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Finite-Size Effects for Some 
Bootstrap Percolation Models 

A. C. D.  van Enter, 1 Joan Adler, 2 and J. A. M. S. Duarte 3 

Received January 3, 1990 

The consequences of Schonmann's new proof that the critical threshold is unity 
for certain bootstrap percolation models are explored. It is shown that this 
proof provides an upper bound for the finite-size scaling in these systems. Com- 
parison with data for one case demonstrates that this scaling appears to give the 
correct asymptotics. We show that the threshold for a finite system of size L 
scales as O{1/[ln(ln L)]} for the isotropic model in three dimensions where 
sites that fail to have at least four neighbors are culled. 

KEY WORDS: Bootstrap percolation; critical exponents; phase transition; 
finite-size scaling; simulation. 

1. I N T R O D U C T I O N  

In two recent papers Schonmann (1'2/ has rigorously proven that the 
percolation threshold of an infinite system Pc is unity for two classes of 
bootstrap percolation ~3/ (BP) models. 4 In BP (5) one starts with a random 
distribution of occupied (with probability p) sites and then culls all those 
sites which do not fulfill a certain condition. This irreversible removal of 
sites is continued until either the whole lattice has become empty or until 
a stable configuration where no more sites can be removed is reached. For 
example, on a hypercubic d-dimensional lattice with 2d nearest neighbors 
we may remove all those sites which do not have at least m occupied 
neighbors. The condition may be anisotropic; for example, in directed BP 
models (6) on the square lattice, occupied neighbors are only counted in 
three directions. In the isotropic Schonmann model, m ~> d +  1, and in the 
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directed Schonmann model (DBP), rn = 2, d =  2. The Pc = 1.0 result was 
known for the isotropic case of rn ~> 2 d -  1, but was somewhat unexpected 
for the other cases. The result was surprising because numerical data gave 
estimates below unity. These data had been analyzed with an incorrect 
assumption of the finite-size scaling form, and, as we shall explain below, 
this led to the incorrect result. 

In the present paper we discuss the importance of using the correct 
form for the finite-size behavior of BP models in Section 2. A summary of 
numerical estimates of BP thresholds is given in Table I. A proposal for the 
correct forms for the two Schonmann cases is discussed in Section 3. Since 
the exact results only lead to upper bounds on the finite-size effects, we 
have made a numerical fit to existing data for both the isotropic and directed 
cases, in order to determine whether they provide the correct asymptotics. 
This fit and our conclusions are presented in Section 4. 

2. THE IMPORTANCE OF THE CORRECT 
FINITE-SIZE SCALING 

There are many variants of BP, and numerous independent routes to 
its discovery. A summary of early work prior to 1986 is given by Adler and 
Aharony, (5/who classified the different variants of the model according 
to the best information then available about the types of percolation 
transition that occur. Adler and Aharony present a mapping from boot- 
strap-percolation, with concentration p, to diffusion-percolation (DP), with 
concentration 1 - p, models. In the latter, sites become occupied if a certain 
configuration of neighboring sites is already occupied. The occupation 
processes terminate when no more sites can be added. We choose the BP 
language for this paper, and have translated all results originally given in 
DP language via the mapping from ref. 5. 

In Table I we summarize the results of many different calculations of 
thresholds for BP models. In order to make numerical predictions for the 
infinite system threshold in a percolating system, some assumed form of 
size dependence for psL0 must always be made. We define psL0 to be the 
lowest concentration at which 50% of samples of linear size L percolate. If 
the correct form for the approach to L =  ov has been chosen, then the 
extrapolated p~o=pc. For second-order percolation transitions, the 
assumed behaviour is based on the same finite-size scaling that is used for 
second-order transitions in thermal systems. One assumes that 

pfo-  pc~ L -1/~ (1) 

where v is the correlation length critical exponent. This assumption is well 
justified by the numerical agreement with exact and field-theoretic percola- 
tion results. (14) For one-dimensional percolation and m = 2d bootstrap in 
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Table I. Estimates for p~0 BP Models Derived from Dif ferent  
Finite-Size Extrapolations 
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Dimension Model Extrapolation Estimate 

