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The transient grating as a probe for polariton dynamics

Jasper Knoester

Department of Physical Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Atheory is presented that microscopically accounts for the role of polariton propagation in the transient grating experiment.
The basis of our theory is formed by coupled equations of motion for polariton amplitudes and coherences, in which we
account for polariton-phonon scattering. It is demonstrated that at low temperature the transient grating experiment probes
polariton dynamics. Explicit results for the transient grating signal are obtained within two specific (strong-collision) models

for polariton scattering.

1. Introduction

The effect of retarded interactions on the non-
linear optical response of condensed phases has
recently attracted much attention [1-4]. As these
interactions are mediated by the transverse electric
field, they can be accounted for by considering the
combined eigenmodes of the microscopic radi-
ation field and the material Coulomb excitons
(which only include the instantaneous interac-
tions). These eigenmodes are the (excitonic)
polaritons, and retardation effects are also called
polariton effects. If retarded interactions are
neglected, the optical response of a sample is deter-
mined by the response of the excitons to the exter-
nal electric fields [5]. The optical resonances then
occur at (differences or sums of ) exciton frequen-
cies; line broadening is determined by scattering
rates of excitons, etc. This picture is in general
valid if the exciton-radiation field coupling
(characterized by f, where f is proportional to the
oscillator strength per unit volume, see section 3)
is much smaller than the coupling of the excitons
to other degrees of freedom, such as phonons,
lattice defects, etc. (characterized by an exciton
damping rate I,) [2,3]. If f<T,,, namely, the
exciton has no time to couple coherently to the
photons before it is damped and the maximum
mixture between excitons and photons in their
combined eigenmodes is of the order f/I,. On
the other hand, if /> I'.,, the unperturbed eigen-

modes in the system are strongly mixed combina-
tions of excitons and photons, and in an optical
experiment one must expect to probe polariton
properties. The condition f> I, is typically met
in low temperature pure crystals and at a
sufficiently high density of oscillator strength.

One of the recent studies that stimulated the
discussion of polariton effects in nonlinear optics,
is a series of transient grating (TG) experiments
in low temperature anthracene crystals performed
by Rose et al. [6]. TGs are traditionally viewed
as ideal probes for exciton migration [6-8].
Agranovich et al. [1], however, noted that the
diffusion constant reported in ref. [6] was too high
for excitons and they suggested that the experi-
ments should be interpreted in terms of polariton
diffusion. The rationale behind this is that the
polariton group velocity is in general much higher
than that of undressed excitons. Although, the role
of polaritons is generally accepted nowadays, a
microscopic theory treating the creation, evolution,
and detection of the TG in terms of polaritons is
still lacking. In this paper we present such a theory,
based on equations of motion for polariton
variables.

2. Equations of motion

We will consider a standard TG experiment
carried out on a molecular crystal. For simplicity,
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we assume the lattice to contain one two-level
molecule per unit cell (transition frequency £ and
transition dipole u ). We work within second quan-
tization. As is well-known, it is possible to trans-
form from the exciton (B}, B,) and photon
(dy, d,) creation and annihilation operators at
wave vector k to a set of polariton creation and
annihilation operators (EIV, &) that diagonalize
the total Hamiltonian in the Bose approximation
(see, e.g., ref.[3]). This yields the familiar two-
branch polariton dispersion diagram (fig.1).
Going beyond the Bose approximation, the full
equation of motion for the polariton annihilation
operator at wave vector k in branch v reads (all
operators taken at time t) [9]:

d . A
a §kv = _lka§k1/
2 L b=y &, W=k, (D

where the k'-sum (as all other wave vector sums
in this paper) extends over the first Brillouin zone
only, [AA, §]+EA§+I§A, and y is a c-number
which depends on k, k', v, and »’; the exact form
of y is not important here (* denotes complex

FREQUENCY

WAVE VECTOR

Fig. 1. Typical polariton dispersion diagram (thick solid

curves). The diagonal line represents photons (w = kc); the

horizontal line (w,) denotes the excitons, where dispersion has

been neglected. The polaritons within the shaded region take

part in the first scattering model discussed in section 3. fis a

measure for the density of oscillator strength and is defined in
the text. The polariton stop gap is not shown.

conjugation). Finally, W(k) is the exciton popula-
tion operator at wave vector k. For harmonic oscil-
lators (bosons) this operator vanishes identically
and the last term in eq. (1) is absent. For excitons
in a crystal of two-level molecules, however, we
have

AL A

A 2
W(k-k)="27 BiwBron
N

zﬁ Z xk'+k”v'xt+k”u£;'+k”u'ék+k”v (2)
k"vy’

(N is the number of molecules), and neglecting
this operator is referred to as the Bose approxima-
tion, which linearizes eq. (1). The population
operator allows for nonlinear effects in the
polariton evolution. The last step in eq. (2) involves
the inverse polariton transformation [3], where x,,
is the transformation coefficient relating é,w to ﬁk ;
the coefficient between f,w and él is usually very
small [3] and has been neglected above. We note
that eq. (2) has been derived from the multipolar
Hamiltonian, using the equations of motion
developed in ref. [5]. A theory based on the
minimal coupling Hamiltonian will give similar
equations.

