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Statié and dynamic properties of helical spin chains
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A detailed quantitative study of a classical Heisenberg chain with nearest- and next-nearest-
neighbor interaction is presented. For a wide range of interaction strength, this model leads to
helical structures and the effects of this peculiar structure on the static and dynamic properties is
extensively discussed. The most striking feature is the presence of both a central resonance and

a spin-wave peak at fairly low temperatures.

I. INTRODUCTION

In this paper, we calculate the static and dynamic
properties of a one-dimensional Heisenberg model
with nearest- and next-nearest-neighbor interaction.
For certain values of the ratio of the nearest- and
next-nearest-neighbor interaction, this model leads to
helical spin structures at zero temperature. An in-
teresting feature of this model is that it exhibits a
Lifschitz point,! i.e., a triple point for the paramag-
mentic, ferromagnetic, and helimagnetic phases at
T =0; but it is beyond the scope of this work to ex-
amine this particular problem.

Although the helical order disappears for T 0,2
helical short-range order will be present at low tem-
peratures. To our knowledge, it is not known how
this peculiar structure affects the dynamical behavior
of the system and therefore it is our main purpose to
elucidate the differences between this model and the
nearest-neighbor chain. Since there is little informa-
tion about the static properties as well, extensive
results for both static and dynamic quantities will be
presented.

By transforming the spin-% model into a fermion

model, Niemeijer calculated the ground-state proper-
ties in the Hartree-Fock approximation.> Since a cal-
culation of temperature-dependent static quantities
would already require an enormous computational
effort, the assumption that the essential behavior of
the system remains the same when the spin operators
are replaced by classical vectors will enable us to cal-
culate all relevant temperature-dependent static pro-
perties numerically.

Since it will be very difficult to find exact solutions
of the equations of motion, it is necessary to use ei-
ther numerical techniques or approximative analytic
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methods. As for the nearest-neighbor chain, the
most direct way to study the model would involve a
“molecular-dynamics" calculation.* Since computer
time is finite, these simulations suffer from a severe
limitation. Indeed, a detailed quantitative study is
only possible if a fast algorithm for generating equili-
brium configurations is available.’ Then, averages
over different configurations can be calculated
efficiently. Furthermore, it should be noted that,
even for the nearest-neighbor chain, a considerable
amount of fitting procedures are necessary before nu-
merical estimates for the frequency and damping of
the collective excitations are obtained.®

As it would not be hard to convince oneself that,
because of the next-nearest-neighbor interaction,
such an algorithm does not exist, we are led to the
conclusion that it is more appropriate to use analytic
methods. As in our preceding papers,”® we will use
a method based on Mori’s formalism.’ In this way a
continued-fraction representation for the dynamical
structure factor is obtained directly. For practical
purposes, one has to make an approximation for the
memory function and, as outlined in Ref. 7, this can
be done in a consistent, systematic way without intro-
ducing phenomenological relaxation rates. As the
final result for the dynamical structure factor is for-
mally the same as for the nearest-neighbor chain, a
direct comparison between the two models is possi-
ble.

In Sec. II, we discuss some elementary ground-
state properties of the model and we derive the
dispersion relation. The results for the static correla-
tion functions for different temperatures and wave
vectors are presented in Sec. IIl. We argue that the
temperature and wave-vector dependence of these
correlation functions can be related to the particular
shape of the dispersion relation. In Sec. IV, the
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dynamical form factor is calculated. The differences
between the line shapes of this model and those of
the nearest-neighbor chain are interpreted in terms of
the respective dispersion relations. The conclusions
are summarized in Sec. V.

II. MODEL AND GROUND-STATE PROPERTIES

~ The model consists of a chain of classical spins of
unit length, placed at unit distance from each other.
The Hamiltonian is given by

H=_112§i'§i+l_~ll Egi'§i+2~ (2.1

We now investigate the zero-temperature properties
of this model in the case J; >0 and J, <0.

