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LETTER TO THE EDITOR

Overlap distributions for deterministic systems with many
pure states

A C D van Entert, A Hoff and Jacek Migkisz§

t Institute for Theoretical Physics, PO Box 800, University of Groningen, Groningen,
The Netherlands
I Dcparlemcnt Malhcmatik ETH- Zentrum, 8092 Ziirich, Switzerland

,,,,,,,,,,,,,,,,,,,, n AL T o P

3 l.llbllllll '.IC I’ﬂyﬁlql.ll: LIICUﬂql.IC, UﬂWﬂl’Sl[E uunuuquc ue wuvam, D‘is I..DI.IVHIII'IH'
Neuve, Belgium

Received 29 June 1992

Abstract. We discuss the Parisi overlap distribution function for various deterministic sys-
tems with uncountably many pure ground states. We show examples of trivial, countably
discrete, and continuous distributions.

In Parisi’s proposed solution for the Sherrington~Kirkpatrick spin-glass model [1,2, 3]
there occurs an overlap distribution p(g¢) which is non-trivial in the sense that it has

I s it - d n dal T 3 M
a continuous part and two delta functions. The suggestion is that such a non-trivial

p(q) represents the presence of infinitely many pure extremal Gibbs or ground states.
As the mathematical status of Parisi’s theory is still poorly understood, it seems of
interest to study its various aspects in simpler models. For instance, Fisher and Huse
[4] have studied the behaviour of the overlap distribution and discussed its strong
dependence on boundary conditions in various examples with only two pure states.
Their work was partly motivated by their conjecture that short-ranged spin glasses
have only two pure states [35,6,7).

We present here some results from a complementary point of view and consider
what might happen in deterministic systems with infinitely many pure states. We
suspect that some spin-glass models do indeed have infinitely many ground states
[8,9), although we consider this matter unsettled at present. The scenario with many
states was recently considered by Newman and Stein [10]. In fact, our paper originated
from discussions with C Newman. Despite somewhat different physical motivations,
our conclusions support those of Fisher and Huse: the overlap distribution does not
describe the number of states well.

The reason for this conclusion differs between our examples and theirs. Whereas
Fisher and Huse show that standard boundary conditions (free, periodic, antiperiodic)
can either suppress some pure state (as happens for example in the random fieid Ising
model) or give rise to a continuous overlap distribution due to floating defects (as
happens for example in the nearest-neighbour ferromagnet with antiperiodic boundary
conditions), in our examples we work with states which are mixtures of uncountably
many pure states that are free of defects. Hence no pure state is suppressed, and
floating defects do not occur. As we work directly with the infinite-volume measures,

1d L1133



L1134 Letter to the Editor

we need not consider boundary conditions. Our systems are deterministic in the sense
that their configurations arc gencrated by deterministic rules: standard substitution
rules producing Thue-Morse and Fibonacci sequences. Also, our configurations are
ground state configurations of deterministic translation-invariant interactions.

More specifically, in our models at every site 7 of the one-dimensional lattice
Z there is a spin variable o; which can attain the values +1. An infinite lattice
configuration is an assignment of spin orientations to lattice sites, that is an element
of @ = {-1,+1}%. We are concerned with non-periodic configurations which have
nevertheless uniformly defined frequencies for all finite patterns. These are examples
of the so-called similar but incongruent pure phases discussed in [4]. More precisely,
to find the frequency of a finite pattern in a given configuration we first count the
number of times it appears in a segment of size { and centred at the origin of the
lattice, divide it by [, and then take the limit [ — oco. If the convergence is uniform
with respect to the position of the segments then we say that the configuration has a
uniformly defined frequency of this pattern. The closure of the orbit under translation
of any such configuration supports exactly one ergoedic translation-invariant measure
on ), say u, which is uniquely specified by the frequencies of all finite patterns.
Such systems are called strictly ergodic if every finite pattern that occurs in the
configuration occurs with a uniformly defined frequency that is strictly larger than
zero. The measures we consider are strictly ergodic. Strictly ergodic measures can
be considered to be the typical ground states for translation-invariant interactions
[11-14}.

Let us denote by g the overlap between two configurations X and Y in the
support of u. It is defined by

N
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Then the Parisi overlap distribution p(q) is the distribution of g,y with respect to
the product measure u @ u.

Our first result is a simple application of a well known result from ergodic theory.
It concerns the so-called weakly mixing measures. Let us recall that a measure p is
weakly mixing if p(fT*() f) — [n(f))? for all f square-integrable with respect to
i, where T is a shift operator, and k(n) the sequence of natural numbers, possibly
excluding a set of zero density (depending on f). This property is equivalent to T
having a continuous spectrum [15].

Theorem 1. If p is weakly mixing then p{q) is a point distribution concentrated on
CICVR

Proof. If u is weakly mixing then u @ u is ergodic {15] and by the ergodic theorem
(1/N) Ef__l o;(X)o;(Y) converges with probability one to [u(ag]®. a

A specific weakly mixing example of a three-dimensional ferromagnetic Ising
model with uncountably many Gibbs states and a trivial overlap distribution has
already been given in [16]. However, in that example all pure states are related by a
global symmetry of the system. This is not the case in the models considered here.

Our next result answers a question of C Newman about the Thue-Morse system.
To define the Thue-Morse system we start by taking a sequence of all 41 spins. At
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the first step we flip every second spin. At the nth step we flip all blocks of 2™~ 1
spins within the previous (n — 1)st configuration from the site (2k + 1)2"~1+ 1 to
(2k+2)2"! for every k. A cluster point of this sequence of periodic configurations
of period 2- 2" is a non-petiodic sequence called a Thue-Morse sequence [17-22].
The closure of its orbit under translation supports exactly one translation-invariant
measure 1)y which is in fact strictly ergodic {17]. Thue-Morse sequences can also
be obtained by iterating the following substitution rule: 1 - 1 ~1, =1 — —1 1.
The Thue-Morse measure ppy has been shown to be the unique ground state for
arbitrary rapidly decaying 4-spin interactions [20].

