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Application of Redfield theory to optical dephasing and line
shape of electronic transitions in molecular mixed crystals

Philippus de Bree and Douwe A. Wiersma

Laboratory for Physical Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen,

The Netherlands
(Received 17 August 1978)

Redfield relaxation theory is used to study optical dephasing in molecular mixed crystals where
pseudolocalized phonons play a dominant role. As a model an effective four-level system is defined which
consists of the ground and excited electronic state of the guest impurity and one pseudolocalized phonon in
each of these states. It is shown that coherence transfer between the purely electronic and the phonon-
promoted transition is due to interference between the scattering amplitudes in the ground and excited
state and only occurs when the transitions are near resonant. When the scattering amplitudes in the
ground and excited state are identical the optical Redfield equations reduce to the modified Bloch
equations and coherence transfer may appreciably contribute to optical dephasing. It further proves
essential for coherence exchange to occur that next to electron—phonon coupling the phonon
anharmonicity is taken into account. The stochastic and correlation function theories of line shape, using
the same model system, have also been examined and we conclude that in these theories exchange of
coherence is not properly taken into account. Next to the effect of pseudolocalized phonons the effect of
band phonons on optical dephasing is also examined and within our model both effects are additive.

. INTRODUCTION

With the recent success of coherent transient!® and
line narrowing (hole burning)™!! techniques in obtaining
new information on the optical homogeneous line shape
of electronic transitions in organic mixed crystals,!*13
interest in this area has revived,'4-17

Especially the finding that at low temperature the
homogeneous linewidth=%!! and shift!! in several mixed
crystals is exponentially activated, with phononlike ac-
tivation energies, stimulated new activity, Prior to the
optical domain such an exponential activation had been
observed in the microwave domain by van ’t Hof and
Schmidt!® and explained on the basis of the modified
Bloch equations as introduced by McConnell,!® The
physical picture that emerged from this treatment was
that the exponential activation of the homogeneous line-
width was due to exchange of coherence between the
phononless and phonon promoted triplet spin transition.
Harris and co-workers successfully carried this idea
over into the optical domain and showed that dephasing
of Frenkel excitons'’ and Raman dephasing?® in molecu-
lar crystals might be explained on the basis of a sto-
chastic model for the exchange of coherence.?=%® Prior
to this work, McCumber?? also used stochastic exchange
theory to describe narrowing effects of the zero-phonon-~
line in mixed crystals.

A different approach to the problem was made by Lub-
chenko et al,2*3 and Krivoglaz®'3 and more recently
Abram'® who, using the correlation function theory of
line shape,?®3 also derived line shape functions which
showed the exponential activation property of the ZPL
under some conditions.

As there are several theories for optical dephasing in
mixed molecular crystals that predict qualitatively the
same temperature behavior for the optical line shape,
the question naturally arises, what is the relation be-
tween these theories and what are the limitations of
each?
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This question and the fact that, in our opinion, none
of the existing theories for optical line shape gives a
clear explanation of coherence transfer in terms of a
microscopic model, stimulated us to a detailed study of
the problem.

In this paper we present a theory for optical dephasing
in molecular mixed crystals using Redfield relaxa-
tion® '3 theory, which has previously been so success-
fully used in the field of magnetic resonance. A specific
model is adopted, whereby the pseudolocalized phonons,
which induce the exponentially activated relaxation ef-
fects, are treated on equal footing with the electronic
levels. This approach seems justified as in several
mixed crystals, the phonon side bands are as sharp as
the purely electronic transition. Using the simplest
possible model (four levels) the Redfield relaxation equa-
tions are derived,

It turns out that, in order to transfer coherence, it is
essential that next to electron—phonon coupling the pho-
non anharmonicity is taken into account, Another inter-
esting result is that exchange of coherence only occurs
as a feeding term and is exclusively due to interference
between the scattering amplitudes in the ground and ex-
cited state.’” When these scattering amplitudes are iden-
tical the Redfield equations are shown to reduce to the
modified Bloch equations. In the other limit where one
of the scattering amplitudes dominates coherence trans-
fer is negligible. It is further found that only between
near-resonant transitions exchange can occur.

Comparison of Redfield theory with the stochastic and
correlation function theory reveals that in the latter the-
ories the interference character of exchange is not re-
cognized and therefore not properly taken into account.,

The paper is arranged as follows: The Hamiltonian
that describes the model system is derived in Sec, II,
Section I is devoted to the derivation of the Redfield
equations describing relaxation in a four-level system,
In Sec. IV the optical line shape on the basis of the Red-
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field equations is calculated. In Sec. V it is shown that
in certain limits this line shape function is identical to
the one derived from the modified Bloch equations., In
Sec. VI a comparison is made between the Redfield the-
ory and the stochastic and correlation function theory of
line shape. Finally, in Sec. VII the main conclusions of
the paper are presented.

Il. THE MIXED-CRYSTAL MODEL HAMILTONIAN
A. Introduction

As we are interested in the line shape (dephasing
mechanism) of zero-phonon-lines (ZPL’s) in the optical
spectra of impurity centers in molecular solids we are
interested in the Hamiltonian that describes the dynamic
properties of such a system. The impurity is assumed
to be embedded in an inert host crystal and its concen-
tration is assumed low enough to neglect guest-guest
interactions (energy transfer).

We further assume that the lowest electronic excita-
tions of the guest molecule are not influenced by the host
exciton bands; the host is therefore assumed to be inert,
it only acts as a phonon reservoir, We therefore only
consider the coupling of the local impurity electronic
excitations to the phonons of the distorted (by substitu-
tion) host crystal. Insertion of an impurity into the pure
host crystal causes the appearance of phonons of roughly
three types,!?

1, Crystal or bandphonons. These phonons corre-
spond approximately with the allowed phononbands of the
pure host crystal and have amplitudes of order N-'/ on
each atomic site, (N is the total number of atoms in the
crystal. )

2. Localized phonons. Such phonons fall within the
forbidden bands of the pure crystal and have consider-
able amplitudes (not depending on N) on the impurity
atoms only,

3. Pseudo- or quasi-localized phonons (resonance
phonons). These phonons should be considered as finite
wavepackets of bandphonons that hardly smear out over
the crystal, but are confined to the atoms in a small
area around the impurity, Compared to the bandmodes
a substantial increase in amplitude on the guest will re-
sult.,

In the Redfield, stochastic and correlation function theo-
ries to be discussed in the followirg sections we shall
treat the (pseudo-) local modes separately from the
bandphonon reservoir, We come back to this point in
Sec, IID,

B. The Born-Oppenheimer and harmonic approximation

The separate treatment of the electronic excitations
and the phonons stems from the Born-Oppenheimer
(BO) approximation,?

