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This article describes computer simulations in which pairs of "individuals" in large groups played a
prisoners' dilemma game. The individual's choice to cooperate or not was determined by 1 of 3
simple heuristics: tit-for-tat; win-stay, lose-change; or win-cooperate, lose-defect. Wins and losses
were determined through the comparison of a play's outcome with the average outcome of the indi-
vidual's neighbors. The results revealed qualitative differences between smalland large groups. Fur-
thermore, the prevalence of cooperation in the population depended in predictable ways on the
heuristic used, the values of the payoff matrix, and the details of the social comparison process that
framed the outcomes as wins or losses.

This article deals with two enduring questions about social
behavior. The first question concerns the processes that support
self-sacrificial cooperative behavior, behavior that benefits oth-
ers at a cost to the cooperator. This is the problem of cooperation,
or altruism (Elster, 1989). The second question concerns the
connections between individuals' behavior and the qualities of
the groups to which the individuals belong. This is the level of
analysis problem. The level of analysis probiem includes the
determination of the influence of individuals' actions on the
group and the impact of the group on the individual. We present
evidence derived from computer simulations that these two
questions are interrelated in unexpected and surprising ways.

The question of cooperation has a long history (Rushton,
1980). Psychologists have investigated the developmental in-
fluences that promote self-sacrificial altruism; the types of rein-
forcement, both direct and vicarious, that maintain such be-
havior; and the types of personalities that are most likely to be-
have with a more or less seffiess regard for other people (Krebs
& Miller, 1985).

The problem also has roots in biology (Wilson, 1975). An
altruistic trait is one that aids other conspecifics while handi-
capping the altruist. How can such traits evolve without violat-
ing the basic assumptions of the theory of evolution? The an-
swers that have been offered to this question shed light on the
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social nature of many species, including our own (Campbell,
1975).

The question of levels of analysis is not a new one either. In
their important text, Kretch and Crutchfield (1948) posed the
questions, "Can social phenomena be fruitfully investigated on
the level of individual behavior? Are there other equally prom-
ising levels of social analysis? What are the appropriate units of
analysis at each of these levels? What are the relations among
these several levels of analysis?" (p. 14). These issues no longer
lie in the mainstream of social psychological thinking, but it is,
perhaps, time that they were revived. Important disparities have
been shown between group and individual decision making (Al-
lison & Messick, 1987) that merit further study. There is a grow-
ing interest in entomology in understanding how "intelligence"
manifested by the behavior of army ant swarms is assembied
from the behavior of the individual ants themselves (Franks,
1989). However, understanding the relationship between indi-
vidual-level processes and collective outcomes promises to be as
difficult as it is important. Schelling (1971) has pointed out that
dramatic aggregate outcomes can be produced by apparently
innocuous preferences and that the outcomes can be either de-
sirable (the segregation of swimmers and surfers at a crowded
beach) or undesirable (racially segregated housing). Related is-
sues in economic theory concern the relationship between mi-
croeconomic models and market behavior. It may be, for exam-
ple, that individuals suffer from biases in likelihood judgments,
but that markets correct these biases. Thus it is a conceptual
possibility that although individuals are irrational, markets are
not. Camerer (1990) summarized evidence that this is not the
case. Other perspectives suggest that although individuals may
be rational, the resulting aggregate behavior may not be (Har-
din, 1968).

Social dilemmas (Messick & Brewer, 1983) bind the question
of cooperation to the probiem of level of analysis. We use the
well-known prisoner's dilemma, displayed in Figure 1, to illus-
trate. In this situation, the cooperate (C) choice is dominated by
the defect (D) choice. No matter what choice is made by the
other person, the chooser is better off making the D choice over
C. The C choice costs one unit in that the chooser gets one unit
more by making the D choice regardless of the other's action.
However, the C choice provides two units to the other person.
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Basic Prisoner's Dilemma

Neighbor's Choices

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

Figure 1. The basic prisoner's dilemma used in the simulations.

No matter what the other's choice, the other will get two units
more if C is chosen. It is in each person's best interest to choose
D, but it is in the best interest of the pair to choose C. Thus
the group maximum is achieved when the individuals forego
individual maximization. On a larger scale, groups with many
individual maximizers (D choosers) will do more poorly than
groups with few.

The specific probiem that we address in this article is to de-
scribe the global consequences of heuristic choice strategies in
the social situation embodied by the prisoners' dilemma. In
particular, we examine what happens in large groups of individ-
uals, all of whom use a well-defined decision heuristic for eval-
uating and making choices in the prisoner's dilemma game
(PDG). Our approach resembles that of Axelrod (1984), who
also used the PDG as a model situation for self-sacrificial coop-
eration, but it differs in a number of important ways. We need
to make the differences clear at the outset because our goal is
very different from his. First, Axelrod's tournament investi-
gated the efficiency of various strategies for playing the PDG in
an environment consisting of all the other strategies that had
been submitted for the tournament. This was an environment
that was maximally heterogeneous. Our interest is in the fate of
cooperation in environments in which all persons use the same
strategy. The environment for any strategy is simply a popula-
tion of individuals using exactly the same strategy. Thus our
goal is not to determine which of several strategies will perform
better than others but to ask whether cooperation is sustainable
in a population when all of its members make decisions in the
same way.

A second important difference is that in Axelrod's work, each
strategy played a PDG for 200 trials with each other strategy
providing each interaction with a relatively long history. In our
work, each individual played the PDG with another only once
on any occasion. Moreover, each individual played only with
neighbors and did not interact at all with more remote others.
Thus our work assumes a "geography" that allows us to talk
about neighborhoods and interactions among neighbors. Last,
even among neighbors, those with whom one played on any
given trial was determined randomly. Axelrod's procedures cre-
ated a factorial environment in which the relative success of
different strategies could be scientifically assessed. Our proce-
dures bear a closer resemblance to a real social environment in
which people interact most often with those close to them and
not at all with remote persons. Moreover, each interaction was
relatively brief.

Our goal is to explore the aggregate consequences of simple
choice heuristics. The rules that we examine include two that
have been described in previous research and one that seems
psychologically realistic. The three are the tit-for-tat (TFT)
strategy that has been the object of attention for years in re-
search on cooperation (see e.g., Komorita, 1965; Pruitt, 1968;
and Rapoport & Chammah, 1965) and that was the winner of
Axelrod's tournament; the win-stay, lose-change (WSLC) strat-
egy that was studied by Kelley, Thibaut, Radloff, and Mundy
(1962) and Messick (1967); and a win-cooperate, lose-defect
strategy (WCLD) that reflects the principle that people recipro-
cate affective states. Isen (1987), for instance, summarized re-
search showing that people's willingness to be helpful increases
after a positive outcome. Before discussing these strategies fur-
ther, we describe the general nature of the environment in which
we studied them.

The Simulation Environment

The simulation environment that was used for this research
was the Warsaw Simulation System (WSS) developed in the De-
partment of Psychology and the Computing Center of The Uni-
versity of Warsaw.' This system has been described by Gasik
(1990). The system allows the user to define a rectangular group
of up to 400 individuals and to specify the form of the interac-
tion that will occur among them. In this simulation, the speci-
fied processes are executed, and prespecified dependent vari-
ables to describe the consequences of the simulation are re-
corded. Using a similar system, Nowak, Szamrej, and Latané
(1990) studied the spread of an attitude through a group when
the laws of attitude change that were implemented were those
postulated by Latané's (1981) social impact theory. The simu-
lation package thus permits the investigation of aggregate-level
consequences of hypothesized individual-level psychological
processes.

