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We perform a classicalBRST analysisof the symmetriescorrespondingto a genericw~-alge-
bra.An essentialfeatureof our method is that we write the wy-algebrain a specialbasis such
that thealgebramanifestlyhasa “nested”setof subalgebrasu~Cv~’~c ... C vi,, WN where
thesubalgebrav~,r(i 2 N) consistsof generatorsof spin s {i, + 1 N), respectively.In
the new basis the BRST charge can be written as a “nested” sum of N — 1 nilpotent BRST
charges.In view of potential applicationsto (critical and/or non-critical) W-string theorieswe
discuss the quantum extensionof our results. In particular, we present the quantum BRST
operator for the W

4-algebrain the new basis. For both critical and non-critical W-strings we
applyour resultsto discussthe relationwith minimal models.

1. Introduction

In recentyears it has turned out that in order to describestring theory it is
convenientto usethe BRST formalism [1]. For instance,via a BRST analysisone
can derive the critical dimensionand calculate the spectrumof the theory. For
critical strings this was first done in ref. [21. More recently, the spectrumof
non-critical strings has been calculated using this formalism [31.The BRST
approachalso plays a crucial role in the constructionof a string field theory [41.

The starting point in the BRST approachis the introduction of a set of
canonical variables(the “string coordinates”)which satisfy a standardPoisson
bracket. In string theory the relevantvariablesaregiven by a set of holomorphic
variablesanda setof anti-holomorphicvariables.We restrict the BRSTanalysisto
the holomorphic sector since the two sectorsrequire a similar treatment. The
two-dimensionalconformal symmetriesof string theory are encodedin a set of
first-classconstraintson the string coordinateswhosePoissonbracketsar givenby
the Virasoro algebra.Given this Virasoro algebraone can constructa nilpotent
BRST chargeby extending the phasespacewith a set of anticommutingghost
variables. At the classical level, this BRST chargecan be used to define the
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physicalvariablesof the theory. In a canonicalquantizationthe Poissonbrackets
get replacedby so-calledOperatorProduct Expansions(OPEs)where the opera-
tors actin a Hilbert space.At the sametime the BRST chargegets replacedby a
nilpotentBRST operator.The physicalstatesin the Hubert spaceare definedas
the cohomologyclassesof this BRST operator.The BRST operatorthusprovides

a convenientway to calculatethe spectrumof the theory.
Due to normal orderingproblemsit is not guaranteeda priori that a nilpotent

BRST operatorcan be constructed.If this is not the caseone cannotdefine the
physical statesand the theory is said to be anomalous.In most casesthe BRST
operator can be made nilpotent provided that certain conditions hold. For in-
stance,in the caseof the bosonic critical string requiringnilpotencyof the BRST
operatorleadsto the conditionthat the numberof string coordinatesis 26, i.e. the
bosonicstring movesin a 26-dimensionalspacetime[2].

Within the BRST formalism it is rather natural to extendthe Virasoro con-
straintswith a set of additional first-classconstraintsandinvestigatewhetherthis
extendedset still leadsto a sensiblespectrumthus providing the basis for the
constructionof new string theories[51.The completeset of first-classconstraints

must form a closedPoisson-bracketalgebrawhich is an extensionof the classical
Virasoroalgebra~. Most of the recentresearchhasfocussedon algebraswherethe
new generatorscarry a spin which is higher than the spin of the Virasoro
generators.Such algebrasaredenotedas extendedconformalalgebrasor, briefly,
“wy-algebras” where N indicates the highest spin of the generatorsinvolved
(usuallyoneusesa conventionin which the Virasorogeneratorscarry a spin equal

to two). The simplestexample,which has beenmostly studied, is the w3-algebra
which involves the Virasoro generatorsand a generatorof spin three [6]. The
w3-algebrais quadraticallynonlinear, i.e., Poissonbracketsof the constraintslead
to polynomialsof theconstraintswhich are at mostquadratic.The BRSTchargeof
the w3-algebrawasfirst constructedin ref. [71while the BRST chargefor general

quadraticallynonlinearalgebraswas obtainedin ref. [8].
In view of potential applicationsto W-string theoriesit is necessaryto quantize

the wy-symmetriesvia the BRST formalism and to perform a spectrumanalysis.
Onenoteworthyfeaturethat hasemergedfrom this quantizationis that although
classicallythe first-classconstraintsalways form a closedPoisson-bracketalgebra,
the correspondingquantumoperatorsdo not necessarilyform a closedquantum
algebrain the full Hilbert space,evenafter including possiblerenormalizationsof