In the adiabatic BO approximation the electronic prob-
lem is solved first. The electronic energies obtained
depend parametrically on the nuclear coordinates and
serve as the potential surfaces (not necessarily para-
bolic) for the vibrational motions. As in general elec-

tronic excitation is accompanied by lattice deformation
and force constant changes, these potentials will differ
for each electronic state,

To proceed one quite often expands such a potential in
a Taylor series around the equilibrium configuration for
each electronic state, In the harmonic approximation
one only retains the linear and quadratic terms which
ensures diagonalization of the vibrational Hamiltonians.,

In second quantization notation each electronic state
(f) is characterized then by its own phonon creation
(6%*) and annihilation (b%) operator for each mode with
wave vector k and frequency w’. It is customary,’® how-
ever, to write the total Hamiltonian in terms of the elec-
tronic ground state phonon operators b}, b, (where we
suppressed the electronic ground state label).? So fi-
nally in the rotating wave approximation'® the total
Hamiltonian (H) reads

H=H}+H}+H,,
:zf: e’ aja,,

HY=" Hw, B, +1/2), (2.1)

Hg:,_z Vi, + bL)asa, + 1/2 Z Vi (bibe + bb aba,

N—BO
+Z Zfo N3 K
il
K

b: )a} Aye

+; VXIBO, (5th,. + b,bL ajay .
7

In (2.1) a; (a;) denotes the creation (annihilation) oper-
ator for electronic state f with energy ¢/, H? and H)
consist, respectively, of the pure electronic and phonon
contributions to the total energy.

The first two terms in H e_, are identified as the usual
linear and quadratic electron—phonon interactions, They
are due, respectively, to lattice deformation and phonon
scrambling (nondiagonal quadratic terms) or frequency
defects (diagonal) as a result of electronic excitation,
Obviously in this model where the ground state is taken
as the reference, they only act on excited states, e.g.,
e.g.,2¥ ve_ vy, =0, Further note that these interac-
tions only act wzthm one particular electronic state.?” 3

The third and fourth terms in H), also represent lin-
ear and quadratic couplings. They, however, are linear
and quadratic in the momenta of the nuclei (notice the
minus sign*?), not in their coordinates (plus sign),
These terms are caused by a breakdown of the BO ap-
proximation and dynamically mix different (nearly-) de-
generate electronic states, in contrast to the first two
static couplings. Having established the quite different
origins of these couplings,?4+42 jt makes sense to treat
them separately in order to avoid confusion,

As we shall consider only a (nondegenerate) elec-
tronic state with an energy ¢ that substantially exceeds
the maximum phonon energy, the “direct” (first order)
phonon absorption and emission processes induced by
non-BO couplings are forbidden by the law of conserva-
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tion of energy., The probabilities for the multiphonon
(higher order) processes will be assumed to be small,
These processes change the difference in electronic
energy into the energy of one or several phonons. We
shall therefore omit the non-BO part of the interaction
from (2.1) and only account for its effect by introduc-
ing® a radiationless rate constant y,,.

Having modified (2.1) in this way, the reduced Hamil-
tonian, however, predicts the phonon lifetimes (y;‘) to
be infinitely long in the electronic ground state. We
shall therefore include the phonon anharmonicity to per-
mit the decay of one phonon into several other ones,

C. The phonon anharmonicity

Going beyond the harmonic approximation we take into
account higher order terms than the quadratic in the
Taylor series of the adiabatic potentials. Transforming
again to ground state phonon operators, we arrive at the
following Hamiltonian, whereby the phonon anharmonicity
is included®*%;

0 0
H=H'+H,+H),,
0
Hezzf:efa}a,,
0
HP=HP+Hanh ’

HY=Y) fiw, (b, + 1/2), (2.2)

1
H"‘“=3_l Z:“ {Uper a0 b b bYys +c.c.}+++« similar terms,
KK™ K

H 2-,=f2 Vi, + baa, +1/ 2;: Vi (Brbe + b by )asay .
oK o KK
In (2. 2) we have neglected cubic, quartic, etc., elec-
tron-phonon operators related to differences of the an-
harmonic potentials between the ground and excited elec-
tronic states, Similar to the linear and quadratic ana-
logs, they would only affect excited states and would not
mix different electronic states. Therefore the only ef-
fect is the addition of a pure anharmonicity -operator
H,, to Hg, yielding the total phonon~Hamiltonian H,.
Obviously H,, only acts on phonon variables and is ef-
fective in both excited and ground states.

It will be more convenient®® to redefine the electronic
energy to include the thermal average of the interaction
Hg_,:

H=H+{H _w» (2.3)
Hop= Hoe-p = (Hg—P>th ’
where
(Ho_p)w=Tr(p; H-.,) (2.4)
and
p3 = Ho/*T [Ty g HolRT | (2.5)

Here pf is the reduced density operator for the (anhar-
monic) phonon bath, described by H,, As a trace is in-
dependent of the representation in which it is evaluated,
any complete set of phonon functions can be used to cal-
culate the average (2.3). Using a harmonic basis set

P. de Bree and D. A. Wiersma: Electronic transitions in molecular mixed crystals

the average phonon-occupation number (b}b,)y, yields the
well-known expression?®31;

=Dt wm = lexp(id /RT) =117,

where

(2.6)

D= Wt 6w, s

and jw, is a small renormalization factor of the phonon
frequency due to anharmonicity which will further be
neglected, as we assume weak anharmonicity (5w,,

Y« <w,), so that &, ~w, Therefore the redefined Ham-
iltonian is

H:H2+HP+H6_, s
H=), [ef +y . Vi @+ 1/2)] aa,,
f K

Hy=) 7w, (blb, +1/2)

L +
+§T [UKK'k“beK'b;“ +C.c.,]+--- y
[ 3wl

Hy,= ,Z Vi, +bl)aja, + fz V1, (b, - B)a}a,
1K 2 K

+ Viebibeatas. 2.7
{n’::")
In a first approximation the temperature-dependent shift
of the Bohr frequency is immediately given by
Bup (D) =Y (Vo= VL) TR, . 2.8)
In H,_, the second and third term are the diagonal and
nondiagonal quadratic electron~phonon coupling, repre-
senting fluctuations of the phonon occupation numbers
and Raman scattering processes., For bandphonons the
non-diagonal term will dominate the diagonal contribu-
tion (V%,~1/N), while for localized phonons the reverse
situation is expected.’"® These arguments led Lubchen-
ko83 and Krivoglaz®"® to treat the local phonons sepa-
rately from the bandphonons, using a similar model as
defined by (2. 7).

In the following section we introduce a model, whereby
the pseudolocal phonons fulfill a role similar to that of
localized phonons.