Our use of the WSS involves the following general processes.
From a population of a specified size, one individual the sub-
ject, is randomly selected. One of the subject's neighbors is then
randomly selected. In our studies, a neighbor is one of the eight
individuals (in the 3 X 3 grid) surrounding the selected individ-
ual. (Other definitions of neighbor are also possible and some of
them will be explored in future papers.) The subject and neigh-
bor "play" the two-person PDG described earlier. Each individ-
ual in the population is randomly assigned an initial response,
either C or D, and this assignment determines the choice that
the individuals make on the first encounter. The payoff to the
subject from the interaction is recorded. The subject uses a
choice heuristic that determines what the subject's next choice
will be. The heuristic will be one of the three mentioned above.
This terminates one play. Another individual is then randomly
selected, and the process repeats itself. One "generation" is
completed when a sample the size of the population has been

' We conducted several large experiments in which we compared the
results of the WSS simulations with simulations written in another pro-
gramming language. We also varied the type of hardware on which the
programs were run. We found no major differences in results between
programming languages or equipment and we report only the results of
the WSS simulations.

Subject's
Choices
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selected to play. Sampling is done with replacement, however,
so some individuals in the population will have played more
than once and some will not have played at all. The simulation
can be run for a fixed number of generations or until some spec-
ified condition is met. One such condition is that the population
becomes either homogeneously cooperative or homogeneously
defecting.

The choice that characterizes each individual is the choice
that the individual will use when the individual next plays, re-
gardless of whether the play is as subject or neighbor. However,
only subjects recalculate the choice after an interaction; neigh-
bors do not. (We have run some simulations in which both sub-
ject and neighbor changed after an interaction. Unless otherwise
noted, we found no major qualitative difference in the dynamics
in this condition.) In our simulations, we assumed that each
subject had eight neighbors, meaning that there were no edges
or corners on the rectangle that defined the population. Thus a
subject on the right-hand edge had a corresponding point on the
left-hand edge as a neighbor, and subjects on the lower edge had
corresponding points on the upper edge as neighbors and vice
versa.

The questions we want to answer with these simulations are
the following. What happens to the frequency of cooperation in
the population over time? Does cooperation reach a stable level
and stay there? How does the level depend on details of the psy-
chological assumptions and on the payoff structure? Finally, can
theory be offered to clarify the answers to the questions above?
The feature that we are most interested in is the decision heu-
ristic that is used to determine whether the subject will cooper-
ate or defect on the subsequent trial.

In all of our simulations, we assume that the population is
homogeneous and stable with regard to the heuristic used, but
heterogeneous and changeable with regard to the behavior, co-
operation or defection, that can be manifested. We want to as-
sume a common psychological process or heuristic and investi-
gate the behavioral consequences of that process. We could have
assumed that the heuristics could change and that there was a
"metaprocess" that governed heuristic selection. In this latter
case, the common psychology would be the metaprocess, and
the heuristic used would be part of the cognitive variability un-
derlying the behavioral variability. We have limited ourselves
here to the most basic level but recognize that the approach can
be extended to more complex levels in which both heuristics
and behaviors are heterogeneous and changing.

Decision Heuristics

TFT

Of the three decision heuristics that we explore, TFT is the
best known and the simplest. Using TFT, the subject simply
mimics the neighbor's choice on subject's subsequent play. It is
important to note the difference between TFT as it is applied in
this study and the way it has been used previously. In most pre-
vious studies, TFT has been shown to be effective in maintain-
ing high levels of cooperation when the interaction was between
the same two individuals. In our simulation, this is not the case.
When the subject becomes cooperative after having interacted
with a cooperative neighbor, the individual will be cooperative.

Whether selected as a neighbor (regardless of which neighbor
is the subject) or again selected as subject, the cooperator will
cooperate with any neighbor selected, not just the one that was
previously cooperative.

Reciprocity in this case is not a direct one-to-one reciprocity
but a generalized reciprocity in which the cooperator cooper-
ates with any individual with whom it interacts so long as it is in
the cooperative state. The same is true with noncooperation.
The reciprocation is broadcast to the entire neighborhood.

Also, unlike the TFT strategy submitted by Anatol Rapoport
to Axelrod's (1984) tournament, our version of TFT did not
always begin with a cooperative choice. Half the population be-
gan with C and half began with D as their initial choice. Ours
was not a "nice" TFT.

Clearly, if a population becomes homogeneously cooperative
or homogeneously defecting with TFT, it will stay that way in-
definitely. Most simply, TFT is simple mimicry. It cannot
change what it is imitating.

TFT is the one strategy that is sensitive to whether one or
both participants change strategy after an interaction. If both
individuals change and mimic the other, the overall prevalence
of cooperation can never change from the initial level. For each
sampled dyad, the proportion of cooperative choices will always
be the same because each merely copies the other.

WSLC

A WSLC process is one that has two components. The first is
an evaluative component that determines what is a win and
what is a loss; the second is the action component that dictates
what should be done contingent on the output of the first com-
ponent. In this abstract lense, elementary reinforcement mech-
anisme are WSLC processes. Such mechanisms differentiate
positive from negative reinforcers and postulate that persevera-
tion of behavior (stay) will tend to follow positive reinforcers
while extinction (change) will follow negative reinforcers or
none at all. Thus the WSLC process might be taken to be a
primitive adaptation mechanism that steers the organism to-
ward positive outcomes (approach) and away from aversive ones
(avoidance).

In previous applications of this idea to social interaction,
wins and losses were defined simply by the magnitudes of the
outcomes themselves. The situation gets complicated, however,
by the fact that in many cases, the coding of outcomes into wins
and losses depends on how the outcomes are framed (Tversky &
Kahneman, 1986). A central element of this framing has to do
with the location of the reference point or the comparison level
(Thibaut & Kelley, 1959) that is used to evaluate the outcome.
The same outcome can be coded as either a win or a loss de-
pending on whether it is above or below the relevant reference
point. Moreover, it is well-known that in social contexts the ref-
erence point will be strongly influenced by one's knowledge of
the outcomes of similar others. Whether an outcome is "good"
or "bad," whether it is a "win" or "loss," will depend on the
social comparison one makes with the relevant reference group
(Pettigrew, 1967).

In our simulations, we want to embrace the realism that de-
rives from assuming that outcomes are socially evaluated. As a
result, we defined win and lose socially in terms of the payoffs
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of the neighbors. Specifically, "win" results when the payoff to
the subject is equal to or greater than the average of the payoffs
of the subject's neighbors. After the subject and its neighbor play
the game, the payoff to the subject is compared with a reference
point that is calculated as follows: The payoff to the neighbor
from that play is averaged together with the other seven neigh-
bors' payoffs from the last time they were subjects. If the sub-
ject's payoff is at least as large as this average, the subject "wins."
When the subject's payoff is smaller than this average of the
neighbors, the subject "loses." After a win, the subject repeats
its choice; after a loss, the subject changes to the other choice.
(In our simulations, we initialize all subjects' initial payoffs at
1.5, the mean of the four numbers in the payoff matrix.)