2 m = 3 BP a Eq. (2) 0.965 _+ 0.005 
2 m = 3 BP b Eq. (3) 0.998 _+ 0.004 

2 s2n D P  a Eq. (2) 0.935 _ 0.015 

2 s2n D P  b Eq. (3) 0.998 _ 0.004 

2 c3n D P  C Eq. (3) 0.92 

2 m = 2 D B P  d Eq. (3) 0.966 +_ 0.010 

2 m = 2 D B P  e Eq. (9) 0.996 _+_ 0.010 

3 m = 4 BP a Eq. (2) 0.896 + 0.010 

3 m = 4 BP f Eq. (3) 0.937 __+ 0.005 
3 m = 4 BP e Eq. (6) 0.98 • 0.02 

~' Ref. 5, where other early estimates for the BP values in which use of Eq. (2) is implicit are 
also quoted. These all fall below 0.96 for d =  2, m = 3 and 0.91 for d =  3, m = 4. 

b Ref, 12, where estimates from refs. 8 and 9 that gave values of unity for related models with 
scaling of the Eq. (3) type are also quoted. 

c Ref. 13 
d Ref. 6 
e This calculation. 
r Ref. 15 

other dimensions, Adler and Aharony showed analytically that a result 
analogous to that for thermal first-order transitions is found, i.e., 

L L -  1/~ P s o - - P c  ~ (2) 

where v = 1/d.  Numerical evidence from ref. 5 shows that psLo is equal to p~ 
for all this class of percolation first-order transitions. 

The cases of m = 2 d -  1 BP have long been known to be special; there 
are no stable finite clusters and the transitions are first order. Straley (v) 
argued that some of the rectangular voids that occur in the spanning 
("infinite") clusters in these systems are unstable. One unstable void can 
grow to engulf the entire sample; this process leads to the threshold of unity 
for an infinite system. The result was independently obtained by others (8'9~ 
and has been made rigorous by van Ente? 1~ with a simple contour 
argument. Aizenman and Lebowitz (11) showed that the psLo scales as 

( 1 -  ,,L )I/(a 1 ) = 2 / l n L + . . .  (3) vs0 
Bounds on the prefactor )~ were estimated in ref. 11 and the 2 for several 
systems were measured numerically by Adler e t  aL (12) In Table I we list 
results of extrapolation via Eq. (3) and compare these with some extrapola- 
tions via incorrect assumptions for this class. For the m = 2 d -  1 class the 
numerical estimates for P~o extrapolated according to Eq. (3) all include the 
exact 1.0, with the exception of the Frobose ~ model, where the crossover 
point to the asymptotic behavior has not been reached. As explained by 
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Adler etaL, ~12) this model is the most difficult to vacate, so this is not 
surprising. 

It is quite easy to see that there are also no finite clusters in the 
m < 2 d - 1  Schonmann cases; this suggests that the percolation transition 
may also be first order. However, the voids in these models can have 
corrugated edges, and in an approximate analysis, this corrugation ~v) 
implies a possibility of stability. If the voids are stable, then percolation 
could occur with a single "infinite" cluster at a threshold below unity. 
Numerical evidence (see Table I) based on several different extrapolations 
including Eq. (3) was consistent with this common wisdom. Prior to 
Schonmann's calculations no exact results were available for the m < 2 d -  1 
isotropic BP and d =  2, rn = 2 DBP cases. Intuition suggested that if low-m 
bootstrap models had second-order transitions where P~0 behaved as in 
Eq. (1) with the usual percolation v value, the (m = 2d) cases had first- 
order ones with Eq. (2) and v = lid, and the m -- 2 d -  1 has a logarithmic 
L dependence as in Eq. (3), then the intermediate case of m = d +  1 would 
have some weaker form of In L behavior. A serious attempt ~15) to generate 
high-quality data for the m = 4, d = 3 bootstrap problem has recently been 
made. These data were analyzed with several trial behavior assumptions 
involving logarithms, but none was consistent with p~. = 1.0. The highest 
value measured was about 0.94. Similar large-system calculations by 
Duarte ~6) for the directed case also gave a threshold of about 0.97, again 
below unity. The later sections of this paper will concern the reconciliation 
of the numerical data with Schonmann's exact result that Pc = 1.0 for these 
classes of BP models. This might be effected by obtaining the correct form 
for the finite-size scaling for both problems. Therefore~ we conclude this 
section with a discussion of the importance of choosing the correct form. 