D. Model-Hamiltonian for an effective four-level system

Only very recently it has become clear®3%!! that
pseudolocal phonons play a dominant role in the optical
dephasing characteristics of molecular mixed crystals.
As argued in Sec. II A, pseudolocalized phonons are ex-
pected to show substantial amplitudes on the guest site,
and will therefore often behave as localized vibrations.
It is further observed in several mixed crystals, e.g.,
tetracene in p—terphenyl,z that the hot pseudolocal phonon
sideband can be as sharp as the ZPL., These considera-
tions seem to justify the treatment of pseudolocalized
phonons on equal footing with the electronic states.

Using the simplest possible model, we shall assume
the existence of only one pseudolocalized phonon of fre-
quency Q. Its operators will be denoted by capital let-
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ters B* and B, reserving the notation b, and b, for the
bandphonons (we suppose localized phonons to be absent).
We shall put all operators that solely contain pseudo-
localized phonon variables (B*, B) into the unperturbed
Hamiltonian H,. For simplicity we only deal with a non-
totally symmetric (x-) pseudolocal phonon, so that its
linear electron-phonon coupling vanishes. This linear
coupling induces the pseudolocal phonon side bands ac-
companying the ZPL in the impurity spectra and modi-
fies the intensity of the ZPL, but hardly contributes to
its width or shift,'!* In an harmonic approximation this
contribution even vanishes (delta function), so that the
above restriction is not severe. As a further simplify-
ing assumption we omit the intrinsic anharmonicity of
the pseudolocalized phonon. Rearrangement of (2.7) in
this manner yields:

H.’:HA+HR+ VAR’

Hy= E[E" +, Vi@ +1/2)+E(Q+ A% ) (B B+ 1/2)] asa,
f ]
Hy =Y Ko, (bib, +1/2)

‘*‘i Z [U“l"ub‘b::b:” +c_C.]+ cee,

3' ““’K"

VAR=Vu+V—p!

aziz [Unn’hbnb:’B."'c-c']'F'" 3 (2-9)
37 4

Vep= 3 V(b + bl)aja, + 2 Vi6ib, - Raja,
K

fax

+ 2 Viebibeaa,+ Y Vi, B+b,B)aja,
e’y fax
with AQ = V{,/% and AQ*#=V¥4/%=0. The index A is
used when the pseudolocalized phonon is involved. From
(2.9) we extract the physical picture of the effective
four-level system that will be studied in the next section,
H, describes what will be called the subsystem or
“molecule,” Here only the vibrationless ground state
(labeled as level 1) and the lowest excited vibrationless
electronic state (level 2) will be considered in conjunc-
tion with states of the pseudolocalized mode with one
excited vibrational quantum (levels 3 and 4),

In Fig, 1 these four levels are depicted, where A

= AaQ”? represents the frequency-change of the pseudo-
local phonon in going to the excited state. It is further
assumed that only transitions from 1 to 2 and from 3 to
4 carry oscillator strength (S;+S;), with transition di-
pole moments of u, and ug, respectively, (Note that
this choice implies that the pseudolocal phonon is of »
symmetry),

Hg represents the anharmonic bandphonon reservoir,
while V,5 is the molecule-bath interaction consisting of
an anharmonic (V,) and an electron~phonon coupling part
(Vop). Here V, accounts for the decay of the pseudo-
local phonon into several bandphonons.

The first three terms in V., represent the electron—
bandphonon coupling, while the last term is due to cou-
pling of the band phonons with the pseudolocal phonon,

e EL(u-u)

]
ﬂ t h(Q-a)

- —

Py

M2

53(gxu)
LIV}

E1(g) b

FIG, 1. Effective four-level system. E;=€’+3Q, ground
state; E,=€’'+%, Vi, (7 +3) +37(Q +4), excited state; E,=¢’
+3%Q, ground state plus resonance phonon; E,=¢’ +X, V% (%,
+3) +35(R + A), excited state plus resonance phonon,

For the pseudolocal phonon both diagonal and nondiagonal
quadratic electron—phonon coupling is expected to be
important. Note that by the above procedure only the
nondiagonal part appears in V,_,, as the diagonal con-
tribution is already contained in H, by the frequency
shift A, The scattering among the two lowest levels and
the two highest levels, providing the through-bath inter-
action of the purely electronic transition with the hot
pseudolocal phonon transition (Fig. 1) is, respectively,
induced by V, and V, + V,_,. Therefore, in general the
scattering in the electronic groundstate will differ from
that in the excited state, Note further that all (BO)
electron—phonon coupling terms neglected would also
act on the excited state only.

The system-reservoir interaction operators are
products of the type V,; =AR, where A represents a
molecule operator (af, a;, B*, B) and R a reservoir oper-
ator (b}, 5,). Because of the BO approximation the elec-
tronic operators commute with the phonon operators,
Moreover, the pseudolocalized phonon operators com-
mute with those of the bandphonons because of the boson
commutation rules, This amounts to the statement that
all molecule variables commute with the reservoir vari-
ables, Eq. [4,R]=0.

In the next section it will be shown that the situation
as sketched in Fig. 1 is amenable to application of opti-
cal Redfield theory.

IHl. APPLICATION OF REDFIELD THEORY TO
OPTICAL DEPHASING

In this section we will present a theory for optical de-
phasing in mixed molecular crystals where pseudolocalized
phonons play a dominant role.2®* Ag was shown in the
previous section, the total Hamiltonian of such a system
may be written as H=H, + Hy + V, (2.9), Within the
approximations made, H, describes the impurity ground
and excited state and the pseudolocalized phonon levels.
Hp generates the heatbath of delocalized crystal phonons
and V,5 contains the interaction between the molecule
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and the heatbath, Our motivation for partitioning the
total Hamiltonian in this way is threefold,

First is enables us to employ Redfield relaxation the-
ory® % to study optical dephasing processes. Second,
the dynamical equations obtained may be compared with
McConnell’s modified Bloch equations,“’ which recently
were applied by Schmidt and van ’t Hof!® to the dephasing
problem in the microwave regime (Sec. V). Third the
line shape obtained from the optical Redfield equations
(next section) may be compared with the results from
other line shape theories, in particular the stochastic
exchange theory of Anderson and Weiss?!*?? and Kubo 23~%5
as recently applied by Harris and co-workers,'™2%’ and
with the correlation function approach used by Krivog-
laz,*® Lubchenko,?**® and, more recently, of Abram,!¢
This will be the subject of Sec, VI,

One additional remark on the Hamiltonian (2.9) should
be made. The absence of an optical driving field term
implies that we restrict ourselves to excitation process-
es where the (semiclassical) Rabi frequency (u,;Eq/7),
with y;, the transition dipole and E; the field amplitude
at the molecule, is much smaller than the inverse of the
correlation time (Tgi) of the phonon heatbath correlation
function. We thus ignore the effect(s) of the radiation
field on the heatbath, We shall also neglect, temporari-
ly, the effect of radiative and radiationless decay in our
system. Its contribution to optical dephasing, however,
may be added as a simple decay constant to the one ob-
tained from phonon-scattering as these were supposed
to be noninterfering decay processes. We finally note
that the theory presented here is not new, but, to the
best of our knowledge, has not previously been applied
to optical relaxation processes in solids.