The ground-state energy is found by minimizing
the Hamiltonian, given by Eq. (2.1). For |/, < %Jl,
the spins are ordered ferromagnetically at zero tem-
perature. For |/,] > %J 1 the ground state is a helix.
In this case, all the spins lie in parallel planes, and
there is an angle ¢ between each spin and its nearest
neighbor on one side. It should be noted that the
ground state is degenerate, because the plane can be
chosen arbitrarily. The angle ¢ is determined by the
relation

cosy=J1/410, |hl=5J,. (2.2)
In the following, we will always consider the case
|/2] = % Ji.

Because the system has translational invariance we
perform a Fourier transform,

< 1 < Likn
Sk=W ;Snek , (23)
and then the Hamiltonian reads
k
with
J(k) =2J,cosk +2J,cos(2k) . .5)

The two-spin correlation function in the ground state
is simply

Si*Sisn)r-0=cos(ny) , (2.6)

and consequently the Fourier-transformed correlation
function reads

Sk S)r-0=3k —p) +8k +]. @7

For a classical system the static susceptibility is
defined by!?

(5.9, =8(5_«-Si) , (2.8)

where B is the inverse temperature, and in the
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FIG. 1. Dispersion relations for the nearest-neighbor ferro-
and antiferromagnet, and for the helical chain for the angles

= %'n' and ¢ = %‘rr.
ground state we find

(5,9 =2/l7w) =J(k)], T=0. 2.9)

Sy -y is the critical variable, because the static suscep-
tibility diverges at k = .

At zero temperature, excitations will propagate un-
damped along the spin chain. The time-dependent
correlation function is then given by

S-k(0) 5,0 7m0 = Gt Sk) rocosl (k) el (2.10)

and the dispersion relation Q (k) is found to be
Q%) = (317 W) - T ()] 2.11)
X [27(p) =T (W —k) —J (p + k) ]} .

Consequently, the dynamical structure factor consists
of two & functions, symmetric with respect to the ori-
gin, and with their positions determined by Q (k),
ie.,

Sk @)r-0= - Sk) 70
x 2800~ Q(6) +8(w + (k)] .
' (2.12)

The dispersionl-relation equation (2.11) is plotted in
Fig. 1 for y = smand ¢ = %n, for the ferromagnet
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(J; >0, J,=0), and for the antiferromagnet (J, <0,
J,=0). In all cases the excitation energy is zero for
zero wave vector. This is a consequence of the total
spin being a conserved quantity. The other point in
the Brillouin zone where the excitation energy is
zero, is determined by the critical wave vector.

Although the results, presented above, only hold in
the ground state, they tell us what we can expect for
the low-temperature behavior of the system. It is
well known that no long-range order exists in one-
dimensional systems with finite range interactions at
nonzero, temperatures.? At low temperatures howev-
er, there exists a strongly developed short-range ord-
er, characterized by a correlation length £. It is not
so easy to give a definition for the correlation length
for a helimagnet as for a ferro- or antiferromagnet.

A plausible definition is as follows. At low tempera-
tures the static correlation function [see Eq. (2.7)]
consists of two peaks, symmetric with respect to the
origin of the Brillouin zone. The correlation length is
defined as the inverse of the width of such a peak.
The spins within a segment of the chain with a length
shorter than the correlation length will be strongly
correlated. The correlation over distances much
larger than the correlation length however, will be
small.

In Secs. III and IV, we will deal with the ferromag-
netic case J; > 0 only, and we will put J; =1. Clear-
ly, this is no limitation, since it means that we meas-
ure J,, and the temperature, in units of J;.

III. STATIC CORRELATION FUNCTIONS

If we want to calculate the temperature-dependent
static spin-spin correlation function for different
values of , there is little hope to find analytic ex-
pressions because the problem of evaluating the par-
tition function is obviously very difficult. Further-
more, the static quantities that will show up in our
dynamical description, are very complicated combina-
tions of spin correlation functions. Consequently, it
is desirable to use a numerical method that has
sufficient accuracy, is relatively easy to program and
requires a modest effort of human work.