Several implications of this rule emerge immediately. After a
play in which the subject defected and the neighbor cooperated
(DC), the subject's payoff is 3 and the neighbor's is 0. This out-
come will always be coded as a win since 3 is the maximum
payoff availabie (and the neighbors' average, including the 0,
will have to be less than 3). Likewise, the combination of a C
choice by the subject and a D choice by the neighbor (CD) will
always be coded as a loss because the subject gets 0 and the av-
erage of the neighbors will include at least the one 3. Conse-
quently, after both of these outcomes, the subject's next choice
will be D, a "stay" after the DC interaction and a "change" after
the CD play. Hence the only way the subject can make a C choice
with this heuristic is after a CC (when the neighbors' average is
no more than 2) or after a DD (when neighbors' average is equal
to or above 1).

WCLD

The previous rule, WSLC, is content free in the sense that it
is blind to the consequences of its choices. C and D are inter-
changeabie, and the WSLC does not discriminate between
them. WCLD is different in that it follows a win with a cooper-
ative choice and a loss with defection. WCLD is a reciprocity
rule whose justification comes from the matching of positive
outcomes with positive outcomes. The C choice always provides
a better payoff to the other but at a cost to the chooser. It is
precisely this quality that has allowed the PDG to be used as a
model of altruism. Because there is attention to the content of
the choices, WCLD becomes an affective version of TFT rather
than a mere mimic. In WCLD, the response to the positive out-
come of winning is cooperating, giving a positive outcome (at
some cost), and the response to the negative outcome of losing
is defecting, making the dominating choice. Win and loss are
defined, of course, as in WSLC. WCLD is a kind of reciproca-
tion rule. Later we discuss its relationship to TFT.

There is evidence in the social psychological literature to sup-
port the principles on which this rule is based. It is known, for
example, that positive moods enhance prosocial tendencies
(Krebs & Miller, 1985) and that these tendencies are not re-
stricted to the person or persons responsible for the positive
mood. Being the beneficiary of a generous act by one person
enhances the likelihood of behaving generously to another un-
related person. On the negative side, the tendency to punish
one's spouse for the frustrations experienced in the workplace
is commonplace. Reciprocity is affective, not imitative, and it
may be directed at parties other than the instigator.

Tabie 1
Payoff and Next-Choice Consequences for Each Pair of Subject
and Neighbor Choices for the Three Rules

Choice pair (S, N)

Consequence
	

C, C
	

C, D D, C	 D, D

Payoff to subject 2 0 3 1
Next choice by rule

TFT C D C D
WSLC C (win), D (lose) D D D (win), C (lose)
WCLD C (win), D (lose) D C C (win), D (lose)

Note. S = subject; N = neighbor; C cooperate; D = defect; TFT =
tit-for-tat; WSLC = win-stay, lose-change; WCLD = win-cooperate,
lose-defect.

As with WSLC, there are some immediate consequences of
this rule. The DC and CD outcomes will always be coded as
wins and losses, respectively, as we described above. However,
the DC combination, which always gives a win, will lead to C as
the next choice with WCLD.

The implications of the three rules are outlined in Table 1. In
this table, we specify, if possible, what the payoff and choice
consequences are for each combination of subject and neighbor
choices. It is impossibie to say what the next choice of the
WSLC and WCLD will be after CC and DD choices because it
depends on the neighbors' average payoff. All rules follow the
CD choice with a D. The CC combination is more likely than
the DD to be coded as a win because the payoff is 2 rather than
1. Both WSLC and WCLD will result in a choice of C if it is a
win and D if not. Thus these two rules are identical in their
response to the consequences of their own C choice. However,
they are exactly opposite in their responses to the consequences
of their D choices. WSLC and WCLD respond to the coding of
the DD outcome in opposite ways—WSLC repeats D to a win
and changes to C after a loss, whereas WCLD does the reverse.
The two reciprocal rules, TFT and WCLD, follow the win of
DC with a cooperative choice, while the WSLC repeats D. In
fact, the two reciprocal rules have identical responses to the DC
and CD plays, and if the neighbors' means were always between
1 and 2, these two rules would be identical. We return to this
point later.

For the WSLC and the WCLD rules, the decision to code
outcome equality as a win was made for psychological reasons.
The zero point on an evaluative outcome scale partitions the
scale into positive and negative regions. We know of no research
that poses the question of whether 0 itself acts more like a win
or a loss. Evidence that the slope of a value function is steeper
for losses than for gains (Kahneman & Tversky, 1979), and evi-
dence that in interpersonal comparisons it is more aversive to
get a unit less than another gets than it is attractive to get a unit
more (Lowenstein, Thompson, & Bazerman, 1989; Messick &
Sentis, 1985; Messick & Thorngate, 1967), suggests that equal-
ity is more reasonably treated as a gain or a win than as a loss.
Nevertheless, we present evidence bearing on the importance of
the assumption. It is clear a priori, for example, that it makes a
difference in terms of the stability of homogeneous populations
for WCLD. All D would not be a stable outcome with the
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WCLD, because as soon as all outcomes were the same in a
neighborhood, the subject would switch to C. All C will be sta-
ble, of course.

Theory

The descriptions of the heuristics in the last section constitute
the individual social psychological processes under investiga-
tion. In this section, we focus on the generalization of these pro-
cesses to the aggregate or population level. Because the TFT
heuristic is qualitatively different from and simpler than WSLC
and WCLD, we concentrate on these latter two heuristics.

WSLC

The elements that are needed for the generalization are pre-
sented in Tabie 2 for WSLC. In this table, we assume that the
overall level of cooperation in the population is a. (We make the
simplifying assumption of independence among the members
of the population to carry out the analysis.) The second row of
Tabie 2 presents the probability of each of the possible choice
pairs, and the third row presents the conditional probabilities
for WSLC of a cooperative choice following each choice pair. As
we noted in the last section, cooperation will never follow CD
or DC with WSLC, so those conditional probabilities are 0. Fol-
lowing elementary rules of probability theory, we can establish
the equilibrium equation below. This equation expresses the re-
lationship between the overall level of cooperation, a, and the
conditional probabilities of cooperation following mutual coop-
eration and mutual defection.

P(c) = a = 14,1 .512	 w2(1 — a)2 .	 (1)

Equation 1 is easily solved for wi . Equation 2 shows that the
relationship between the two conditional probabilities is a fam-
ily of negative linear functions whose slopes and intercepts de-
pend on a.

= a – ((1 a)/a)2w2 .	 (2)

Before examining the implications of Equation 2, it is useful
to consider the conditional probabilities wi and w2 in more de-
tail. First, wi is the probability that joint cooperation is followed

Tabie 2
Unconditional Probabilities of Choice Pairs and Conditional
Probabilities of Cooperation for WSLC and WCLD

Choice pair (S, N)

Probability C, C C, D D, C D, D

Probability of pair a2 a( 1 – a) (I – a)a (1 – a)2
P(C/S, N) for WSLC wI 0 0 w2

P(C/S, N) for WCLD wI 0 1 W3

Note. WSLC = win-stay, lose-change; WCLD = win-cooperate, lose-
defect; S = subject; N = neighbor; C = cooperate; D = defect; a= overall
prevalence of cooperation; = probability that joint cooperation is
followed by a win or rewarded; w2 = probability that joint defection is
followed by a loss or punished; w3 = probability of cooperation follow-
ing mutual defection.