In our presentation of Redfield theory we shall closely
follow Cohen—~Tannoud;ji’ who has given a very elegant
derivation of the quantum-mechanical version of this
theory. We shall not give a complete derivation, as this
is given in Ref. 37, but instead, mention beneath the
properties of our model that allow the usage of the main
equations of this theory.

In the previous section we already remarked that in
the Hamiltonian (2, 9) all molecule variables commute
with reservoir variables., As we assumed that only the
molecule is driven by the optical field and the reservoir
is in thermodynamical equilibrium, the total initial den-
sity matrix p(0) factorizes, p(0)=p,(0)p(0). Here p,
is the reduced density matrix for the molecule and pg
that for the reservoir, which is proportional to
exp{— Hz/kT), so that it commutes with Hp.

Under these conditions, and if a perturbational treat~
ment of V,, is warranted, a master equation for p,
may be derived, describing the evolution of the molecule
coupled to the large reservoir., In second order

t
g; pa=- flzfo dr{Trg pr(OR (DR (¢t ~1)}

X{ADAW = T)pat =) = At = T)a (t = TIAD} + c.c.
(3.1)

The tilde (*) stands for interaction representation. V,p
is written as a product of molecule (A) and heatbath (R)

operators (see previous section), while Try indicates
tracing over heatbath states. In the derivation of (3.1)
the first order term (which describes the effect of some
sort of Hartree potential®’) vanishes, becanse in (2, 3)
we defined V,; in such a manner? that

(Var)in=TrpgVar=0. (3.2)

The basic approximation in the Redfield theory is the
replacement in (3,1) of p,(t—7) by p,(¢), transforming
(3.1) in a Markoffian equation. This approximation is
justified only if the correlation time 7, of the heatbath
function

G(r)=Trpg (O)Ii(t)R(t—r)z‘L: pla)|{a|R \B)|2 ghoasT

(3.3)
is much shorter than the correlation time {T;) of p, (f).
Here G(7) is written explicitly in terms of heatbath
states (Greek indices) and p(a) is the probability of the
heatbath to be in state a. 7, corresponds to the inverse
width of g{w), which is the Fourier transform of G(7).
In our model g(w) represents the broad background of
electron—phonon coupling and anharmonicity induced
phonon transitions, which form the continuous spectrum
accompanying the sharp ZPL. As this continuous spec-
trum generally extends over a region of tens of wave-
numbers, 7. is in the subpicosecond regime and the
above condition seems to be fulfilled, We note, however,
that, as pointed out by Kenkre and Knox,* much of the
reversible behavior of the system is removed by using
the Markoffian approximation,

When information on p, (f) is requested only on a time
scale ¢> 1,, the master equation in the Schrddinger
representation reduces to the following form in the basis
of eigenstates (Latin indices) of the “molecular” Hamil-
tonian (H,):

d , -10" . . P’
zi-tpij:lw”p”'f';[%rfa dT(I(T){Z etwim 1Aim'Am' lémj

m’

+Z e‘wl'mTAm;'A"jﬁu — (eteimT + e-iqu)A”Amj}]p,m R
7

(3.4)
where w,; = (E; — E,)/# is an optical Bohr frequency and
the index A of p, is suppressed.

The first thing to note in the above master equation is,
that the molecule-heatbath coupling may induce transfer
of coherence between pairs of states in the molecule,
The explicit dependence of this coherence transfer pro-
cess on the heatbath states [through G(r)], however,
will be shown to restrict coherence transfer to near-
resonant (vide infra) transitions, This result is not so
surprising, as Fano in 1963% already showed that colli-
sional induced transfer of coherence also only occurs
between resonant transitions. Freed*® has recently re-
emphasized this point and noted, that resonant means,
within the width of the states. We now wish to apply
this formalism to the four-level system shown in Fig. 1.

Following Cohen—Tannoudji we may derive from Eq.
(3.4) and Bamiltonian (2. 9) a set of dynamical equations
for the elements of the reduced density matrix, which
will be used to determine the optical line shape. For
the diagonal elements we find

J. Chem. Phys., Vol. 70, No. 2, 15 January 1979

Downloaded 07 Feb 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



P. de Bree and D. A. Wiersma: Electronic transitions in molecular mixed crystals 795

p11=—="T1 3011+ Ts.1p23,
Paz==Ty.4p+ Ta-20u>
Pss=—T3.1p33+ Li-3011,
Pas==Tsz P+ Tayp22, (3.5)

where
Lig=2E 2 p(@)|(a1] Vas |89) 0 (Ear = Euo
and
P2-4=2‘§§p(a)l<a2(VAR|34>[25(E¢,2-E“), 3.6)

with
Eal=E:x +E,

and similar expressions for I';.y and [,., by interchang-
ing the appropriate indices. For the nondiagonal ele-
ments we find

Pr2==ilwy + dgm)ptz = Trapra+ Tygurzpsy,  (3.72)
pa=—1ilwy + Baum)ps — Tz P34+ 12234125 (3. 7o)
where A12=A1—A2
H{allV 2
8=P T3 pla) Kl Vas B
kaB al = Spp
2
{a2l Ve 18R
8,=P T3 pla) Ko as bl (3.8)
kaB a2~ S8k

and a similar expression for A, = A; - A4 obtained by
interchanging the indices 1 and 2 by 3 and 4, respec-
tively. P indicates that the principal part should be
taken. These second order shifts 4,; [though tempera-
ture dependent through p(x)] are assumed to be small in
comparison to the first order shifts (2, 8) which are in-
cluded in the definition of w; and wy, and lead to a re-
normalization of the transition frequencies.

The decay (I';;) and feeding (T';,.,;) constants take the
following form;

Lp=T{ +T}, (3.92)
7 =20+ Touy)
=L pla)|{al| Vg |83) |26 (Eqy - Egy)
ﬁas AR al 83
™ 2
+f—[§;p(a)|(a2|VA3,ﬁ4)| 5oz ~Es),  (3.9D)

F?z=%; pla)

xzs:ﬁ(Es —E,)|{al| Vag|81) ~a2| Vo |82)|?,

{3.9¢)
F34-1z=%§ p@XB1|Vag|ad){ad| Var |82)
X{8(Eqg = Egy) + 8(Eoq = Egy)}, (3.9d)

and similar expressions for I'y, and I'y,.;, obtained from
the above by interchanging the indices 1, 2 by 3, 4.

