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(Received 19 January 1984) 

Abstract--A numerical simulation program has been developed for the determination of dynamic liquid be- 
havionr in partially filled cylindrical containers during weightlessness. The program, based on the unsteady 
Navier-Stokes equations, is capable to treat axisymmetric flow: arbitrary free-surface shapes are allowed. In 
the paper some examples are presented showing liquid response to rotation and axial vibration. The numerical 
simulations provide information which is used in the definition and evaluation of an experiment onboard Spacelab. 
The combined theorctical/experimcnlal investigation is directed towards a more efficient design of attitude 
control systems. 

I. INTRODUCTION 

in response to a call for proposal for experiments to 
be executed during the first flight of  Spacelab, the 
National Aerospace Laboratory (NLR) submitted an 
experimental program. Its general objective is to 
obtain information about characteristics of weight- 
less dynamic systems which are partially liquid; in 
particular systems which feature a free liquid surface. 
A section of  this program dealing with fluid dynamics 
is scheduled to be executed in Spacelab I. These 
experiments will make use of  partially filh:d contain- 
ers which are subjected to prescribed motions[I]. 

The main purpose of the experiments is to obtain 
a better understanding of  the behaviour of  (some- 
times large) amounts of liquid (fuel, coolant) which 
are present onboard spacecraft. This knowledge can 
be used, for instance, for a more efficient design of  
attitude control systems. As a secondary objective, 
the experiments will enlarge our knowledge of  terres- 
trial systems in which capillary forces play an im- 
portant role. 

For a deeper insight into the phenomena which are 
going to be observed onboard Spacelab, the experi- 
ments are supported by a theoretical investigation. 
Some results of  this theoretical investigation concern- 
ing two-dimensional planar sloshing have already 
been reported by Veldman[2]. in the paper an extension 
to axisymmetric sloshing will be presented. 

The global behaviour of  systems with a free liquid 
surface under weightless conditions differs markedly 
from the behaviour in a terrestrial environment. 
Presence of  gravitation considerably simplifies the 
description of  the problem, since in the majority of  
cases we may assume a flat free surface and treat fluid 
effects by small perturbation methods[3]. Under 
weightless conditions even the calculation of  an equi- 
librium free-surface shape (no liquid motion) requires 

tThis investigation has been performed under contract with 
the Netherlands Agency for Aerospace Programs (NlVRXConwact 
hr. 1860). An early version of this paper has been presented at 
the 33rd Congress of the International Astronautical Federation, 
Paris. France, 26 September-3 October. 1982. 

an elaborate study. Of the many theoretical con- 
tributions to this subject we will only mention the 
comprehensive investigations of  Concus and Finn [4], 
and the recent work of  Siekmann et ai.[5]. 

In the unsteady case, linearization techniques 
around an equilibrium position, as discussed above, 
can yield information about stability or instability of  
the equilibrium and about resonance frequencies. A 
survey of this aspect of  the dynamic behaviour of 
liquids can be found in [3]. For the corresponding 
behaviour under low-gravity conditions, in which we 
are interested, we refer to the work of  Reynolds and 
his collaborators (see [6], and the references therein) 
and to Schilling and Siekmann[7]. 

A review of techniques that can Ix used to calculate 
the dynamic behaviour of  the complete (nonlinear) 
unsteady problem has been given by Ousset[8] and 
Guibert et al.[9]. They point out that the most 
reliable results are to be expected from the solution 
of the complete Navier-Stokes equations. In this 
paper we will describe a numerical method with 
which the Navier-Stokes equations can be solved. 
The method is an extension of  the SOLA-VOF 
method[ 10], a recent member of the Marker-and-Cell 
family. A number of examples showing the capabilities 
of the method is presented. 

