eases of a general type which is described satisfactorily with the H- and V-system. 

l~Tice evidence for the fundamental value of the H- and V-axes can be distilled 
from optical investigations on the colours observable in the facetlenses of some 
diptera. Alternating bands of reddish and yellow-greenish facets in horsefly eyes 
emphasize the organization of the dipteran visual system in rows parallel to the 
H-axis (Bernard and Miller, 1968). Still more remarkable, in long-legged flies, 
facet rows as well as facet columns are coloured alternately either red or yellow. 
I t  will be noted tha t  Trujillo-Cendz and Bernard (1972), discussing the latter 
phenomena in relation with anatomical details of the retinulae, also use a H-V- 
coordinate system (cf. Waterman and Horch, 1966). 

Basing ourselves on the two principal H- and V-axes we have been able to 
understand some essential features of the neural superposition eye, namely the 
relation between eye shape and facetlens pat tern as well as the constant ratio 
:~h/o:v over the eye. Experimental  investigations into the question of whether or 
not the optical requirements are met  in the eyes of houseflies will be presented 
in the following paper (Beersma et al., 1975). 

Evidently our derivation applies to the eye of flies only, because only they 
have separate rhabdomeres. Most insects have a retinula with the rhabdomeres 
close together in a so-called fused rhabdom. I t  is striking to note, tha t  in the bee, 
which possesses fused rhabdoms, the relation ~h/ccv ~U3 nevertheless holds as 
well in the frontal eye region (Kirschfeld, 1973). By applying the reflection- 
pseudopupil method (Kirschfeld, 1965; Franceschini and Kirschfeld, 1971b; 
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Franceschini, 1975) we observed also a V ~ ratio of the  interomma~idial angles in 
the ventral  eye regions of the bee (unpublished measurements).  Interes t ingly the 
facetlens pa t te rn  is approximate ly  of the L c type  in all eye parts. Moreover the 
shape in all regions of the eye of bees is oval. So a similar relationship between 
facetlens pat tern,  eye shape and visual axes seems to exist not  only in different 
regions of the  housefly eye but  also in the eye of other  insects. We can speculate 
that ,  since the relation ~h/:cv=y ~ seems not  to be a principal requirement  of the 
visual system of bees, the actual  hexagonal lattice s tructure of the visual axes 
m a y  be realized in order to achieve a most  efficient organization of the visual 
fields of neighbouring ommat id ia  for movement  perception and/or  pa t te rn  
recognition. 

We still remark  tha t  due to the ret ina and the higher order neural ganglia 
being homologous the  t~ttice concept can be generalized to the  entire visual 
system (cf. S tavenga and Beersma, 1975). For  the present we conclude tha t  the 
introduced lattice description has shown its usefulness in the s tudy  of the visual 
system of an impor tan t  insect species. 

The collaboration of Prof. Dr. J. W. Kuiper and D. G. M. Beersma is gratefully acknowl- 
edged. Dr. J. T. Leutscher-Hazelhoff made many efforts to cut down the errors in the English 
grammar. Miss H. E. Deenen put the finishing touch. 
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