Returning now to a discussion of the Redfield equa-

tions (3. 5) and (3. 7) we first note that, with our choice
for ¥,z in (2,9}, the only nondiagonal elements that are
coupled to each other are p;; and py. Except for the
driving-~field terms (which will be added later) these
equations therefore have a form very similar to the
modified Bloch equations postulated by McConnell.'* The
quantum-mechanical derivation of Eqs. (3.5) and (3. 7),
however, leads to new insight and restrictions in the
use of these equations in the optical domain (Sec. IV).

A first important conclusion to be made is that co-
herence transfer is negligible, unless the following rela~-
tion holds:

A= |wp - wy|S Tye12- (3.10)
This condition follows directly from the energy conserv-
ing delta function in Eq. (3,9d) and from the prerequi-
site that I'yy.q5=If3.91. Therefore in our description,
up to second order in the perturbation expansion, only
coherence transfer among near-resonant states is al-
lowed.

A second important conclusion to be made is that Egs.
(3.9) show that coherence feeding and decay is due to
distinctly different processes. In fact, the cokerence
decay itself is also due to two different types of effects.
The first one, the adiabatic contribution denoted by I'%,
and '}, induces adiabatic (secular) transitions in the
system., Consultation of Eq. (2.9) shows that the qua-
dratic electron~bandphonon coupling,?* % which leads to
elastic (within the linewidth?’) Raman scattering process-
es, is responsible for the adiabatic contribution, A
closer inspection reveals that this contribution is due to
the difference of the independent elastic modulation of
the initial and final state. These processes therefore
can be classified as purely T,-type processes. In
the Debye approximation for the bandphonon density
of states they lead to the well-known T7 and 7* tempera-
ture dependence of the width and shift, respectively, of
the ZPL34%42 5¢ Jow temperature. The nonadiabatic
(nonsecular) contributions I'{# and I'4# to the coherence
decay are caused by inelastic Ty-type processes, Equa-
tion (2, 9) shows that these inelastic scattering processes
are induced by anharmonicity (V,) in the ground state
and a combination of anharmonicity and electron—phonon
coupling (V,_,) in the excited state, Here V, describes
the decay (creation) of the pseudolocalized phonon into
(from) two bandphonons. The relevant part of Vemp is in
(2,9), the last term which describes in the excited state
the exchange of a pseudolocaltized phonon with a band-~
phonon. At low temperature (2T << 1Q2) we therefore ex-
pect the role of this last term to be negligible., Finally
note that '} is the sum of two inelastic phonon scat-
tering processes in the ground and excited state,

We now turn to the coherent feeding term I;;.,,. Equa-
tion (3.9d) shows that I';;.,; is an interference term
composed of the inelastic scattering amplitudes in the
ground and excited state, Essential to the occurrence
of coherence feeding in our model is therefore anhar-
monicity, as this provides a scattering mechanism that
can act within both the electronic ground and excited
state, It is also interesting to note that if the scattering
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amplitude of one electronic state dominates that of the
other, coherence transfer is negligible (I'y., <I'{3
=T'y,). In this case the optical Redfield relaxation equa~
tions (3. 7a) and (3, 7b) are no longer coupled and reduce
to ordinary rate equations describing the incoherent de-
cay. Such equations were previously used by Aartsma,
Morsink, and Wiersma® for the interpretation of optical
dephasing in the mixed crystal of tetracene in p-ter-
phenyl under conditions, where the contribution of the
bandphonons (1"1‘,) could be neglected in comparison to
that of the pseudolocal phonon. In the other limit where
anharmonicity dominates, coherence transfer to a near-
resonant pseudolocalized phonon transition may be im-
portant,

In conclusion of this section we shall derive some
general relations among the decay and feeding constants
under circumstances where the resonance condition
(3. 10) is fulfilled which implies:

E,-Ey;~E3~E =F%, (3.11)

As the heatbath is assumed to be in thermal equilibrium,
the following relation holds®":

I,.,=exp[~(E, - E,)/kT]T,.,. (3.12)

This relation ensures that in thermal equilibrium the
molecule and phonon populations will be given by the
Boltzmann equilibrium law,

From (3.11) and (3. 12) we infer the identities (ne-
glecting radiative and nonradiative processes):

Tyy= ™D, (3.13a)
Ty= ™ T, , (3.13b)
or
A= Nt pia (3.14)
Tip.gu= ™" Typp . 8.15)

We shall use these relations in the following sections.
We further note that in the following sections we only
consider the effect of the pseudolocal phonons on the op-~
tical line shape. For a complete description of the line
shape function the effect of the band phonons should be
added.

IV. THE LOW TEMPERATURE ZERO PHONON LINE
SHAPE OBTAINED FROM THE OPTICAL REDFIELD
THEORY

In this section we will derive an expression for the
optical line shape of a zero phonon electronic transition
on basis of the Redfield equations (3.5) and (3. 7) of the
previous section, in the presence of an optical driving
field.

At this point we note that the effect of radiative (and
radiationless) decay can easily be incorporated in these
equations by simply adding decay constants vy, ¥a3, Y41, 743
to account for decay from excited state levels 2 and 4 to
groundstate levels 1 and 2.

In the presence of a linearly polarized field E
= E,coswt and using the electric dipole and rotating wave
approximation,*® the Redfield equations for the four-level

P. de Bree and D. A. Wiersma: Electronic transitions in molecular mixed crystals

system (Fig. 1) become

p11 =31k (By1 = B12) = Ty 3011+ Ya1P22 + Ta- 1033+ Ya1014 »
pay= = 5ik(Byy = P12) = (Taag+ Y21 + Y2300+ Tanz e
Bra= 3ik(pgr ~ p11) + [iwp = w) = Ty )Bea + Tyge12 B »
Pas=$ik(Byg = Psa) + T1=3011 + Y23 022 + Tsu 1053+ Va3 Pas »
Pag= =21k (B3 = Pag) + Taeg P22 = (Tymz + ¥41 + Ya3)0ua s

Pa=35ik(pgy = pgy) + [ilwy+ & = ) = T3JBsy + Tpanna Pros

4.1)
where we used the Condon approximation pig= gy =i
and k= uE,/#, ignored all second order shifts of the pre-
vious section, and where jyy=pyy € '“t, Byi =Py ! and
similar expressions for pg and p;3. We further substi-
tuted wyy = wy and wyz= wy+ A and T'jy= Ty + 30y + v23),
Ty =Ty +2 0+ 7).