Figure 2. The hypothetical distribution of neighbors' mean payoffs
and the cutoff values for the conditional probabilities, w1 and w2 . The
probability w1 is the area above and to the left of the value 2, and w2 is
the area to the right of the value 1.

by a win or reward, and w2 is the probability that joint defection
is followed by a loss or punished. Imagine sampling all the
points in the population and, for each point, calculating the
mean of the neighbors' payoffs. The distribution of these means
is the distribution from which the conditional probabilities are
derived. Figure 2 displays a hypothetical distribution of these
means. It is simple to show that the mean of this distribution is
equal to (1 + a) for the payoff values we have used. 2 The greater
the level of cooperation, the higher the average payoff in the
group. When a = .50, the distribution will be approximately
symmetric. When a is either 0 or 1, the mean payoff will be 1
(uniform defection) or 2 (uniform cooperation) with zero
variance.

The variable wi is the probability that the sampled mean is
equal to or smaller than 2, the payoff for joint cooperation. That
is, wi is the fraction of this distribution that falls on and to the
left of 2 in Figure 2. The variabie w2 is the probability that the
sampled mean is greater than 1, the payoff for joint defection. It
is the fraction of the distribution in Figure 2 that falls to the
right of 1. Making these probabilities explicit will aid in inter-
preting the theory and the effects of the two experiments to be
presented shortly.

One of the immediate and surprising implications of Equa-
tion 2 is that it does not have solutions for a > .50 consistent
with wi and w2 being probabilities, that is for 0 wi , w2 -� 1.
Thus, the first theoretical result is that WSLC cannot generate
more than 50% cooperation in the population.

A second feature of the equilibrium equation is that a de-
pends more on w2 than on wi . This is perhaps best visualized in

2 If the probability of cooperation is a, and if subject's and neighbor's
choices are independent, then the mean outcome will be given by: mean
outcome = 2a2 + 3a(1 – a)+ (1 – a)2 = 1 + a.
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0	 w2	 1

Figure 3. Equal cooperation contours for win-stay, lose-change. The
variable wi is the probability of cooperation following mutual coopera-
tion, w2 is the probability of cooperation following mutual defection, a
is the overall prevalence of cooperation.

Figure 3 in which we have plotted the equicooperation contours
or the linear functions relating the two conditional probabilities
for different values of a. The main aspect to notice is that the
contours are mainly vertical, indicating that changes in the ho-
rizontal axis, w2, are more important in determining a than are
changes in the vertical axis. The importance of w i increases (the
slope becomes more horizontal) as a increases. We note that the
function for a= .38 passes through the lower right-hand corner
of the figure, when wi = 0 and w2 = 1. Thus, when w2 = 1, .38
< a < .50. This is an important fact in interpreting our findings.

We can be more specific and say that factors that increase
or decrease w2 will increase or decrease a, the global level of
cooperation (whose maximum, recall is .5 and whose mini-
mum is 0). The variable w2 is the probability that the mean of
the neighbors' outcomes is greater than the DD payoff, 1. In the
simulations that we report, we examine factors that influence
this probability. We examine one parameter of the evaluation
process and one associated with the payoff structure.

WCLD

Using the same approach as above, cross multiplying and
summing conditional and unconditional probabilities, we find
the equilibrium equation for WCLD as below.

P(c) = a = a2w, + a(1 — a) + (1 — a)2 w3 .	 (3)

In this expression, w3 is the complement of w2 in Equation 2.
It is the area above and to the left of one in Figure 2. A win
following mutual defection with WCLD results in cooperation,
while with WSLC it results in defection. Some trivial tweaking
of this expression yields an explicit relationship between the two
conditional probabilities in terms of the parameter a.

wi = 1 — ((1 — a)/ a)2 w3 .	 (4)

Again, the two conditional probabilities are linearly and neg-
atively related. Equation 4 may be displayed as a family of func-
tions, as in Figure 4, passing through the point wl = 1, w3 = 0
in the northwest corner of the figure. Unlike in Figure 3, it is
clear that (nearly) all values of a are possible. (Homogeneous
defection, a = 0, is not possible. If the mean of all neighbors'
outcomes were 1 and the subject's payoff were 1, the compari-
son would be coded as a win, and subject would next cooperate.)
All else equal, an increase (or decrease) in either conditional
probability increases (or decreases) a. Finally, there is a different
asymmetry in this case from WSLC. Complete cooperation, a
= 1, can only result if w l = 1, and complete defection can be
obtained only if w3 = 0. These are necessary but not sufficient
conditions for homogeneous cooperation or defection,
respectively.

The Simulations

Basic Elements

Certain default initializations characterize all our simula-
tions unless we state otherwise. We begin all runs by randomly
assigning cooperative and defecting strategies with equal prob-
ability. We begin with an initial payoff of 1.5 to each individual.
We selected this value because 1.5 is the average of the four pay-
offs in the payoff matrix.

To provide the reader with a visual image of the behavior of
the groups that we simulated, we first present trial by trial re-
sults for one simulation for a population of 100 for each of the
choice heuristics we investigated. In Figure 5 we display the

Figure 4. Equal cooperation contours for win-cooperate, lose-defect.
The variable w i is the probability of cooperation following mutual co-
operation and w3 is the probability of cooperation following mutual de-
fection; w3 is the area to the left of the value 1 in Figure 2. The variable
ais the overall prevalence of cooperation.
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Figure 5. Prevalence of cooperation over generations for the three choice rules. TFT = tit-for-tat; WCLD
= win-cooperate, lose-defect; WSLC = win-stay, lose-change.

137

number of cooperators in the population for even-numbered
generations between 0 and 100 generations. The first and most
important thing to notice about this figure is that cooperation
does not disappear for any of the choice rules. The number of
cooperators in each generation seems to vary considerably for
the TFT rule, somewhat less so for WSLC, and least for WCLD.
Furthermore, the number of cooperators appears to be consis-
tently greater for the WCLD rule than for WSLC. Subsequent
runs confirm this impression of both means and variability.

A description solely in terms of the number of cooperators in
the population would be an incomplete summary of the struc-
ture of cooperation in these groups. We can describe the popu-
lation in terms of how well the individuals did, whether there is
a difference between cooperators and defectors in terms of their
winnings, and whether there is a tendency for the population to
become segregated so that cooperators tend to be close to other
cooperators, and likewise for defectors. We have examined all of
these factors, but for the current article, we restrict ourselves to
the prevalence of cooperation as the primary measure of inter-
est. None of the analyses that we omit qualify the generaliza-
tions we reach in this article.

Before turning to our major goal, the description of the prev-
alence and dynamics of cooperation in large groups, we must
comment on some crucial differences we discovered between
large groups and small ones. We do not claim that the theory
developed previously is applicable to small groups because
small groups are more dependent in that a given person is more
likely to be a neighbor of any other person than in larger groups.

In groups of nine, for instance, each individual is a neighbor of
every other individual.