2. MATHEMATICAL DESCRIPTION 

Our interest lies in the simulation of particular 
types of  liquid motion, such as flows in which non- 
linear effects can play an important role, or flows 
which are induced by viscous effects (e.g. spin-up). 
Therefore we have chosen the unsteady Navier-Stokcs 
equations to describe the liquid dynamics. The equations 
of motion will be formulated in primitive variables (i.e. 
velocity and pressure): this facilitates the implementation 
of thc free-surface boundary condition for the pressure. 
As a (non-essential) simplification it is assumed that the 
flow is laminar, and that the liquid is incompressible with 
constant material properties such as viscosity, surface 
tension and contact angle. 

641 



642 A. E. P. Vrj n~.~ and M. E. S. VoGr~.s 

It is convenient to formulate the equations of 
motion in a reference frame which is fixed to the 
container (which may be moving with respect to an 
inertial reference frame). In such a container-fixed 
frame the flow equation can be written as: 

conservation of mass 

divu =0 ,  ( la)  

conservation of momentum 

D 
D---~ u - - g r a d :  + v divgrad u + F. (Ib) 

The following symbols have been introduced 

u velocity in the container-fixed frame 
/5 normalized pressure, /5 = pip (p: pressure, p: 

density) 
v kinematic viscosity 
F virtual body force due to the motion of the 

container 

1 ,e # /  

[.V 

)i,w - ,  
r,U 

Fig. I. Cylinder. coordinates and notation. 

d d 
F= - ~  qo-D. xqo-211xu-~ f l x r  

- [ l x (g lx r )  

qo vclocity of a point 0 of thc containcr with respect 
to an inertial framc 

CI angular vclocity of thc containcr 
r radius vector pointing away from 0 

D/Dt Lagrangian timc derivative 

These equations have to be supplied with a set of 
boundary conditions. At the container wall a no-slip 
condition applies 

U ~ 0 .  

At the free surface the stresses must be continuous. 
Assuming that the gas or vapor outside the liquid is 
not able to resist tangential stresses, and setting the 
external pressure at zero, we have[l I]: 

{Ou, Ou,'~ 
- ~n, + v \ - -  + ~ j n ~  = = Ion , 2dHn, (i 1, 2, 3). (2) 

Here 

n normal at liquid surface pointing away from the 
liquid 

O kinematic surface tension, 0 = o/p 
H mean curvature of the free surface. 

Further, when the free surface intersects the container 
wall a contact angle 0 must be present. 

Finally initial conditions must be specified which 
prescribe at t = 0 the velocity field and the position 
of the free surface. 

With the above model axisymmetric flow has been 
studied in cylindrical containers (Fig. 1). This allows 

introduction of  a cylindrical coordinate system 
(r, ¢. z). Making use of the axial symmetry the equations 
of motion become: 

OU ~ OV 
o-7 + -; + V: =o, 

Ou Ou Ou I + ~ + v~ --;(~ + a,)  ~ 

FO'u I Ou u 02ul 
, 

Ow Ow Ow uw d12 
0-7 + u ~  + v ~  +-7- + 2ua + r-d- f 

[ 0 %  low w O'w-1 

, o ,  

OV + uOe + Oe dqo 
o-; Y~ ~ +d--7 

o,+.ro o i Or 02v1 

= -0~ kOr2 + 7N +T'['J" 

Here u, w and v are the velocity components in r - ,  tp-  
and z-direction respectively; [ l  = [~i: and qo = qo|... 

3. NUMERICAL M E T H O D  

Since its introduction in the mid-sixties[12] the 
Marker-and-Cell method has become one of  the most 
popular methods for calculating free-surface flows. 
Several versions have been developed, each one dedi- 
cated to specific physical situations. In the present 
investigation a version is required which is able to 
treat arbitrary free-surface shapes and which can 
treat capillary effects (surface tension). Such a 
method has been introduced recently by Hirt and 
Nichols[10]; it is called SOLA-VOF. 
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The special feature of  the SOLA-VOF method is 
the volume-of-fluid (VOF) technique for keeping 
track of the location of  the fluid and in particular its 
free surface. In the VOF technique a function F is 
defined which indicates the fractional volume oc- 
cupied by the fluid in a grid cell. Thus a unit value 
of  F indicates the cell is full of  fluid, whereas a zero 
value indicates an empty cell. Cells with F values 
between zero and one must then contain a free 
surface. Surface locations, slopes and curvatures are 
easily computed, and the F distribution can be ad- 
vanced in time by advection (DF/Dt  = 0). Some care 
has to be taken, however, in order not to introduce 
too much smoothing of the free surface, and, on the 
other hand, not to introduce instabilities. For a 
detailed description of  the advection algorithm we 
refer to[10]. 