From Egs. (4.1) an expression for the line shape is
obtained under slow passage conditions, where the sys-
tem is in steady state. Ignoring saturation effects, e.g.,
k<< A, the populations will have their equilibrium values
and we shall denote {py; = Py1)eq, 204 (pgg — P33)eq. BY Py
and P,, respectively. Under these conditions the line
shape function, determined by Im[{py, + ps)tt], is

iy + Pa = (zik/N{Py[Tay+ ypogy = ilwy + A= w)]

+ P([T{y+ Ty —ilwg— )]} 5 4.2)

where
N=[If; - i(wy— w)][Tgy —i{wy+ & ~ w)] = Tz 3473412 -

We first note that, as long as condition (3.10) holds,
this equation is valid at all temperatures for the four-
level system,

As we wish to compare the results of our line shape
calculation with those obtained from a stochastic!’r20-2¢
and correlation function approach?®™3% we investigate the
ZPL line shape in the low temperature limit 2T <7, or
Py <P, An analytic solution may be obtained if we con-
sider the situation near the center of the ZPL, where
(wg = w) <A, In this limit the line shape function is only
determined by the first term of Eq. (4.2) and it is easily
shown that the line shape is purely Lorentzian,

For the full width at half-maximum [77,(T)]"! we cal-
culate the following expression:

7/ y=1
[Ty ()]t = [r{z - Eﬂ%ﬂ] (sec’!). (4.3)

The exchange terms are also shown to introduce a shift
Aw,,(T) of the absorption line, which is found to be

-2

A(Lg) *Ty9. g4 a4 -1
Aw,x(T)-—J—éw—iul_'_A (T, {rad sec™).

At this point there are several interesting points to note.

4.4)

First, the effect of radiative and radiationless decay
on the line shape function can not trivially be separated
from the effect of exchange. Second, neglecting these
radiative and radiationless effects, or putting I'j,=TY,
and I'j, =Ty, Eqs. (4.3) and (4.4) will show an exponen-
tial temperature dependence under the assumption that
the heatbath is in thermodynamic equilibrium and when
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only near-resonant states are considered, as then Eq.
(3.15) is valid. Equations (4.3) and (4. 4) then become:

|2 e-hOIhT

-1
[T, ()] = {Fiz—&%ﬂﬁm—](sec"), 4.5)

i 2 e-hﬂ/kT

Aw,,(T)= %2__— (radsec™).

Third, Eqs. (4.5) and (4. 6) only reduce to the ones de-
rived by van ’t Hof and Schmidt!® and also by Harris!’
when, in addition, the scattering amplitudes in the
ground and excited states are identical (see also Sec. V).
Finally, there is no a priori reason to assume that I‘g}
[t in Ref. 18 is temperature independent, The full ex-
pression for Iy, (Eq. (3.9)] indeed shows that it is a
function of temperature through p{a). Careful measure-
ment of the ratio between the temperature dependent
broadening and shift (AT;}) therefore should reveal this
dependence. At higher temperatures, we emphasize
this again, the full expression for the line shape function
in Eq. (4.2) should be used.

(4.6)

We further note that in case of negligible exchange
{T'i3.3 <T'yy) for both transitions, on basis of Eq. 4.2),
also Lorentzian line shapes are predicted with widths
determined by I';,+yz +vyr (where vy and yyp are the
overall radiative and radiationless decay constants)., In
this case, however, there will be no temperature de-
pendent shift induced by interaction with the pseudolocal
phonon, and the shift will be induced by other processes,
e.g., involving the crystal phonons.

We finally note that the Redfield equations are also ap-
plicable for a study of coherent transient effects, as
photon echo and free induction decay. It is easily shown
that, at low temperature, the damping of py,(t) is gov-
erned by a T, identical to that of Eq, (4.3) or (4.5). A
temperature dependent shift is also found as a phase
shift of py5(f). This ascertains that the results obtained
from coherent optical experiments may be directly re-
lated to those obtained from “slow passage” absorption
studies.

V. REDFIELD VERSUS MODIFIED BLOCH
EQUATIONS

As the basic Redfield equations (3.5) and (3. 7) look
very similar to the modified Bloch equations as postu-
lated by McConnell,!? it seems appropriate to make a
comment here. Although Eqs. (3.7a) and (3. Tb) describe
exchange of coherence, this only occurs as a feeding
process. This is in contrast to McConnell’s postulate,
where exchange is a combination of feeding and decay.

In order to get this combination of feeding and decay
from our formalism, we must demand, that I'jy. 3 (3. 1s)
equals I'y,{I'y,). From the discussion of these decay
constants in Sec. III, it is concluded that, in the absence
of radiative and radiationless decay, this is only the
case, when (a) near-resonant (within the linewidth) tran-
sitions are considered [(3.10)], (b) the role of secular
interactions (Raman scattering of bandphonons) is negli-
gible (I'f; <T'¥#); and finally (c) the scattering ampli-
tudes in the ground and excited state are identical. From
these conditions and using (3.13)-(3. 15) we then derive
the following relations:

Pip.gy=Tp=Ti3=Ty=W"'=W, 5.1)
Ty.rp=Ty=Ts1=Ty=W"=1",

and
Wt =exp[- FQ/ET)] .

In (5.1) and (5. 2) we have also given the notation used
by van ’t Hof and Schmidt'® and Harris!? in using modi-
fied Bloch equations and exchange theory. The models
used by these authors are therefore applicable only in
situations where conditions (a)-~(c) warranted.

(5.2)

With identities (5. 1) the population transfer among the
four levels may be expressed as an exchange of popula-
tion inversion, with the same rates as those for the ex-
change of coherence. This is in accordance with a sec-
ond implicit assumption of McConnell, Under these
limiting conditions the Redfield equations change into
the modified Bloch equations:

(Pag = P11) == W(pgy = p11) + 7" (pgy = p3s)
(Pyg — Pa3) =~ 7" (pgg — p33) + W(pgs = p11)

(5.3)
Pro=—ilwyp + B1p/Mhp1y = Wpyp + 7' pgg

3= =i(wyy + Bgs/ T3y — T 'pgg + Wpyy

For the description of triplet spin'® and Raman?’ de-
phasing, assumption (c) seems justified, as all scatter-
ing processes occur within one electronic state. For
the description of optical dephasing processes, however,
this assumption is questionable. In fact, the scattering
amplitudes in the ground and excited electronic state in
general will be different (Fig. 1).