Small groups versus large groups. We take a group of size
nine to be the smallest group with which we will be concerned.
This choice is based on the symmetrical structure that, in a
group of nine, each individual has eight neighbors and each in-
dividual is neighbor to every other individual. We have found
important differences between groups of size nine and larger
groups.

The major finding with groups of nine is that such groups
always become permanently homogeneous, either with cooper-
ation or defection. For a group to become permanently homo-
geneous, it must be that once the group is in the state it will
never leave, and there must be a positive probability that the
group can enter the state. With the TFT strategy, the probability
is one half that the group will become all cooperative and one
half that it will become all defecting. Because this strategy is
purely imitative, there are no forces that favor either coopera-
tion or defection. Our experiments, which have now involved
thousands of runs of TFT, confirm that the all-C and all-D out-
comes occur equally often. It is important to understand that
once a population using TFT has become homogeneous it will
remain so forever. In fact, TFT with a nine-person group can be
summarized as a 10-state Markov chain (states are defined by
the number of cooperators) with stationary transition probabil-
ities and two absorbing states, all-C or all-D.

What is less obvious is that with nine-person groups, both
WSLC and WCLD also become permanently homogeneous.
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WSLC becomes all-D and WCLD becomes all-C. With the lat-
ter, one can see that if the group entered the state in which all
members were C so that they exchanged 2 points per play, they
would receive outcomes that are coded as wins because they are
equal to the mean outcomes of their neighbors, and they would
continue to cooperate.

The properties of WSLC are somewhat more subtle. First, it
is not possibie to go into an all-C state. The all-C state must be
preceded by an eight-C and one-D state in which the D individ-
ual is subject. The D subject will always receive 3 points in-
teracting with any neighbor, and the 3 points will always be a
win, causing the D to stay. It is possible for the group to become
all D, on the other hand. In an eight-D, one-C group, when the
C is subject, the C will receive 0 points, which will always be
coded as a loss, causing the cooperator to change to defection.
However, the new all-D group will only be stable if the mean of
the payoffs is one or less, causing the payoff for mutual defection
(1 unit) to be coded as a win.

The discussion above suggests that the processes by means of
which small groups become homogeneous are different for the
three different heuristics. One manifestation of these differences
is in the speed with which the groups become homogeneous. In
a series of simulations, we estimated that TFT is the fastest,
requiring an average of 5.42 generations to enter an absorbing
state. WCLD is next, requiring an average of 15.04 generations,
and by far the slowest is WSLC, which took an average of 65.3
generations to converge. These means are clearly significantly
different, and in this case, as in other cases where differences are
obvious, we do not report statistical tests or significance levels.

The discovery that all of these rules converge in 9-person
groups suggests two generalizations. First, there may be absorb-
ing states for groups of all sizes, and with enough generations,
groups of any size will converge to one of the two homogeneous
states. We cannot offer a formal proof of this suggestion, but it
seems plausible that the principles that allow small groups to
converge would also allow large groups to converge, even though
it might take very long to do so. We have some evidence to sup-
port this suggestion. In experiments in which we have measured
trials to convergence, we have found that the TFT, as one would
expect, rather quickly converges for all group sizes we have stud-
ied up to 400. In Figure 6 we display the estimated generations
to convergence for this rule for (square) population sizes from 9
to 100. (Each mean is based on 50 runs in which the simulation
was stopped when the population converged.) The generations
to convergence increase as a linear function of the size of the
population. When the population is 400, the mean number of
generations to convergence is 397.

The situation is somewhat different for the other two rules.
For WCLD, which converged in an average of 15.08 generations
when the population was 9, the mean was 102.3 for a population
of 16 and 613.95 for a population of 25. Even over this small
range, time to convergence is not linear in population size, and
the increase in time to convergence is much more dramatic than
that for TFT. With the WSLC rule, the situation is even more
precipitous. This rule took an average of 65.3 generations to
converge with a 9-person population and 1,645 generations to
converge, on average, with a population of 16. We were not able
to estimate the mean time to convergence for populations of 25.
For technical and practical reasons we did not run simulations

longer than 30,000 generations. We ran a series in which the
simulation stopped when the number of generations reached
30,000 or when the population converged, whichever happened
first. In 40 runs, only 8 resulted in convergence within the
30,000 generations.

The first generalization is that there may, in principle, be ab-
sorbing states for all populations. The second is that with large
populations, populations of 50 or 100 or more, the likelihood of
convergence is so small that it can effectively be treated as 0. If
time to convergence is essentially infinite, then the interesting
questions have to do with the dynamics of cooperation in het-
erogeneous populations. Are there stable levels of cooperation
supported by WSLC and WCLD? If so, what are those levels
and how do they depend on factors like the size of the popula-
tion, the initial distribution of cooperators and defectors, the
values of the payoff matrix, and the nature of the criterion dis-
tinguishing a gain from a loss? It is to these issues that we now
turn.

Cooperation in large groups. Of the scores of simulations
that we have conducted, we summarize the results of two major
experiments. We have selected these two experiments to de-
scribe because they are psychologically interesting and because
they provide tests of the theory developed in the previous sec-
tion. We first outline some basic findings regarding the global
consequences of WSLC and WCLD, rules that do not become
homogeneous in populations of 100, which will be our basic
size.

Basic findings. We can summarize our basic findings by de-
scribing an experiment in which we manipulated the size of the
population and the heuristic rule, either WSLC or WCLD, used
to generate choices. In this experiment, we varied the popula-
tion from 36 (62), 64 (8 2), 100 (102), 144 (122), to 196 (142). For
each population size, each rule, following a random 50-50 ini-
tial assignment of cooperation and defection, was run for 50
generations. The status of the population at the end of the 50
generations was measured. Each rule was replicated 50 times
for each population size, yielding a total of 500 simulations,
each of which was 50 generations long. This experiment allows
us to investigate the joint effects of population size and to rule
on the prevalence and distribution of cooperation.

In this as in the other experiments, we do not list values of F
ratios or present significance levels for most of the results we
describe. We discuss only effects that are large and significant.
Our statistical tests are all extremely powerful because the noise
levels are moderate at worst and because the experiments usu-
ally have a minimum of 500 degrees of freedom for the error
terms. The standard error for the means in the graphs that will
be plotted (based on 50 replications) are .013 or smaller, so the
narrow confidence intervals of 1.0521 or less are not shown.

The only factor influencing the prevalence of cooperation was
the rule. WSLC generated an average of 40.2% cooperation,
whereas WCLD led to 55.4% cooperation. These levels have
been replicated in hundreds of further simulations. Mean levels
of cooperation for the first 30 generations are presented in Fig-
ure 7. There was no qualitative change thereafter. These data
from our basic experiment provide a baseline against which a
variety of changes can be compared. It is to these other ques-
tions that we now turn our attention.