Like most members of  the Marker-and-Cell family 
the SOLA-VOF method is an explicit finite- 
difference method. It makes use of  a rectangular grid 
which covers the computational domain; stretching 
of  the grid is possible. The dependent variables are 
defined at staggered locations in the grid, as shown 
in Fig. 2. The momentum equations in r-, ¢- and z- 

direction are applied at the points where the correspond- 
ing velocity components, u. w and v. respectively, are 
defined. We note that in the original SOLA-VOF method 
no azimuthal velocities are included ( w m  0); the e-mo- 
mentum equation, however, is easily added. 

For thc spatial discretization of the viscous terms 
central differencing is used. The convective terms can 
bc discredzed by either upwind diffcreneing or central 
differencing. In most applications we have adopted 
upwind differencing, as this allows use of a larger time 
step (see the remarks on stability below). However, its 
diseretization error has the effect of  adding viscosity 
to the fluid. This artificial viscosity may well domi- 
nate the real viscosity. Hence in flows where viscous 
effects play an important role care has to be taken in 
interpreting the results of the calculations. A compre- 
hensive discussion of  this subject has been given by 
Gresho and Lee[14]. 
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In temporal direction SOLA-VOF is an explicit, 
two-level method. The time derivative is descretized 
with first-order accuracy. A time step from t" = nat  

to t" * ~ = (n + i )d t  is organized in the following way: 
Abbreviate the Navier-Stokes equations (1) as 

div n = O, 

u + grad: = R, 

(3) 

then the discretization in time can be written as 

div u'+'=0, (4a) 

U n + l  m U a  

At 
+ grad/i" ÷ ' = R'. (4b) 

The subscript denotes the time level, e.g. u ' =  u(t"). 
Taking the divergence of  (4b) and using (4a) we 
obtain finally 

div grad$"÷ t = I div (u" + / I t  R'), (5a) 

ff, , t  = u, + dt R, _ .4t grad/~,, t. (Sb) 

Equation (Sa) is a Poisson equation for the pres- 
sure, to be solved in the domain occupied by the fluid. 
At the free surface, taken in its position at t = t", a 
Dirichlet condition applies 

:,, t = - 2dH', 

where H" is the mean curvature at time level t ' .  This 
condition follows from the normal component of the 
stress relation (2) after neglect of the contribution of  
the viscous shear stress. At the container wall a 
boundary condition for .~ can be found by consid- 
ering the normal component of  (4b). This results in 
a Neumann condition 

j + 1/2 . . . .  

i - - - - "  

j - 1 / 2  - - ' - - -  

i - 1 / 2  

vi . j  + 112 

, U i -  I12.i ~ i , i  

Wi.j 

vi.j - 1/2 

T 
! 
! 
! 
I 

i 

ui + I12.i 

' +  112 

Fig. 2. The arrangement o f  the variables in a grid cell. 

0 

On 

where n is the normal to the container wall. The 
Poisson equation has been solved with an alternating 
line-relaxation technique. Some of  our calculations 
have been performed on a Cyber 205; in these 
calculations point-relaxation has been used because 
the latter technique can be vectorized more efficiently. 
Both techniques are described in[14]. 