Simulation of percolation systems is not the only area in which 
assumptions need to be made about the correct form of the critical 
behavior. An incorrect assumption for the nature of the critical behavior in 
second-order phase transitions can lead to incorrect "effective" exponents 
and erroneous critical temperature and threshold estimates. This effect has 
been observed (far too frequently) in the analysis of both experiments ~16) 
and series expansions. ~14"17 19) It is not always easy to see that estimates 
derived from incorrect assumptions are in error, since the ~ 
exponents may satisfy scaling relations. Numerical tests of convergence, 
such as scatter in simulation or experiment, or variation in different Pad6 
approximants in series analysis, do not always discount the incorrect 
estimates a priori. Signatures of trouble are more likely to be violation of 
hyperscaling relations ~14'17) or disagreement with exact or field-theoretic 
resultsJ 19) Examples of this kind of problem occurred in some early series 
analyses of the 3D Ising model ~1v'~8) and 2D percolation, ~14'19) when correc- 
tions to scaling were neglected. Field-theoretic analyses do not suffer from 
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the possibility of neglect of corrections to scaling since these often arise 
from irrelevant operators which are taken care of in the field theory. 
Another trouble signature is violation of relations between the critical 
amplitudes. For example, Ahlers (16) observed that although on initial 
analysis the specific heat exponent of superfluid helium appeared to be 
zero, the critical amplitude ratio was not unity as expected for a 
logarithmic divergence. More careful analysis using a correction to scaling 
term showed that the exponent was slightly negative and that the 
experimental amplitude ratio agreed with the field-theoretic value. 

The need for a correct assumption about the critical behavior as a 
function of temperature or threshold for an analysis of experimental or 
series expansion data is paralleled by the need for a correct assumption 
about the nature of the finite-size dependence for the analysis of simulation 
data. One example of the application of an incorrect assumption of the 
functional form for finite-size behavior for a first-order transition within 
bootstrap percolation is the assumption (12) of L -d behavior for some 
models in the m = 2 d -  1 bootstrap family. This assumption, once used in 
the absence of better information, is now known to be erroneous. (1~) Its 
application to the m = 2 d - 1  models leads to effective critical exponents 
similar to the second-order percolation ones and estimates of ~0.96 for 
P/o. As noted above, the correct behavior for these systems is that of 
Eq. (1) and later reanalysis of the same data using the correct logarithmic 
law for these systems gave prefactors within the exact range and the correct 
threshold of unity. 

The correct forms for critical behavior in thermal systems are usually 
based on scaling arguments which are, in turn, based on thermodynamic 
results. For second-order percolation transitions, the forms have been 
based on analogies with magnetic systems and field-theoretic results in high 
dimensions and can today be justified by Kesten's ~2~ exact proof of hyper- 
scaling in two dimensions. In the absence of a thermodynamic scaling or a 
field theory for bootstrap percolation, the only reliable guides for the 
correct finite-size scaling are exact results. These exact results, mathemati- 
cally speaking, often give upper bounds on the finite-size effects. Thus it is 
important in principle to make simulations in order to check if this bound 
describes the true behavior. It is of practical interest to determine what size 
system is needed to observe this behavior. 