In an earlier paper,® we have shown that the Monte
Carlo method has all the desired features. For a
description of the Monte Carlo method for spin sys-
tems, we refer the interested reader to the paper of
Binder.!! For all our calculations, we have taken a
chain of 250 spins, 2000 Monte Carlo steps per spin
were used to eliminate the effect of the initial
configuration, and the thermodynamic quantities
were calculated by averaging over 400 different spin
configurations in a Monte Carlo run of 4000 steps per
spin. In order to calculate the statistical errors, 12
statistically independent runs were averaged and by
calculating the variance, we concluded that the abso-

lute2 error on the correlation functions is smaller than
1074,

To examine the influence of the starting
configuration the ground state was taken as the initial
configuration for six runs, while a random
configuration was used for the remaining six runs.
The similarity between the results for both cases is an
important measure for the accuracy of the method,
and for extremely low temperatures large differences
appear. This is readily understood because it is well
known that the statistical errors grow rapidly if one
approaches the critical temperature 7 =0.!! This,
however, is not the case for the results presented in
this paper. Let us now look at the data for the static
correlation functions (So-S,), n =0,1, ...,20 for
different temperatures and angles ¢ (see Figs. 2—4).
As expected, the correlation becomes stronger as the
temperature decreases. For larger distances (i.e.,

n > 4) the chosen angle  is clearly reflected in the
periodicity of the correlation function.

Comparing correlation functions for different an-
gles but for the same temperature, we note that the
correlation increases as the angle increases or in oth-
er words, the larger the angle ¢, the more stable the
helical structure is. This can be explained by consid-
ering the shape of the dispersion relation (Fig. 1)
which is a measure for the distribution of the energy.
At very low temperature, the ground state kK = and
a few excited states are accessible. Since the slope of
the dispersion relation at k = increases if { in-
creases, the density of states, which is proportional to
the inverse of the slope decreases, and therefore, the
number of accessible states at sufficiently low tem-
perature is smaller for large angles than for small an-
gles. This simple argument explains why a helix with
a larger angle is more stable than a helix with a
smaller angle if the temperature for both helices is
the same. Although the correlation functions shown
in Figs. 2—4 have some interesting features, the
quantity of more fundamental interest is the
Fourier-transformed static correlation function

M
S-Sy =1+2"3, o-S,)cos(gn) . 3.1
n=1
In theory, M should be equal to N but in actual cal-
culations we have taken 1_\{ =50. .
A typical plot of (S_,-S,) for different tempera-
tures and y = 7 is shown in Fig. 5. As the tem-

perature increases, the contribution of the critical
wave vector ¢ =y, decreases. Clearly, the Fourier-
transformed correlation function is asymmetric
around ¢ =¢. This is entirely due to the shape of

the dispersion relation Fig. 1, because excitations

with wave vector left to ¢ = ¢ have lower energy than
excitations with a corresponding wave vector right to -
g =, and consequently their probability of being oc-
cupied is larger. As the figures for the Fourier-
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FIG. 2. Spin-spin correlation function as a function of the distance and the temperature. At T =0, the angle between
nearest-neighbor spins is ¢ = %77. The solid lines are guides for the eye only.

1.0
~ L
tn
sl 08 F 4):% *—0—0— T = 0.05
) 0—0—0— T=0075
L @ x—x—x— T = 0.1
s L b4+ T=015
0.4 |
L
0.2 b % /°\o
S V= = -
| 1 ' ! | I ?cf\}-\Q\L | { % - o
0 T T T T T ¥ T T i R ﬂg_\_ —X—0 #’;*,__’_____{_‘T'
_12\1.+/ 708 9 10 N 150 17 1819
+\+/x70 , o ]
-0.2 O -
&x/o
-0.4 b \ e
= ./
-0.6

FIG. 3. Same as Fig. 2 but y = .



19

transformed correlation functions for ¢ = %w and

ed.

—;-n' are very similar, they have not been present-

IV. DYNAMIC CORRELATION FUNCTIONS

Having discussed the zero-temperature properties
and the behavior of (S,-S_,) as a function of y, g,
and 7, we now want to study the low lying collective
excitations of our model system. In our opinion, the
most appropriate way to do this is to use Mori’s for-
malism.? The Laplace-transformed relaxation func-
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tion is written as a continued fraction and the -
coefficients appearing in these expansions are related
to the frequency moments of the relaxation function.