VI. COMPARISON WITH OTHER LINE SHAPE
THEORIES

A. Introduction

In the previous section it was shown how the modified
Bloch equations, as used by Schmidt and van ’t Hof, de-
rive from the Redfield equations, when the scattering
amplitudes in the ground and excited state are identical.
The expression for the frequency behavior of the optical
polarization was deduced from the dynamical equations
4.1) or (5. 3) by insertion of the slow passage solutions
into the polarization formula

{u)y=Trpu . (6.1)

In this section line shape theories will be discussed, in
which the polarization (u) instead is calculated directly
from linear response theory.®3 In this theory a weak
semiclassical optical field, adiabatically switched on at
t= -~ and suddenly switched off at /=0, induces a po-
larization into the system which is linear in the field

(W=X(w)EQ), (6.2)

where X (w) is the susceptibility. The absorption (4) is
given by

A=3wX " (w)|E|?,
where X' {w) = - ImX{w).
this formalism is

Aw) = wX " () = (w/F) tgh(iw/2kT) (w),

(6.3)

The line shape formula within

(6.4)
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where

)= [ dte o uun.

o

(6.5)

Here u(f) is the interaction representation for u in re-
lation to the total Hamiltonian H(f)=H - u*E, or the
Heisenberg representation with respect to H. (H is the
Hamiltonian characterizing the system.) The brackets
{ ), denote averaging over the initial ensemble (without
the external field). In the line shape formula (6. 5) the
field is absent, so that saturation effects are not incor-
porated.

Apart from a trivial change of 7 into —¢, the operator
4 will obey the same differential and master equation
as the reduced density operator?® and in the most general
case its time dependence will be governed by both adia-
batic and nonadiabatic rates, as described in Sec. III.
In order to actually calculate this time dependence the
problem can be formulated in two different ways.%

In the fully quantum-mechanical treatment an intrin-
sically time independent Hamiltonian is used of the gen-
eral type:

H=Hy+F+H,. (6.6)

Here H, depends only on the molecular variables (and
the time in the presence of a radiation field) and gives
rise to the peaks in the molecular spectrum. F is the
energy due to other degrees of freedom and does not
contribute new spectral peaks, i.e.,

[Ho’F]ZO
[IJ"F]:O-

6.7)

H, is the interaction energy of the molecule with its sur-
roundings and

[HI’F]#O- (6.8)

This is the way of attack of the problem in what we call
the correlation function approach, where the fluctuations
in u{#) are calculated by adopting a particular micro-
scopic model for the Hamiltonian, which appears in the
expression:

[J.(t):é“”lnﬂ. e-{Ht/n . (6.9)

Comparing the Refield-Hamiltonian (2, 9) with (6. 6), it
is immediately obvious that the correlation function ap-
proach lends itself to a direct comparison with our mod-
el (Sec. VIC).

Alternatively, however, the problem could be formu-
lated in terms of a time-dependent Hamiltonian:

H=H,+H{®), (6.10)

where the time dependence of H;(t) in (6.10) arises from
the fact that in (6. 6) the interaction H, is affected by F
through (6.8). In this respect F can be considered as a
“Hamiltonian of motion,” though in this approach F is
not explicitly dealt with (semiquantum-mechanical the-
ory).

In the isolated impurity model that we are considering,

F corresponds with the Hamiltonian for the heatbath, in-
ducing intramolecular exchange (next section). More

generally any Hamiltonian F’ with properties defined by
(6.7) and (6. 8) will induce a time-dependent interaction
H, (), such as an intermolecular exchange interaction in
the case of nonisolated impurities or of excitons.!""%

Now the differences in the various stochastic line
shape theories relate to assumptions made about the
fluctuations of u(#) caused by the above mentioned time-
dependent interactions. Note that both methods of at-
tack have counterparts in energy transfer theory, where
the Grover—-Silbey*® and the Haken-Strobl-Reineker?®5?
theory parallel, respectively, the correlation function
and stochastic approach. We now arrive at a discussion
of both approaches, applied to the problem of intramo-
lecular exchange induced by the heatbath.

B. The stochastic approach

The starting point in the stochastic theory of line
shape?!~?¢ is expression (6. 5) for the spectral density
I)= [ e @ ou 6.5)
where (u*(0)u()) is the correlation function of the tran-

sition dipole moment. Here p(f) is time dependent
through H,(¢) of (6.10).

Although both secular and nonsecular effects of Hy(¢)
can be incorporated in the equation of motion for
(5,22 the most popular version of the stochastic the-
ory is the frequency-modulation model, introduced by
Anderson and Weiss.?!»22 They pointed out, that due to
the secular part of the perturbation (diagonal in the mo-
lecular eigenstates) a modulation of the transition fre-
quency is introduced, so that p(f) can be expressed as

t
()= n(0) exp[i J‘ wo(t')dt'] . (6.6)
0
Here the effect of nonsecular interactions is ignored or
at most accounted for in an approximate manner by the
addition of a small shift due to these interactions in
higher order.

Under this assumption the line shape takes the form

Hw)=|p©0)|* J‘: dte et <exp[i fot wo(t')dt’]> ,

=|p@|? J_:o dtexp[—ilw - we)t]

><<exp[i J:Aw(t')dt']> )

where the brackets { ) now denote averaging over the
frequency fluctuations. Its calculation therefore reduces
to that of the correlation function

@)= <exp[i J;t wy () dt']> )

by adopting a particular modulation model*? (Gauss,
Markov), This approach to the line shape has been very
successful in explaining exchange and motional narrow-
ing phenomena in magnetic resonance, as discussed in
great detail by Kubo and co-workers, -2

6.7

(6.8)
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McCumber?” was the first one who noticed that this
theory is closely related to the theory describing ZPL’s
in optical impurity spectra. He noted that a continuum
of possible frequency shifts is available for an optical
transition due to quadratic electron-phonon coupling
with low frequency band phonons. From the fully quan-~
tum-mechanical treatment of Sec. III, however, we
would call the effect of the band phonons an optical de-
phasing a secular decay rather than exchange, as only
one transition is involved.

A situation that more closely describes exchange is
that where the transition frequency can jump to several
discrete values at a random rate. When it is assumed
that this random modulation can be described by a Mar-
koffian process®-%® a line shape can be calculated with-
out great difficulties.?

Harris!’ recently used such a picture to explain optical

dephasing of Frenkel excitons and (by implication) of
ZPL’s in mixed crystals. Applied to a four-level sys-
tem this theory yields the following expression for the
line shape:

-w*at/(1+w,T)

I(w): ((‘-’0 _

(6.9)
Comparing the width and shift of this line shape function
with those [(4.3) and (4.4)] calculated from the optical
Redfield equations we find that they are identical, in the
limit:

Dip.gy=Tp=W"
and
1"34,12=l"34=‘r“. (5.1)

In other words, the “slow passage” solutions for p,, and
P34 of the modified Bloch equations, lead to a line shape
function Im(p, + p3) which is identical to the one calcu-
lated from a stochastic (Markoffian) line shape theory.
This point was not recognized in Ref, 17, where was
stated that “the modified Bloch equations are the zero-
temperature limit of the general exchange equations.”