Temptation payoff. One of the most commonly studied fea-
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Figure 6. Mean generations to convergence for tit-for-tat rule as a function of population size. Each mean
is based on 50 simulations.
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tures of the PDG is the payoff structure itself (Pruitt & Kimmel
1977). How do changes in the payoffs influence the levels of
cooperation? We are interested in the same question, but we
remind the reader that our simulations are very different from
the traditional two-person experiments that have been reported
in the experimental social psychological literature. These latter
studies typically involved two persons interacting exclusively
with each other over a long series of trials. Outcome evaluations
in the two-person setting will be restricted to comparisons with
the other's outcomes (see Messick & Thorngate, 1967, for evi-
dence of the importance of this type of comparison), and this
type of comparison will be different from comparison with all
neighbors. Our simulations are not intended to represent the
dynamics of cooperation in one-on-one encounters. The whole
point of our simulations is to investigate global consequences
for cooperation under very different conditions. There are many
ways in which the payoff structure of a PDG can be
manipu-lated. Cooperative indices have been defined in terms of the pay-
offs in the matrix (Rapoport & Chammah, 1965), concepts of
fear and greed have been defined as functions of the matrix
(Coombs, 1973), and Messick and McClintock (1968) showed
how additive matrices, like the one ►used here, can be decom-
posed into additive components.

We describe the results of an experiment involving the so-
called "temptation" parameter (T), the payoff received by a de-
fector when the other person cooperates. This payoff will always
be the largest in a PDG matrix, and the goal of the study we
conducted was to assess the impact of increasing the temptation
parameter from its canonical value of 3. In this experiment, we

let T vary from 3 to 19 in steps of 4. We simultaneously varied
the population size through three levels: 49, 100, and 225. (Even
though our basic experiments had shown no effects for popula-
tion size, we occasionally included it as a factor to check for the
possibility that size might interact with some of the other factors
we examined.) Of course, we also varied the heuristic choice
rule. Each replication ran for 50 generations, and there were 50
replications of each combination of rule, population size, and T
level.

How will increases in the magnitude of T influence coopera-
tion? The impact of this change will come about by changing
the distribution of the mean neighbors' score. By increasing T,
the maximum value of the outcomes will be increased and the
mean of the distribution will also be increased. In other words,
the distribution will be shifted to the right, and the larger T, the
greater the shift to the right. As the distribution is shifted to
the right, wl will decrease (from its baseline level) and w2 will
increase. The larger T becomes, the greater the change.

The effects for WSLC are clear. The baseline condition is ap-
proximately along the line labeled a = .40 in Figure 3. So the
movement is in the direction of the lower right-hand corner. By
the time T = 13, if only one neighbor has an outcome of 13, the
mean of the neighbors will exceed 1, so as T increases, w2 will
approach 1. The prediction is, then, that for WSLC, the level of
cooperation will decline as T increases, approaching a value of
about 38%. Thus we do not expect large changes in a for WSLC.

For WCLD the situation is very different. The conditional
probabilities will change in the same manner, and w 3 will de-
crease. (Recall it is the complement of w2.) Thus movement in
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Figure 7. Mean prevalence of cooperation for WSLC and WCLD as a function of generations. Each mean
is based on 50 simulations. WSLC = win-stay, lose-change; WCLD = win-cooperate, lose-defect.

the parameter space in Figure 4 will be from the hypothetical
line of a = .55 in the direction of the lower left-hand corner.
Cooperation should decrease. As we noted earlier, WCLD can-
not become homogeneously defecting because equality in the
comparison process is coded as a win. Hence we can predict
that cooperation will decrease with WCLD, but we cannot say
by how much.

The main findings of this experiment with regard to the prev-
alence of cooperation are displayed in Figure 8, where we have
plotted the prevalence of cooperation for both rules against the
temptation parameter. Cooperation decreases as T increases, as
we predicted, and the impact of changing T is much greater for
WCLD than it is for WSLC. For WSLC, the value of a for the
larger levels of T was 36%, quite close to the value of 38% that
we identified theoretically.

WCLD is most sensitive to changes in T when T is small.
Cooperation drops from the basic rate of about 56% at T = 3 to
about 33% when T is increased to 7, and the rate of cooperation
falls only marginally thereafter to about 30%. We see neither an
a priori nor an a posteriori reason why WCLD stabilizes at this
level.

Evaluation processes. The evaluation process is the psycho-
logical heart of our simulations. It is here where we make as-
sumptions about the intraindividual psychological processes
that lead to cooperative or noncooperative choices. Therefore,
it is important to investigate the extent to which changes in our
assumptions lead to changes in the prevalence of cooperation in
groups.

The variable that we examine concerns the criterion that

differentiates a positive outcome (win) from a negative one
(loss). In other words, we vary the way wins and losses are
framed. In the simulations that we have described so far, a win
is coded when the outcome is equal to or above the reference
point defined by the average of the neighbors' outcomes. We
could, on the other hand, make the nonsocial assumption that
the reference point is a constant that does not depend on the
neighbors' outcomes. Alternatively, we might consider it a win
only if we were strictly better than our neighbors. Or we might
need to be better than our neighbors by some positive (or nega-
tive) amount. In this section we examine all of these issues.

The first question is what difference does it make if we use a
fixed, nonsocial reference point to differentiate wins from
losses. Assume that the relevant reference point is the average
of the four scores that are available in the payoff matrix (namely,
1.5) so that a win is an outcome that is above 1.5 and a loss
is one that falls below this boundary. This process makes the
outcomes of 2 and 3 wins and of 0 and 1 losses. With this classi-
fication, the WCLD rule simply becomes TFT because one
wins when the neighbor chooses cooperatively and loses when
the neighbor defects. Thus the solitary feature that differenti-
ates TFT from WCLD is the use of a local social reference point
for WCLD and the use of a fixed one for TFT. The large-group
implications of this difference are, as we have leen, immense.
The changes in the dynamics are qualitative, not quantitative.

With WSLC, using a fixed reference point that falls between
1 and 2 producer a different type of process as well. In this case,
it is simple to show that the rule resulting from WSLC with a
fixed reference is to cooperate when the subject and the neigh-
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Figure 8. Mean prevalence of cooperation for WSLC and WCLD as a function of the temptation param-
eter. Each mean is based on 50 simulations. WSLC = win-stay, lose-change; WCLD = win-cooperate, lose-
defect.
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bor make the same choice and to defect when they make differ-
ent choices. This rule could never lead to the homogeneous de-
fection we observed in small groups with WSLC because mu-
tual defection leads the subject to cooperate. Because mutual
cooperation leads to cooperation, if the group ever reached a
homogeneously cooperative state, it would remain there. How-
ever, under the rules of our simulations, the population can
never become homogeneously cooperative. To see why this is so,
imagine a population that is all cooperators except one. When
the single defector is selected as the subject, it will interact with a
cooperative neighbor, leading to defection the next time around.
Under slightly different simulation procedures, all-cooperate
would be a feasible outcome. For example, if both the sampled
subject and the sampled neighbor changed their choices accord-
ing to this rule, then homogeneous cooperation would result.
Again, changing from a social to a fixed reference point changes
the dynamics of cooperation qualitatively.

Earlier in the article, we defended our decision to associate
equality of outcomes with winning. Now we can ask whether
this decision makes a major difference in the results of the sim-
ulation. If we code it as a loss rather than a win when the sub-
ject's outcome is identical to the neighbors' mean, w 1 will de-
crease and w2 will increase. We cannot be more specific about
the magnitudes of the changes, but in Figure 3 these changes
map into movement down and to the right, relative to the a =
.40 line. We can only predict that with WSLC, changing the
coding of equality will not make a large difference because the
two changes tend to be offsetting. As w2 is the more important

parameter, we might expect cooperation to increase somewhat
with this coding. (In many contexts, the coding of equality may
not be important because exact equality of outcome and stan-
dard would be very unlikely. However, when the standard is cal-
culated as the mean of eight integer outcomes, the likelihood of
the standard taking the value of either 1 or 2 is considerabie.)