In terms of polaritons, the TG experiment is
formulated as follows. At time =0, two crossed
pump pulses (wave vectors k; [i=1,2]) are
incident on the crystal and create polaritons with
wave vectors k;, branches v;, and amplitudes (ékl.yi)
((- - -) denoting the expectation value) determined
by matching the boundary conditions for their
electromagnetic field components to the external
laser fields. These polaritons form a grating in the
crystal, which is probed after time r by applying
a third laser pulse (k). This pulse creates
polaritons at (ks, v;), which scatter on the grating,
resulting in signal polaritons with k, =k, — k,+ k.
Finally, these signal polaritons cause the detected
electric field outside the crystal with wave vector
ki~ ky+ k% and intensity (1) |(4,, (1)

To evaluate the amplitude (f,“,,s(t)), we take the
expectation value of eq. (1), which on its right-
hand side involves expectation values of products
of operators. In order to truncate the thus gener-
ated hierarchy of successively more involved prod-
ucts of operators, we factor the nonlinear term and
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obtain:

d . A
a<§k‘u&(t)>: —liwy,, + Ik, v) .. (1))

+ Yy (DX W (k) — ks, 1)), (3)

Here, I'(k,, v,) represents the exciton damping due
to phonon scattering, which can be obtained from
the standard exciton-phonon interaction [3]. Mix-
ing of the polariton branches due to this scattering
is neglected. If we assume that the probe pulse
amplitude relaxes fast on the time scale of the
grating decay (off-resonance detection), we find
for the time-integrated signal intensity:

S(7) o Wk, —ky, 7). (4)

The TG signal is thus determined by the exciton
population at the grating wave vector k, — k,. The
same result is obtained in the traditional (exciton)
theories for the TG [7,8]. The new element in our
approach, however, is that during the pump-probe
delay the evolution of the population is governed
by polariton propagation rather than exciton
propagation. From eqs. (2) and (3) it is seen that
during this period the relevant variables are
polariton coherences, which obey:

d A a . ay A
a (D& (1)) =ilwg, ~ 0 W () &, (1))

= ¥ Tk, K, v)E oD i (1)),  (5)

K'p

where » stands for (v, v', v", v"). This equation
follows from eq. (1) and its Hermitian conjugate.
Notice that now the nonlinear term is neglected,
as it would eventually lead to an intensity of higher
than third order in the laser field intensities. The
last term in eq. (5) results from polariton-phonon
scattering and can be derived from first principles
using the projection technique applied in ref. [3].
It is important that the thermal average over the
phonon bath involved in this technique, automati-
cally restricts the scattering to couple the coherence
at (k, k') only to coherences at (k+ k", k'+ k"), i.e.
the difference of wave vectors within the coherence
is maintained. Equation (5) is the heart of the TG

experiment. A similar equation governs the exciton
theory of the TG, but then w,, is replaced by the
exciton dispersion relation and the scattering ker-
nel describes scattering of excitons [7-9]. It is on
this level that it becomes clear that the TG probes
polariton motion. Although the scattering kernel
I'(k, k', k", v) can in principle be calculated in
detail [9], it must in practice be modeled to obtain
explicit results. The initial condition to eq. (5) can
be obtained by factoring the polariton coherences
(£5,(0)&,(0)) right after the pump pulses into
products of the polariton amplitudes (ﬂv(O» X
(ék,yr(0)>, which are proportional to the amplitudes
of the external laser fields. This factorization is
allowed, because scattering has not yet established
correlations between the polaritons at those early
times. A general result which follows from eq. (5),
is that in absence of scattering the TG signal S(r)
will not decay (the system is then prepared in an
eigenstate).