One distinction between the cases cited in refs. 16-19, and the scaling 
forms proposed to date for BP systems, is that the scaling forms used in the 
cited references all include a dominant divergence with some kind of 
correction term. This correction term, which is a manifestation of irrelevant 
operators, is well motivated by the physics of the thermal system or of the 
percolation field theory. There is no reason why similar corrections cannot 
be present in BP systems. If this is the case, then the correct scaling form 
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for BP systems might be made up of two or more competing terms; one 
could dominate near the infinite system limit, and the second for smaller 
sample sizes. In fact, for very small DP systems, (12/a different slope is seen 
in a graph of 1 -  p~. as a function of 1/ln L. Just as thermal systems cross 
over to a different type of behavior far from the critical point, BP models 
could have different behaviors in different size regimes. For  example, for 
very small DP systems, (12) a different slope is seen in a graph of 1 -  Pc as 
a function of 1/ln L, to that observed in the larger samples and modeled by 
Eq. 3. To the best of our knowledge no scaling form that models such a 
crossover has yet been proposed for this DP model or for any other BP 
system. We will propose a crossover scaling form for the DBP case below. 

3. DERIVATION OF THE FINITE-SIZE SCALING 

We begin our derivation of the finite-size scaling form with a discus- 
sion of the rn = 4, d = 3 BP model. The main observation in Schonmann's 
proof (1) is that an empty cube of size N 3 becomes unstable if its side 
squares become internally spanned by a vacant cluster (i.e., emptied out by 
growth of a rectangular void) in the d =  2, m = 3 BP model. According 
to Aizenman and Lebowitz, (~1) this happens if p~-O(1/lnN) or 
N ~  exp O(1/p). In this case the cube keeps growing with high probability. 
The probability that such a large cube is empty is 

p N  3 --= p{exp[O(1/p)]} 3 = pexp[O(1/p)] (4) 

because [exp(1/p)] 3 = exp(3/p) ~- exp[O(1/p)]. 
The necessary system size L 3 to find such a critical droplet 

(generalized Straley void) is the inverse quantity 

L 3 -= ( I / p )  exp[O(1/p)] (5) 

Inverting Eq. (5), we find ln(ln L) is of O(1/p) or 

p = O ln(l~ L) (6) 

If such a cube is empty, then it will continue to grow and therefore the 
entire L 3 lattice will become vacant. Thus, p~ scales as O[1/ln(ln L)] .  This 
is an upper bound on the scaling because there is a possibility that the void 
will grow even if its sides are not internally spanned. For  higher-dimen- 
sional hypercubic lattices with m = d +  1 there is an extra In factor in the 
denominator of the rhs of Eq. (6) for each additional dimension. 

For the d = 2 ,  m = 2  directed model Schonmann considers critical 
wedges consisting of a sequence of increasing squares. These play the role 
of the rectangular voids. The probability that a particular point is at the 
end of such a critical wedge is [Schonmann, Eq. (0.2)] 

~(p)= I~l [ 1 - ( 1 - p ) ~ ]  k+' (7) 
k=l 
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Hence, 

lnc~(p)= ~ ( k + l ) l n [ 1 - ( 1 - p )  k] 
k = l  

[Vp] 

~E 
k - 1  

[Vp] 

k - - I  

(k+ 1 ) l n [ 1 -  (1 - P ) k ]  - L (k+ 1 ) ( I - P )  k 
k -  [J/p] 

We invert Eq. (8) to obtain the system size L 2~ 1/e(p) that is needed to 
contain the edge of at least one critical wedge of the Schonmann form. This 
gives 

p ~ O [ ( l n L )  1/2] (9) 

to have a chance of obtaining a critical wedge in the system. With periodic 
boundary conditions, such a wedge will imply growth of the void and a Pc 
of unity. The sealing is O[(ln L)-I/2]. The generalization of both exact 
results and a scaling form for the directed problem in higher dimensions is 
an open problem, to the best of our knowledge. 