As in any explicit method the time step dt  is 
restricted by stability criteria. In general stability of  
the numerical process requires that (numerical) errors 
do not grow in time. It is very difficult for nonlinear 
equations to obtain precise (necessary and sufficient) 
stability criteria, but for practical purposes the fol- 
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lowing ones (based on linearized theory) are useful as 
a "rule-of-thumb'" (see [2, 14, 15]): 

t , , t  4 e(At)  2 max (zlr)" (d~') ~ < 9"nn" 

The above conditions apply when upwind 
differencing is used for the convective terms. When 
central differencing is used an additional criterion has 
to be satisfied 

At max(u 2, vZ)/v < 2. 

For fluids with small viscosity the latter criterion usually 
is the most restrictive; the switch to upwind differencing 
is often made to avoid this criterion. 

4. EXAMPLES O F  CALCULATIONS 

We will now illustrate the type of problems which 
can be analyzed with the method described above. 
Hereto we have performed some calculations for the 
cylindrical container to be used in the Spacelab 
experiment (see Fig. 1). it has radius 2.5cm and 
height 8 cm. The container is partially filled with a 
silicon oil with kinematic surface tension O = 20 cm' 
scc -z and kinematic viscosity v = 0.03 cm 2 sec'a. The 
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contact angle of the liquid/solid combination is 0°; in the 
numerical simulations a value of I0 ° has been used. 

Since axisyrnmetric motion is being studied, the 
computational domain is restricted to a meridional 
plane. 

4.1 Rotating cylinder 
In the first example we show a case in which the 

shape of  the region occupied by the liquid (and hence 
the free surface) undergoes a large deformation. This 
case makes high demands upon the surface tracking 
mechanism; the calculations clearly demonstrate the 
power of  the VOF method. 

in this example the liquid motion is induced by 
increasing the rate of rotation around the axis of 
symmetry of  the cylinder. At t = 0 the half-filled 
container is at rest; the fluid is situated at the lower 
part of the cylinder (see Fig. 3, t - -0)  and dimen- 
sionless particles are spread with regular intervals 
over the fluid region. 

Now the angular velocity is increased finearly from 
[2 = 0 rpm at t = 0 to f / =  35 rpm at t = 35 sec. After 
35 sec f~ is held at 35 rpm (see Fig. 4). 

Figure 3 gives an impression of the spin-up process; 
the position of the free surface and of the particles is 
shown at various points of  time. By making many 
pictures and taking a shot of each picture, a motion- 
picture is made which shows the spin-up in full detail. 
The first ten seconds show merely a movement of the 
particles. After that the fluid is forced up the outer 
wall. Shortly before t = 40 sec the fluid reaches the 
top and a bubble-like shape is found. This bubble 
eventually bulges out to an annular shape. 

\ J  

T = 0 .0  T = 10 ,0  T = 2 0 . 0  T = 3 0 . 0  

T = 4 0 . 0  T - 5 0 . 0  T = 6 0 . 0  

Fig. 3. Dynamic response to spin-up from D = 0 rpm to D = 35 rpm. 

\ J  
T = 7 0 . 0  
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Fig. 4. Angular velocity in spin-up example. 
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In this example the computational grid was chosen 
6 x 12. Stretching in vertical direction was applied to 
obtain a higher resolution near the free surface; the 
vertical mesh spacing varied from 0.52 cm near the 
free surface to 0.91 cm near top and bottom of  the 
container. 

The timestep used was 0.01 scc. On a Cyber 73-28 
computer a timestep on this grid requires about 0.4 
CPU sec. 

, J a , T w o  configurations have been investigated. The 6O 80 
first one is chosen such that the free surface is about TIME (see) 
horizontal. This corresponds to terrestrial conditions 
where gravity dominates the capillary effects, but also 
to low-gravity conditions in combination with a 
contact angle near 90 ° . The calculations have been 
performed with 0 = 85 °, since for 0 = 90 ° the fluid 
remains in its initial equilibrium position. The results 
of  the calculations can be compared with analytical 
results which are available for a horizontal free 
surface [ i 6]. 