WCLD should display a very different effect. Because both
and w3 are decreased, movement in Figure 4 will be down and
leftward, implying that cooperation should decrease. By encod-
ing fewer outcomes as wins, WCLD should display less
cooperation.

We conducted several experiments in which we varied the
population size, the rule used, and whether equality of out-
comes was defined as a win or a loss. The results indicate that
the placement of equality makes little difference for the WSLC
rule. When equality is associated with a loss, the frequency of
cooperation increases slightly from 41% to about 43%. For the
WCLD rule, however, there is a larger impact. When equality is
associated with a loss, cooperation drops from the 55% level
to about 43%. As predicted, cooperation dropped noticeably.
Population size had no effect.

The reference point separating winning from losing does not
have to be at the average of the neighbors. For instance, one
might believe that one deserved more than the average neighbor,
or that one was happy, one won, with somewhat less than this
benchmark. We explored the effects of shifting this boundary
by systematically varying a bias parameter so that win is coded
when the outcome plus a bias parameter (bias) is equal to or
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Figure 9. Mean prevalence of cooperation for win-stay, lose-change
(WSLC) and win-cooperate, lose-defect (WCLD) as a function of addi-
tive bias. (Win is when subject's payoff + the bias parameter [bias] is at
least as large as mean last payoff of neighbors.) Each mean is based on
50 simulations.

greater than the mean of the neighbors (and locs is coded other-
wise). When bias is positive, winning is more inclusive than
when bias is negative. The larger bias, therefore, the more fre-
quent stay should be with WSLC and the more frequent should
be with WCLD.

In theoretical terms, increasing bias increases w 1 and de-
creases Because w2 is more important than w 1 for WSLC,
we can expect that increasing bias will lead to a decrease in co-
operation for WSLC. Decreasing bias should increase coopera-
tion closer to .50 than the base rate of .41. With WCLD, in-
creasing bias increases both w 1 and w3, implying that coopera-
tion will increase. Likewise, negative values of bias should lead
to decreases in cooperation from the base rate of .55.

The data that we discuss result from varying bias from -.30
to .30 for both rules. We selected this range initially because it
seemed small relative to the average value of the outcomes in
our basic experiment. That value was about 1.4 for WSLC and
1.55 for WCLD.

The effect of manipulating bias is displayed in Figure 9. Each
of the means plotted in the figure is the average of 50 simula-
tions, each of which was 50 generations long. As anticipated,
as bias increases, the prevalence of cooperation increases for
WCLD. It decreases for WSLC. With bias of .30 we find homo-
geneous defection for WSLC and nearly homogeneous coopera-
tion for WCLD.

Perhaps the most striking aspect of these results is the sensi-
tivity of WCLD to bias. Over the range of this variable that we
explored, cooperation rises from nearly 0 when bias = -.30 to
nearly 100% when it is .30. The WSLC rule, on the other hand,
is relatively insensitive to bias until it gets large, that is to say
greater than .20. For bias = -.10 or less, we observe the 43% to
44% cooperation that we saw when equality was associated with
losing. From 0 to .1 it is at the basic level of about 40%. It then

drops to 33% to 34% for bias = .15 and .2 and thereafter goes to
0, strongly suggesting a discontinuity.

The function for WCLD also hints that the relationship be-
tween bias and cooperation in large groups may be discontinu-
ous. Cooperation jumps from nearly 0 to about 28% between
-.30 and -.25, but between -.25 and -.15 inclusive, it is es-
sentially flat. It then jumps to 44% at -.1, which is the level we
observed when equality was associated with losing. At bias = 0
and .1, we observe the level of cooperation that we saw in our
basic experiment and that we have witnessed scores of times
since, namely about 55% cooperation, but at .15 and .20 the
level jumps to about 73%. At .25 and .30 the prevalence of co-
operation is about 95%, and most of the simulations have be-
come homogeneously cooperative.3

The bias parameter could represent subjective biasing pro-
cesses as well as shifts in criterion placement. For instance, for
positive bias, one could think of the bias as resulting from ten-
dencies to belittle the outcomes of others, to exaggerate the
value of one's own outcomes, or both. Negative biases may rep-
resent the opposite tendencies: to demean one's own outcomes
and to inflate the worth of others'. There is ample evidence for
positive subjective bias in the experimental literature, and neg-
ative biases have often been associated with problems resulting
from low self-esteem (Taylor, 1990). We have more to say about
this in the last section of the article.

Conclusions

The most important conclusion to be drawn from the work
we have described is this: In the highly competitive PDG, using
a competitive type of social comparison for performance evalu-
ation, cooperative behavior is maintained in large groups. In
none of the rules that we studied, TFT, WSLC, nor WCLD, did
the prevalence of cooperation regularly approach 0. Specifically,
we believe that the cooperative consequences of WSLC and
WCLD, rules that have had other applications in psychological
theory, represent the discovery of a novel mechanism or process
through which self-sacrificial cooperative behavior can be main-
tained in large groups of interacting individuals. We have shown
that it is sufficient to have (a) a simple rule specifying the
conditions for either changing one's response or for making a
self-sacrificial choice for another person as a function of the
evaluation of one's outcome and (b) an evaluation process that
compares the outcome to a reference point that is based on the
average outcome of neighboring individuals. Furthermore, we
have outlined a theoretical approach that provides some guid-
ance in making predictions about the global consequences of
individual behavioral processes.

We have also shown that there are important differences be-
tween large and small groups. All of the rules lead to homoge-
neous small groups, but only TFT leads to homogeneity in large
groups. The differences that we have found add a new dimen-
sion to discussions of group size effects. Some authors (e.g., Thi-
baut & Kelley, 1959) have suggested that there are qualitative

3 The suggestion of a discontinuous function is not an illusion, but
the discontinuity is not of psychological importance. The mean of the
neighbors' outcomes can change only by discrete units of 1/8 . Therefore,
discontinuities in bias will be found in units of ik, or .125.
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changes in group sizes between two and three (where coalitions
become possibie), but that there is nothing conceptually new
above three. Although we cannot pinpoint the size at which
small groups become large groups, we can confidently say that
it is larger than three. In terms of our simulations, a group of
size nine is the largest in which no group member can "hide,"
that is to say in which one might not be involved in the play,
either through being the subject or being the neighbor of the
subject.

For WSLC and WCLD there seems to be a critical size above
which the qualitative aspects of the structure of cooperation
change. Small groups become homogeneous, whereas coopera-
tion remains everlastingly mixed with defection in larger
groups, as far as we have been able to determine. However, once
the group size has passed the critical value, it ceases to be im-
portant. We find scant evidence that size interacts with any of
the other variables that we have studied in influencing the prev-
alence of cooperation.