Theorem 2. 'The overlap distribution p(q) for pp,y is a point measure concentrated
ong=0.

Proof. L*(u7)), the space of functions which are square-integrable with respect to
#py can be decomposed into the direct sum of the two spaces spanned by the odd
and the even functions with respect to the spin-flip operator o; — —o;. The shift
operator acting on the space of odd functions has a singular continuous spectrum
[17]. Therefore when you consider only odd observables, like o}, then uqy, behaves
as if it were weak]y mixing and gy ® ppgg a8 if it were ergodic w1th respect to these

hin +h o]y n fnll Im th £ ~f tha
obseivables and so the conclusion follows as in the Prooi O1 tid theorem 1. 0

Now, let X be any Thue-Morse sequence and let Y(7) = X (¢) X(¢ + 1). The
closure of the orbit of Y obviously supports exactly one ergodic translation-invariant
measure and the resulting strictly ergodic system is called a Toeplitz system [23, 24].
Every Toeplitz sequence can be constructed in the following way. First choose a
sublattice L, of period 2 and put a 1 on every site in L,. Next, choose a sublattice
L, of period 4 that is disjunct from L, and put a +1 on every site in L,. In this
way one continues: L; is a sublattice of period 2/ that is disjunct from Ly,...,L;_,
and the spins in L; are (—1)7. In the interpretation of [22] the Toeplitz sequence
describes the molecules of the Thue-Morse system.

Theorem 3. The overlap distribution for the Toeplitz system pp contains countably
many points.

Proof. We will fix one Toeplitz configuration Y and calculate its overlaps with all
Toeplitz sequences grouped with respect to the constant overlap. First consider all
Toeplitz configurations such that the minuses of the first sublattice are exactly off the
first sublattice of Y. This gives rise to a point measure of mass 1/2 concentrated
ong=-1/2+1/4-1/8+ ... =—-1/3. Now consider all Toeplitz configurations
such that minuses of the first sublattice are on the first sublattice of ¥ and the
pluses of the second sublattice are off the second sublattice of Y. This gives us
a point measure of mass 1/4 concentrated on ¢ = 1/2-1/2.1/3 = 1/3. In
the next step the first two sublattices are coincident and the third ones miss each
other, giving rise to a point measure with mass 1/8 and concentrated on ¢ = 1/2 +
1/4-1/4-1/3 = 2/3. Repeating this procedure infinitelv many times we ohtain

ARV WRLiNg VRS PR el SER2RINLREY |RRESS LeL LT S 1

o(@) = T0(1/27)6 (- (3277 = 1) /(3 2°0). O

Note that this construction resembles the ‘ultrametric’ structure that occurs in
Parisi’s theory [2].
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Our last example is the Fibonacci system. It too is strictly ergodic. We will show
that it has a continuous part in its overlap distribution. A Fibonacci sequence can be
obtained using the following substitution rules: 1 — -1, -1 — —-1 1.

Theorem 4. The overlap distribution of the Fibonacci system up has a continuous
part.

Proof. We will use an equivalent construction of Fibonacci sequences by rotations
T over the circle by an amount 27~ with v = 2/(1 + +/5) being the golden ratio
(see e.g. [25]). To every angle 27 ¢ € [0,27) there corresponds a Fibonacci sequence
X in the following way. If T"¢ is in the arc segment [0,27v) then X(n) = 1,
otherwise X(n) = —1. Now, because of the irrationality of +, T is ergodic with
respect to the Lebesgue measure py on the circle. Hence the overlap between
sequences corresponding to 2w¢, and 27 ¢, depends only on o = ¢, — ¢,. Namely,
g(a) = pp(A) — p(AC), where A is the event where the two line segments that
define the angle 27 are both in the same arc segment [0,27+y) or [27+y,27).
Hence

1—-4n f0ga<l~x
q(a)={1-4(1—7) fl-v<a<y
1-4(1-a) fyga<gl.

It is not known if there is a simple (c.g. finite-spin exponentially decaying)
translation-invariant interaction with pp as its unique ground state, although by
[13,14] there are infinite-spin interactions for which puy is the unique ground state.
Let us remark here that such a deterministic interaction has a continuous part in its
overlap distribution, a property usually attributed to systems with random interactions
like spin glasses.

Let us mention that dverlaps have been studied in the literature on substitution
dynamical systems [23,26,27] under the name ‘coincidence density’. However, not
much seems to be known about their distributions. The overlap between two finite
sequences of +1 is a linear function of their Hamming distance.

We also remark that the Edwards-Anderson parameter as for example studied
in (28] measures the maximal overlap, and hence would be 1 in our examples. This
shows that there can be a big difference between a maximal and a typical overlap.

Concluding, we have shown that in various examples where one can compute the
overlap distribution for systems with infinitely many states, various types of distri-
butions occur. Thus overlap distributions do not provide a good description of the
number of pure phases of the system. The fact that we worked at T = 0 should
not matter too much as similar non-periodic long-range order and infinitely many
pure Gibbs states can occur at positive temperatures [21,29]. This conclusion fuily
supports what Fisher and Huse found in their examples with finitely many states and
suggests that for spin-glass models the overlap distribution might not be a very useful
quantity.

We thank Michel Dekking, Chuck Newman, and Marinus Winnink for discussions.
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