For a range of  frequencies the liquid response 
between t = 0 and t = 30 sec has been computed. For 
most frequencies 30 sec appear to be long enough for 
the fluid to have attained a steady response. Figure 
5 shows the steady response amplitude of  the free- 
surface height at the axis as a function of  the 
excitation frequency w for a fixed excitation ampli- 
tude/ I  = 0.03 cm. Linear theory based on a horizon- 
tal fluid surface predicts a lowest axisymmetric slosh- 
ing frequency co I according toil6] 

= ~(3 .8317y tanh f3.8317 h'~ • 

where R0 is the radius of the container and h the 
liquid height. The number 3.8317 corresponds to the 
first zero of  the Bessel function Jj. For the present 
configuration (R0=2.5cm and h = 4 c m )  eqn (6) 
yields a value m~ = 8.49 tad/see. 

Inspection of  Fig. 5 reveals two peaks: one around 
m -- m~. corresponding to harmonic resonance at the 

In order to be able to capture the thin layers that 
occur during the spin-up process the 8 x 16 grid was 
smoothly stretched with more points near the solid 
walls. The time step used was 0.002 sec. The calcu- 
lation required about 10 -2 CPU see/time step on a 
CYBER 205. 

4.2 Forced axial vibrations 
in the second example we have used the present 

method to calculate the response to forced axial 
vibrations: it will be shown that the orientation of the 
free surface has a considerable influence on the 
response behaviour. 

Schilling and Sieckmann[7] have analyzed a similar 
problem by a different method, but had to limit the 
impres~d motion to small excitations of  harmonical 
nature. Using the present method arbitrary ex- 
citations are allowed; nonlinear effects can bc studicd. 
as well as the transient rcsix)n~ bchaviour. 

Calculations have been performed with a container 
which is half filled with liquid. The liquid is posi- 
tioned in equilibrium in the lower half of  the con- 
tainer. At t = 0 the container is set into an axial 
vibration with frequency m and amplitude ,4. accord- 
ing to 

q0(t) = - m A  cos (.,t). 

u,l iO 

=Ei<c 
< [ I Z  
~,,_o 

eL. k- 

¢ i x  

15 

10 

IC A N G L E .  85.0 DEG h 

~_ [ Exc.A~,P~. ; .03 c~ I 1_- SUBHARMONIC ~) 2 
RESONANCE 

O 

I 
I 

5 ~"-, 

ol I 
o .5 

% 
Qe el e~ 

1o 15 

EXCITATION FREQUENCY (RAO/SEC) 

® 
O O  I _ 

v 

2O 

Fig. 5. Response of free surface to axial vibrations for 0 = 85°; note the ~subharmonic resonance. 
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Fig. 6. Transient response of free surface height to axial vibration at lowest eigenfrequency (0 ffi 85"). 

eigenfrequcncy, and a much larger one around 
oJ = 2~o,. The latter peak corresponds to 
~-subharmonic resonance. Linear theory, featuring 
the Mathieu equation, can be used to predict the 
latter behaviour[16]. It is interesting to look at the 
time history of the resonance at the two peaks. 

Figure 6 presents the motion of the axial free- 
surface height for ~o ffi 8.5 tad/see; the figure shows 

the response R (i.e. the deviation from the equi- 
librium position) divided by the excitation amplitude 
A. The fluid responds quickly in the excitation fre- 
quency ( ~  eigen-frequency). The situation is com- 
pletely different when ~o = 2.~t. 

Figure 7 shows the response at o~ -- 16.5 rad/sec 
(corresponding to the largest response obtained). 
Now it takes about 30 sec for the fluid to reach a 

R,'R 

1•"  

-111 - 

A 
v . . . . .  