We have found some factors that make a qualitative difference
in the dynamics of cooperation, and these we take to be of ex-
treme importance. We already mentioned group size as one
such factor. Another is the nature of the evaluative criterion.
When the dividing line between winning and losing is fixed, the
dynamics of cooperation are very different than when the refer-
ence point is the mean of the neighbors. A fixed reference point
between 1 and 2 makes WCLD behave exactly like TFT, which
means (a) that it will become homogeneous rather quickly and
(b) that it could become homogeneously defecting as well as co-
operative. A similar fixed reference point for WSLC prevents
that rule from becoming all defecting, even in small groups. It
is thus clear that the fluid, local, social reference point is essen-
tial for preserving the quality of the dynamics of these rules.

A third factor that makes a qualitative change is the bias pa-
rameter. For extreme values of bias (.30 to —.30), WCLD be-
comes essentially either all cooperative or all defecting, and for
large values of bias (.25 and up), WSLC becomes all defecting.
Bias represents a continuous psychological variable that makes
qualitative changes in the aggregate level of cooperation.

We have also explored many variations that do not make a
qualitative difference in the dynamics of cooperation. We have
varied the size of the neighborhood, the initial prevalence of
cooperation, and the topology of the space—whether there are
edges in the population. These factors change little. We have run
simulations in which both the subject and the neighbor update
their choices following interaction, and we have allowed the bias
parameter to be an individual difference rather than a homoge-
neous constant. Both of these alterations produce small changes
in the final levels of cooperation, but not qualitative differences
from the results reported here. None of these factors had dra-
matic effects on the speed of convergence.

One of the two basic issues engaged in this work concerns the
connections between individual-level behavior and aggregate-
level outcomes. Many variations of this theme are well-known:
Schelling's (1971) examination of the collective consequences
of individual choices, Camerer's (1990) investigation of market
reflections of individual cognitive biases, and Allison and Mes-
sick's (1985, 1987) comparison of individual and group deci-
sion-making processes. What the present work has shown is that
simple heuristic rules, coupled with a realistic social evaluation

process and some rules for sampling participants, generate sta-
ble levels of cooperation in interacting groups. When we began
this research, this fact was not at all apparent. After the fact, it
seems reasonable. The rules that we selected were not selected
because we thought that they would "work" in producing coop-
eration, but because they were a priori reasonable and plausible
and because at least two of them, TFT and WSLC, had been
examined in previous research. We view the cooperation that
results from our simulations as a type of "emergent" social phe-
nomenon that cannot be adequately described by reference to
individual psychological processes. Likewise, a description of
aggregate behavior will provide an inadequate insight into indi-
vidual choice processes. An observer looking at two different
asymptotic states of TFT, one of which had become all defect-
ing and the other of which was all cooperative, would have great
difficulty concluding that precisely the same process had pro-
duced both phenomena.

The WCLD rule has the interesting property that it gives a
count in each generation of the number of individuals in the
group who positively compared their outcome with the mean of
their neighbors. That is to say it gives a count of the proportion
who are "at least as good as the neighbors." The base rate for
this percentage is about 55%. This figure conflicts with the intu-
ition that the frequency of "winners" in a population should be
about the same as the frequency of "losers." Clearly the reason
for the conflict is that winning and losing in our simulations are
not one-to-one contests that match a loser to every winner.

In social psychology there has been a great deal of research
on the generic phenomenon that "most people think that they
are above average" (see for example Myers & Ridl, 1979), and
there have been extensive investigations into the "biases" that
produce these cognitive distortions (Taylor, 1990). Our results
prompt two observations that are relevant to this line of re-
search. First, there is no inconsistency in having more than half
the population reporting that they are "at least as good" or "at
least as well off" as their neighbors. In our simulations, we know
precisely when the comparers are and are not biased, and we
consistently get more than half of the group making positive
reports where there is no bias.

Second, it may not take a very large bias to lead nearly every-
one in the group to the conclusion that they are winners. In our
bias experiments with WCLD, we get close to 100% coopera-
tion, which means that nearly everyone is comparing with
neighbors favorably, when the bias parameter is .25. These find-
ings suggest that a relatively small devaluation of the outcomes
of others and/or a relatively small enhancement of own out-
comes, plus the dynamics embodied in the simulation, may be
all that is needed to lead to the perception that "everyone is
above average" (Myers & Ridl, 1979). With the WCLD rule,
taking a rosy view of one's outcomes leads to very high levels of
cooperation in large groups, suggesting a possible social advan-
tage of egocentric evaluative biases.

There is one issue left to be discussed, and this concerns the
theoretical description of our simulations. We have offered an
approximation to the statistical properties of our simulations.
The resulting equations provided some insight into the behavior
of the system created by the combination of the heuristics and
the "sociological" rules governing the interaction. The theory
yielded some qualitative and some quantitative predictions,
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which were confirmed. Yet, the theory is still elementary and
needs further development.

In simulations of the aggregate consequences of individual
models of social impact, Nowak, Szamrej, and Latané (1990)
and Lewenstein, Nowak, and Latané (in press) have argued that
the field of statistical mechanics might provide theoretical in-
sights. Statistical mechanics attempts to describe the behavior
of complex physical systems that are created from simple un-
derlying processes. Wolfram (1986), for example, has shown
how complicated two-dimensional patterns such as self-repli-
cating fractals (patterns that have themselves as their compo-
nents and subcomponents) can be generated by the repeated
application of very simple rules. Theoretically, our work seems
closely related to these cellular automata with random compo-
nents. Some of the processes that are created by the repeated
application of simple rules, however, are so complicated that
the only way that has been found to study them is through com-
puter simulation. So it may be overly optimistic to expect the
resulting theories to be simple.

There are two simple illustrations of this type of approach in
previous social psychological experiments. Kelley et al. (1962)
analyzed the ability of a WSLC strategy to lead to the emergence
of mutual cooperation in a mutual-fate control game referred
to as the "minimal social situation." The analysis consisted of
applying this rule to the choices of two (or more) interacting
partners and observing whether the end state of the process was
mutual cooperation. These authors discovered, among other
things, that WSLC would lead to mutual cooperation, but only
when choices were made simultaneously (not alternatively) and
when the group size was a power of two, that is, groups of size
two, four, eight, and so forth.

A second example was offered by Messick (1967), who ex-
plored the heuristic strategies human subjects might use to play
a competitive, zero-sum game against a computer using suppos-
edly "normative" decision principles. To understand how the
human did so much better than the computer strategies, Mes-
sick (1967) showed that the use of a simple variant of WSLC
would lead to recurrent patterns of choices by the computer
that the subject could exploit to be able to win on most of the
trials. The WSLC variant, coupled with the computer's strategy,
generated a repetitive periodic sequence of choices that the sub-
jects mostly won. However, the dynamics of this two-party ex-
change and the WSLC analysis of Kelley et al. (1962) are orders
of magnitudes simpler than the large-group problem that we
have described here.

The work that we have described shows how simple behav-
ioral rules, rules instantiating the most rudimentary forms of
adaptive social interaction, can lead to unexpected global pat-
terns in large groups. We have sketched a theoretical path that
can be taken to generalize from individual rules to collective
phenomena, but we have also identified areas where more theo-
retical insight is needed. Most important, perhaps, we have
shown that through the use of computer simulation, it is possi-
ble to explore the relationship between individual and group
behavior and to address, thereby, one of social psychology's old-
est puzzles.
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