The source for really serious shortcomings of the
stochastic theories is the fact that the heatbath is not
explicitly dealt with, as we already remarked in the pre-
vious section. As a consequence, in these theories,
resonant (within the linewidth) and nonresonant coher-
ence transfer is treated on equal footing, From the re-
sults of Sec. I, however, it is easily shown that non-
resonant coherence transfer can only occur when the ini-
tial and final state scatter to different heatbath states.
This process is less probable and, couched in the lan-
guage of perturbation theory, only occurs in third and
fourth order, '

Another consequence is that the jump rates induced by
the “motional” Hamiltonian are easily misinterpreted;
it is only by the fully quantum-mechanical treatment of
exchange that these rates are understood in terms of in-
terference of nonsecular scattering processes. Note,
that in this respect nonsecular interactions can never be
ignored, in contradiction to the agsumption in the ran-
dom-frequency model of exchange.

W we+ A= w)i+ [W,(wy+a-w)+7Hw,~ )"

C. The correlation function approach

In the correlation function approach to the line shape
of a ZPL a particular model Hamiltonian is required,
as we already remarked above. In Sec. II we described
a model for an isolated impurity within a phonon reser-
voir which in essence is the one that Krivoglaz®! takes
as a starting point for his line shape theory. Both
Krivoglaz and Lubchenko?®~* already in 1964 pointed out
that the line shape obtained in the adiabatic BO approxi-
mation is substantially modified when anharmonicity of
the phonons is included. XKrivoglaz also emphasized the
special role of localized phonons, both without®! and
with®? non-BO coupling.

To discuss these theories we return the Hamiltonian
2.7

H=H,+H,+H,_,, (2.7

to calculate the spectral density I(w) of Eq. (6.5). In
the Condon approximation we may write

W= tosa; + Ugsay, (6.10)

where uy is the electronic transition dipole moment.
Substituting (6.10) in (6. 5) yields!®:
1@)= |y |? [ dte™ (@ 0050 , (6.11)
where we replaced { ), by the double brackets to indi-
cate that both quantum-mechanical and statistical aver-
aging is required. In the low temperature limit this
averaging procedure is performed over the unexcited

impurity only and over the (anharmonic) phonon reser-
voir,

As H,_, contains the electron—phonon interaction that
only affects the excited impurity, we can write for the
initial Hamiltonian (H;) describing the unexcited im-
purity:

Hi=H,+H,=H,+H)+ H,, . (6.12)
When substituting (6.12) in (6.11) we arrive at
Hw)=| pes |2 j dtexp[-i{w = wy)]
X (exp((Ht/F) exp (= iHt/B)y (6.13)

where wyy= w; — wy and { ), denotes averaging over the
thermal (anharmonic) heatbath only. (Compare 6.7.)
The line shape is found by calculating the Fourier trans-
form of the thermal correlation function?¥-32

&) = (expiH,t/7) exp(=iH,t/ By

= <expTz'/h' J:He_,(r)d7>th .

In the last equality®! H,_,(r) is the interaction represen-
tation of H,_, in relation to H; and expy is a time-ordered
exponential. Considering the explicit form of the inter-
action (H,_,) given in (2.7), one notes that it only con-
tains electron—phonon coupling and »not the anharmonicity
of the pseudolocalized phonon, which according to our
model, is essential for coherence transfer. Therefore,
the averaging over the anharmonic ensemble of only
these correlation functions which have values in the har-

(6.14)
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monic approximation, will only result in a modification
of the usual (harmonic) expressions for the Raman scat-
tering contribution to the ZPL.

For the contribution of a pseudolocalized phonon to
optical dephasing of the ZPL Krivoglaz®! calculates a
Lorentzian line shape, with a temperature dependent
shift (Ap) and width (y7), given by

Ar= Vmcﬁu ; (6_ 15)
(Compare (2.16))

77’:2 (l Vi 2/I‘K)le(ﬁ“+1)’ (6. 17)
where x runs over all pseudolocalized phonons., V... is

the amplitude for quadratic electron pseudolocal phonon
coupling; I', is the pseudolocal anharmonic width, These
results were obtained in the limit

(6.18)

We note here that this correlation function approach
thus in essence only accounts for secular (adiabatic)
phonon scattering events exactly as in the case of the
stochastic theory of McCumber for the optical line
shape. We also draw attention to the fact that at low
temperature (7, <<1) and in the fast exchange limit of the
stochastic line shape theory, the results of the correla-
tion function approach and the stochastic theory for the
line shape are formally identical.

h'wk > FK > Vnn’YT +7R +7’NR .

We finally note that Abram in his description of opti-
cal dephasing'® also neglects the effect of phonon anhar-
monicity. This again implies that only the contribution
of secular perturbations to the optical line shape were
investigated and the effects of coherence transfer have
been ignored.

VII. CONCLUSIONS

In this article we have presented a model for optical
dephasing in molecular mixed crystals which has been
derived using Redfield relaxation theory. The model
considers an effective four-level system composed of an
electronic ground and excited state and one pseudolo-
calized phonon level on the ground and excited state.

The scattering among the levels is shown to be in-
duced by electron—phonon coupling and phonon anhar-
monicity and coherence transfer among the transitions
is only shown to occur when the phonon anharmonicity
dominates the electron—phonon coupling strength. In
this 1limit the optical Redfield equations are shown to re-
duce to the modified Bloch equations, The interpreta-
tion, however, of the exchange term as a scattering in-
terference effect remains mandatory also in this limit.

It is further found that only near-resonant transitions
show exchange of coherence.

When a comparison is made between the Redfield theo-
ry and the stochastic and correlation function theories
we conclude that in these latter theories, exchange pro-
cesses are not properly taken into account. While from
the Redfield theory it follows that exchange is due to
nonsecular interfering perturbations among the levels
which participate in the scattering, the correlation func-
tion theory, using the same Hamiltonian and basis set,

only considers coherence decay due secular perturba-
tions. The stochastic theory ignores its interference
character, and consequently ignores the near-~-resonance
condition of both exchanging transitions. One thus has
to be rather careful in using these latter theories, es-
pecially when experimental results, on basis of formu-
las derived, are being interpreted.

In conclusion we would like to point out that the theory
presented here rests on the assumption that pseudolo-
calized phonons may be treated on equal footing with the
impurity electronic states. In the text we have given
experimental evidence which supports this approach.
Whether this treatment has general validity in molecular
mixed crystals will only become clear when more and
detailed experiments on the optical line shape of transi-
tions in such solids become available,

Note added in proof. Very recently Jones and Ze-
wail®® have also reported on the subject of optical de-
phasing in the condensed phase. It is interesting to note
that their conclusion on the point of the exchange contri-
bution to the line shape function is similar to ours. We
remark, however, in contrast to a statement made in
Ref. 52, that the contribution of the optical phonon
branch to optical dephasing!® may well be distinguished
from that of exchange by studying the optical dephasing
characteristics of several different guests in the same
host crystal.?:3
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