3. Scattering models

In this section, we discuss two specific models
for the scattering kernel I" which allow for analyti-
cal solution of the signal. The first model is similar
to the Haken-Strobl model for exciton dephasing,
in which I'(k, k', k") =18, o— I/ N: all excitons
are scattered into each other with equal rates [7-9].
This model is a high temperature strong collision
model, which is analytically solvable. Employing
the same model for polaritons is naive, because
these excitations span an enormous bandwidth.
Furthermore, we must realize that only the exciton
component of the polariton is coupled to the
phonon bath. A simple model which includes this
idea assumes that all exciton-like polaritons are
scattered into each other with equal rates. Here,
exciton-like refers to those polaritons with |x,,|* =
3; these polaritons form the upper branch for |k|c <
w, and the lower branch for |kjc> w,, with w,
(=12) the exciton frequency at optical wave vectors
(fig. 1). We thus consider only one polariton at
each wave vector. For this model, eq. (5) can be
solved using a T-matrix analysis. In the limit of
large scattering rate I, the thus obtained TG signal
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is characteristic of diffusive polariton motion [9]:
S(7) = S(0) exp[—2|k, — k,|*v37/3T], (6)

where v, is the effective polariton group velocity,
defined by an integral over the polariton dispersion
curve. For dipolar dispersionless excitons, we
estimate:
a\’

(ool = (L), ™)
with a the lattice constant and A, the vacuum
wavelength corresponding to the transition fre-
quency (2; ¢ is the vacuum velocity of light. The
parameter f is a measure of the oscillator strength
per unit volume and is defined through f’=
8mp2u’/ #, with p the molecular number density.
f has the dimension of a frequency and equals the
separation between the upper and lower polariton
branch at the wave vector wo/ ¢, where the exciton
and photon dispersion curves cross (fig. 1). Equa-
tion (7) yields estimates of v,~10°cm/s and v, =
10° cm/s for anthracene and naphthalene, respec-
tively.

The second model that we discuss here is
inspired on the explanation by Agranovich et al.
[1] for the anthracene TG experiments mentioned
in the introduction. We assume that the pump
pulses have frequencies just in the exciton band,
so that they excite high wave vector polaritons with
a very strong exciton character. The initially
created polariton coherences (ézyékr,,r) will now
relax rapidly until (k + k')/2 reaches the polariton
bottleneck region, creating a new effective initial
condition for the grating (fig. 2) [9]. It is crucial
that this relaxation occurs through a scattering
kernel like the one in eq.(5), so that after the
relaxation the grating wave vector k'—k=k, — k,
is still “memorized”. We now assume that the
polaritons within the bottleneck region scatter into
each other with equal rates (say I'). This again
defines a solvable strong collision model for a
restricted set of polaritons. Let the polariton group
velocity within the bottleneck be denoted v,. Then
in the limit of strong scattering (I" > |k, — k,|v,,),
the motion is diffusive on the length scale of the
experiment and we recover eq. (6) with v, replaced
by v,. In the opposite limit (I" < |k, — k;|vy), the
signal will decay according to S(0) exp(—2I'7).

/
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Fig. 2. Illustration of the second polariton scattering model

discussed in section 3. Compared to fig. 1, a larger part of the

Brillouin zone is shown and a finite effective exciton mass is

included. Polaritons are excited by pulses just above w, (the

k = 0-exciton frequency) and relax fast to the bottleneck, where
the actual TG decay takes place.

4. Discussion

In this paper we presented a microscopic theory
for the TG experiment that accounts for the role
of polariton propagation. The present theory is a
demonstration of the polariton hierarchy proposed
in ref. [5], which may equally well be applied to
other experiments. Within our description, the TG
signal is determined by the exciton population.
This result is also obtained from the traditional
theories for the TG, which consider excitons inter-
acting with external electric fields, and may be
understood from the fact that the population is the
only nonlinearity in a system of two-level
molecules. The crucial difference with the exciton
theories is that during the pump-probe delay the
evolution of the system is determined by propaga-
tion of polaritons instead of excitons. Even though
there are no external electric fields during this
period, the internal (microscopic) electric field
cannot be switched off and the dynamics of the
coupled exciton-photon system must determine
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the outcome of the TG experiment. The TG thus
probes polariton propagation and in particular
depends strongly on polariton-phonon scattering.
Two analytically solvable strong collision scatter-
ing models were discussed. Our equations-of-
motion approach is, however, ideally suited to
incorporate more general and elaborate scattering
kernels. In doing so, one may be led by intuition
and specific knowledge about the system that is
considered. Equation (5) for the polariton coher-
ences is in essence a transport equation and for
certain types of scattering kernels, a connection to
the theory of Boltzmann equations can readily be
made [9]. In general, polaritons must be expected
to cause a faster TG decay than excitons. A nice
demonstration of that is our result, eq. (7), which
was derived in an infinite effective exciton mass
approximation. Within this approximation, the
exciton theory for the TG signal predicts no decay
at all [7,8] whereas the polariton result shows fast
diffusive decay. We finally note that the derivation
of eq. (7) is based on the assumption that polariton
effects are strong (f> I, ; see introduction). In
the opposite limit, the polaritons automatically
decouple into photons and damped excitons, and
the usual exciton theory is recovered.
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