. A A ^ A A ~  ^^AA A 
Jvvvvv 

| | ! | 

CRNGLE.8S.• DEG 
EXC.AMPL- . • 3e  CM 
FXC.FRI 

,,  AAIAIAAII 

lrlJll/LIJ/rll/JlI[ll  v vv! IiYlIIItlMlllIi' 
"wwllllllll 

• $ l e  15 2e 25 30 

TIRE (SEC) 

Fig. 7. Transient rcsponse of ~ccsur~ce heightto axial vibration at twicethelowest eigen~equency; 
~subharmonic ~sonancc (0 ffi 85°). 
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® 
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0 5 10  15  

E X C I T A T I O N  F R E Q U E N C Y  ( R A O / S E C )  

Fig. 8. Response of free surface to axial vibrations for 0 = 10 °. 
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steady response. Moreover, whereas the fluid starts to 
respond in the excitation frequency, the final response is 
in the basic eigenfrequency. 

The second configuration analyzed is typical for a 
low-gravity environment. For a contact angle 0 = 0" 
the free-surface forms half of  a sphere, and can no 
longer be considered horizontal. To our knowledge 
no analytical results are available for this 
configuration. Again we have been vibrating the 
container: excitation amplitude in this case 
A =0.02cm. Figure 8 shows the steady response 
amplitude of the axial surface height as a function of  
m. Two peaks are visible, one around co -- 4.5 tad/see 

and another one around oJ = 14.5 rad/sec. As the 
fluid responds in the excitation frequency (Figs. 9 and 
10) these peaks correspond to eigenfrequencies. Note 
that the lowest eigenfrequency has decreased as com- 
pared with the previous case with 0 = 85 ~. in contrast 
with the previous case no ~subharmonic resonance 
can be found in Fig. 8. Yet the response at 

= 9 rad/~'c (i.e. twice the lowest eigenfrequency) is 
worthwhile showing (Fig. II).  The fluid starts to 
respond in the lowest eigenfrequency (~-subhar- 
monic), but gradually switches to the excitation fre- 
quency. Thus, the response is just the opposite of the 
behaviour shown in Fig. 7. 

R/R  

l e  

. / '  

- I 0  

- 1 5  , 
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v V vV 
i ! 
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 UUU 
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l e  15 

CANGLE. l e . e  DEG 
EXC.Af lPL-.e2e CR 
I : ' X C . I ~ R g O *  4 . S  RAD/~FC 

II Ill 
Ill Ill 

U rl UWU 
i i i ! i 

2e 25 

T I R E  ( $ E C )  

JL 
l( 
I 

3 e  

Fig. 9. Transient response of free surface height to axial vibration at lowest eigenfrequency (0 = 10°). 



648 A. E. P. VELDMA~ and M. E. S. Vooecs 

R/A 
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Fig. 10. Transient response of free surface height to axial vibration at second eigenfrequency (0 = 10"). 

For more information on the,~ forced vibrations, 
including Fourier spectra of the response, we refer 
to[141. 

5. CONCLUDING REMARKS 

A numerical algorithm has been presented which 
can be used to simulate axisymmetric liquid sloshing 
under low-gravity conditions. The algorithm is an 
extension of the SOLA-VOF method. A low-gravity 

environment makes high demands on the surface- 
tn,cking mechanism since large deformations of the 
free surface will frequently occur; this in contrast with 
terrestrial conditions where gravity is dominating. 
The examples presented clearly demonstrate that the 
VOF technique is capable to follow the free surface 
during large deformations. This makes the method 
highly flexible with respect to liquid configurations 
which can be simulated. 

R/A 
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TIME (SEC) 

Fig. I I. Transient response of free surface height to axial vibration at twice the lowest eigenfrequency 
(0 = 10~). 
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Future developments include extension o f  the 
method to three-dimensional situations. Also, the 
mathematical  model can be extended to describe the 
interaction between the liquid dynamics and the 
motion o f  the container. Thus a tool will become 
available with which the dynamic behaviour o f  free- 
floating liquid-filled containers can be predicted. 
Such a tool is applicable in the design o f  atti tude 
control system for spacecraft carrying large amounts  
of  liquid. 
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