After we completed the derivations of the above forms and submitted 
an earlier version of this paper, Schonmann(21) informed us that after reading 
our paper he has now been able to improve the arguments for the directed 
model. The improved arguments are based on a different geometry, of a 
wedge growing from empty vertical segments of length N(p), rather than 
wedge segments that grow from a point. They result in a modification of 
Eq. 8, which becomes 

ln ~(p) ~- N(p) ln(p) + ff---~ (exp- ~ N(p))) (10) 

and Schonmann (2~) proposes taking N(p)=p (1+c), where c is small, or 
N(p)=ln(1/p)/p. This means that the first term in Eq. 10 now gives the 
asymptotics (rather than both terms contributing similarly as in Eq. 8 on 
which the old asymptotics was based) and that the correct scaling is 1/ln L, 
with possible additional logarithmic corrections. 

4. N U M E R I C A L  FIT A N D  C O N C L U S I O N S  

We have tested both the forms by reanalyzing the simulation data of 
refs. 6 and 15. The plot for the directed problem (6) is given in Fig. 1. The 
data were obtained for lattices of linear size between 5 and 15,360. Both 
the extrapolation as a function of 1/(lnL) 1/2 (large triangles) and the 
extrapolation as a function of 1/(ln L) (small stars) are given. A simple 
extrapolation by placing a ruler on the final points of this plot gives 
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Fig. 1. G r a p h  o f p ~  0 as a function of 1/(ln L)  1/2 and as a function of 1/(ln L)  for the m = 2 ,  

d = 2  directed BP model. The data are taken from ref. 6. ( A )  Square root scaled points; 
(*) logarithmic points. The asymptotic result of L = oo and p~ = 1.0 is indicated by a super- 
position of both symbols. 

p c = l . 0 _ 0 . 0 5  for the square root scaling, to be compared with 
p c=  0.966_+ 0.010 for the inverse logarithmic one. (6) A more detailed 
analysis has also been made using 3, 4, 5, and 6 consecutive points to fit the 
form of Eq. (9). This will be presented in more detail in a forthcoming 
paper on the dynamics of this model. (21) This analysis shows that the 
square root scaling is only applicable to lattice sizes above L = 300, but for 
samples above this size it gives an extrapolated threshold in good agree- 
ment with the exact value of Pc = 1.0. 

It is clear that the numerical data favors the square root scaling based 
on Eq. 8, rather than the now-believed-correct form from the first term in 
Eq. 10. One possible explanation is that the wedge type geometry 
dominates in the size range of these simulations leading to the square 
root behavior, and that still larger samples are needed to see the true 
asymptotic behavior. It is also possible that neither the square root nor the 
logarithmic behavior is the correct form and that the square root is an 
effective behavior in intermediate sizes. Larger simulations of the DBP sys- 
tem, and/or an analysis of the type of void structures that actually occur in 
the samples in different size ranges, will be needed to resolve this question�9 

The plot for the isotropic problem is given in Fig. 2. The data have 
been obtained (~51 for samples of linear dimension ~<704. Both the 
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Fig. 2. Graph of P~o as a function of 4/ln L and as a function of 1/ln(ln L) for the m = 4, 
d =  3 isotropic BP model. The data are taken from ref. 15. (A)  Double logarithmically scaled 
points; ( , )  logarithmic points. The asymptotic result of L = oe and Pc = 1.0 is indicated by a 
superposition of both symbols. 

extrapolation as a function of 1 / [ ln ( lnL) ]  (large triangles) and the 
extrapolation as a function of 1/(ln L) (small stars) are given. [-Note a nor- 
malization by a factor of 4 in the 1/(ln L) data in order to fit both sets of 
data onto the same plot.] The data for the double logarithm have 
curvature up toward Pc = 1.0, whereas the data plotted as a function of 
1/(ln L) curve in the downward direction or fall on a straight line that 
extrapolates to Pc = 0.937 + 0.005 according to the authors of ref. 15. This 
suggests that the double logarithm is a better fit, although the 7043 sample 
may not yet be in the truly asymptotic regime. If we force a straight line 
through the double logarithmic plot, we find Pc = 0.98 _+ 0.02. 

We conclude that the m = 4, d =  3, BP model we have been able to 
deduce an asymptotic scaling form for extrapolation that gives the correct 
threshold of unity. 
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