The only unknown quantity is the memory func-
tion and we will use the method, extensively dis-
cussed in our earlier papers,”-3 to determine this
function. As the calculation is identical to the one
given in Ref. 7, we do not want to repeat it here, but
only stress the facts that in our approach, no
phenomenological parameters have to be introduced
and all possible sum rules are exactly fulfilled. The
final result for the normalized Laplace-transformed
relaxation function is

22 +23(2.9) — (@) o/ (@) 4 + (0¥
2(22 = (o) /(W) ) +2(20) (2= (wP))

D (z,q) =

while the expression for the memory function reads
(@) = (@9 /(D) )/ ((*), =

(@)

z=w+ie, €>0, “4.1)

3(z,q) =—
=4 z +il((00) g = 2(w?) 4 (w?), + (@) D/ ({?)

4.2)
. (w2>3)]l/2

As usual, (0?),, (o*),, and (®), denote the second, fourth, and sixth frequency moment of the relaxation func-

tion ®. It is easy to express the second moment

<m2)q =4[(1 ~cosq) §;°S; +1) —

|7,1(1 —cos2q) S;*S; 1 )1/BE,-S_,) .

4.3)
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FIG. 4. Same as Fig. 2 but l]l=—;"lT.

Note the increasing correlation between the spins if ¢ increases.
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FIG. 5. Typical plot of the Fourier-transformed correlation functions for different temperatures. -The angle ¢ =%7r is clearly

reflected by the maximum at g = .

in terms of static two-spin correlation functions, but,
if we would like to have similar expressions for the
fourth, and sixth moments, the work involved would
probably exceed a human life time. Since it is rela-
tively easy to implement a calculation of these mo-
ments in a Monte Carlo program, direct numerical
results are obtained. As the numerical data itself are
not relevant for our discussions, it is unnecessary to
present them. Bare results for similar calculations for
the planar chain can be found in Ref. 8. Using these
numerical values for the moments, the imaginary
part of the relaxation function Eq. (4.1), which is
proportional to the dynamical form factor for inelastic
scattering, i.e.,

S(w,q) ==, S_)®,"(q, 0 4.4)

is plotted for several values of ¢, T, and ¢ as a func-
tion of the frequency w.

Let us first consider those wave vectors for which
q¢ =¢. From Figs. 6—8, we conclude that excitations
with wave vectors close to the critical wave vector,
are represented by a sharp and very high central
peak. This could be expected because the critical
modes have low energy. For larger wave vectors, the
amplitude of the central peak decreases while the
linewidth becomes larger. For ¢ closer to 2y excita-
tions with nonzero energy (i.e., spin waves) are visi-
ble, and in approaching the Brillouin-zone boundary,
the weight of these excitations gets larger and finally
the central peak vanishes completely. The presence
of both a spin wave and a central peak is astonishing
because the temperatures we are considering are very
low. We also want to point out that this effect is not
due to the particular choice of our relaxation function
since it is a four-pole expansion.

Comparing these results with the ones obtained
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FIG. 8. Normalized dynamical structure factors for ¢ = ';—‘n' and 7 =0.075. Compare the contribution of the central peak for

q =513 with the one of Fig. 7.

from a three-pole expansion, we concluded that the
three-pole expansion strongly suppresses spin waves.

In Ref. 7, we showed that this is also the case for
the nearest-neighbor chain, but at low temperatures
there was no indication of both a central resoance
and a spin-wave peak,® whereas for this helical model
both peaks are observed.

Since Eq. (4.1) shows two peaks at positive energy
for the three-dimensional electron gas,'? we looked
for a similar line shape but we did not succeed.
Therefore, we believe that Eq. (4.1) approximatively
accounts for the real physical phenomena in the sys-
tem. For ¢y = %n’, we have also examined the tem-

perature dependence of the line shapes (see Figs. 7
and 8). The most striking feature is the rapid change
in the contribution of the central peak relative to the
spin-wave contribution at g = 710—1371- =2y. These
statements, illustrated by means of the few figures
presented, are supported by a lot of numerical evi-
dence.

Comparing relaxation functions for the helix and
the ferro- or antiferromagnetic nearest-neighbor
Heisenberg model, and bearing in mind that in the
latter models, there is no evidence for the presence
of both a central peak and a spin wave at sufficient
low temperature,®’ an explanation for these

phenomena should be sought in the essentially
different shape of the dispersion relation for the heli-
cal model.

First, we note that, for each value of g and 7, the
imaginary part of the relaxation function gives us the
probability to find an excitation with energy . Then
we recall the fact that the probability for the ex-
istence of elementary excitations with wave vector g,
i.e., spin waves, is given by the static correlation
function. Looking at Fig. 5, it is clear that a spin
wave with wave vector smaller than y is more likely
to exist than a spin wave with the corresponding
wave vector larger than .

Now, we fix the temperature and we wonder
whether an excitation with wave vector g, consists of
one or two spin waves. Obviously, this depends on
the probability for these processes. Suppose that the
two spin-wave process is more probable. If one of
these spin waves has a low energy, it can make a con-
siderable contribution to the zero-frequency
behavior, providing the wave vector is close to the
critical wave vector. If g is smaller but almost equal
to 24, the probability for the existence of a single
spin wave is relatively small (for example, see Fig. 5
for T=0.05). It is obvious that the probability for
the occurence of two waves of which one spin wave
has a wave vector close or equal to ¥, and the other

>
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one has a wave vector ¢ — ¢, is much larger. The
probability for observing two spin waves reaches a
maximum at ¢ =2¢. For g > 2y it is clear that the
probability for a two-spin process vanishes rapidly as
q approaches the Brillouin-zone boundary. Applying
the same arguments to the ferromagnetic and antifer-
romagnet, we find that two spin-wave processes are
insignificant at low temperatures. We conclude that
the picture of competing one and two spin-waves
processes gives a consistent qualitative explanation
for the simultaneous occurrence of a central peak and
a spin wave. Although in our calculations higher
order spin-wave processes have been taken into ac-
count, the main features can be understood in terms
of one and two spin waves because the temperature
is very low.

For wave vectors smaller than ¢ (0 <g <), our
calculations lead us to the following conclusions.
Although the probability for elementary excitations is
large, we do not observe spin waves if the excitation
energy is smaller than the thermal energy, because
then the spin waves are overdamped. Since this the

case for 11:=%7r, T =0.05, and 0 < ¢ <y, we did not
present these figures because they only show a cen-

tral peak. For ¢= %w, however, only a limited
number of spin waves is thermally excited and the

_hs
3
= 27T/ 20
T —_——— 3T/20
o ——— 4TT/ 20
R OO 7T/ 20
q):E T=01

10 F 3

5

0

results for different wave vectors and temperatures
arle given in Fig. 9. For small wave vectors
(7q < ), the spin waves are clearly present if the

excitation energy is larger than the thermal energy
but the damping is rather large. As expected, no
three-peak structure is observed for larger wave vec-
tors. Finally, we note that the renormalization of the
excitation energy as a function of the temperature is
small in all cases where spin waves are present. At
higher temperatures this renormalization becomes
more important.

V. CONCLUSIONS

We have calculated the static and dynamical pro-
perties of a complicated classical spin chain, exhibit-
ing helical short-range order. Since we were unable
to calculate the partition function analytically, we
used Monte Carlo techniques. In this way, all
relevant static quantities were obtained. We showed
that the helical structure is easily recognized by look-
ing at the spatial spin-spin correlation function. At
sufficiently low temperatures, the behavior of the
static quantities can be understood in terms of the
zero-temperature dispersion relation.

As it was our aim to compare the dynamical pro-
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Ta ———— 3m/20
© —_ 4T/ 20
770/ 20
G-F 120075

10 b

FIG. 9. Normalized dynamical structure factors for ¢ <2y. The spin waves are stongly damped because of higher-order

spin-wave processes.
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perties of a helical magnet and a ferromagnet, we
used the same description for the dynamics. We find
that the helical magnet exhibits a completely different
behavior. At fairly low temperatures, both a central
peak and a spin-wave peak are found, whereas in the
case of the ferro- or antiferromagnet, there is no evi-
dence for the simultaneous occurrence of both
peaks.®” This difference has been explained by
means of one and two spin waves and the shape of
the dispersion relation.

In our opinion, the methods used in this paper

could be useful if one likes to study the static and
dynamical behavior of the model if one approaches
the Lifschitz point 7 —0, ¢ —0.
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