* A few clarifying remarksconcerningthe terminology “classical” algebrasare in order here. In
general,by a classicalalgebrais meanta Poisson-bracketalgebra.In this sensethereexistsa classical
Virasoroalgebrawith a so-calledcentralextension.However,in this paperwe will alwaysreservethe
term “classical” algebrafor the special casewhere this centralextensionis zero.For the realization
of theVirasoroalgebrain termsof free fields this meansthat we do not considerbackgroundcharges
at the classical level. Similarly, by a classical wy-algebra(see below) we mean a Poisson-bracket
algebrawhosefree field realizationcontainsonly single derivativesof the fields.



E. Bergshoeffet al. / BRSTof W-symmetries 719

the generatorsand allowing for quantumdeformationsof the classicalalgebra~‘.

Indeed,they do not haveto form a closedquantumalgebra.All oneneedsin the
BRST approachat the quantum level is the existence of a nilpotent BRST
operator.So we havethe following picture:

classical —~ closedPoisson-bracketalgebra,

quantum —~ nilpotentBRST operator. (1)

A recentexampleof a nilpotentBRSToperatorwithout a correspondingquantum
algebrawasgiven in ref. [9]. In thepresentwork we will encountermoreexamples.

Oncea nilpotentBRST operatorhasbeenconstructed,its cohomology,andhence
the spectrumof the theory, canbe computed.The quantumconstraints,which by
constructionareBRST-trivial, thenclosewithin the spaceof cohomologyclassesof
the BRSToperator.

It is the purposeof this paper to give a systematicBRST analysisof general

wy-symmetriesbothat theclassicalaswell asat thequantumlevel. So far, explicit
resultsareknown andwell understoodonly in the caseof the w3-algebra.In refs.
[10,11],an expressionhasbeenpresentedfor the BRST operatorof the w4-algebra.
However,the complexity of this expressionmakesit rather hard to dealwith in
practice.Recentlyit hasbeenpointed out that in caseof the w3-algebrathe BRST
analysiscanbe simplifiedby making an appropriateredefinition of the canonical
variables[12]. After the redefinitiontheBRST chargecanbewritten as the sumof
two chargesthat are separatelynilpotent. It is expectedthat this will lead to
simplificationsin the analysisof the spectrumin the quantumcase.In ref. [131the
redefinitionof the canonicalvariableswastranslatedinto a correspondingredefi-

nition of the generatorsandit was indicatedhow a similar simplification could be
madefor the genericw~-a1gebra.The additional structurewhich arisesafter the
redefinitionsmakesit possibleto obtain a relatively simple structuredexpression
for the BRST operatorfor W4 (see sect.5), andin principle also for WN.

The generalpicturethat arisesandwhich is confirmedby the presentwork is as

follows. Usually the w~-a1gebrais realizedin termsof N — 1 free scalarsfields and
given in a specialbasiswhich is related to making a so-calledMiura transforma-
tion. We will call this specialbasis the “Miura basis”. In this Miura basis the
BRST chargeof the wa-algebrais a rather complicatedexpressionwhich for
growing N contains terms of increasinglyhigh order in the ghost fields. For
instance,the BRST chargeof the w3-algebrais at most trilinear in the ghostsbut
the BRST chargeof the w4-algebra(seesect.4) containsalreadytermsof seventh

* To be more precise,the existenceof a quantumalgebradependson the basis oneis using for the

classical algebra.Using the standard,so-calledMiura (seebelow), basis of the wy-algebra,there
exists a correspondingquantumalgebrawhich we denoteby WN. This is howevernot the caseif we
useour new, realization-dependent,basisof the wy-algebra(seebelow).
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order in the ghosts.In the next sectionwe will show how the generatorsof the
wy-algebracan be redefinedsuch that the wy-algebracontainsa “nested” set of

subalgebras

V~CV~~’C...CV~WN, (2)

where the subalgebra~ (i = 2,..., N) consists of N — i + 1 generators{wj..,~,
w~./1,.. . , w~}of spin s = {i, + 1,...,N), respectively.The generatorsare realized
by N — 1 free (holomorphic) scalar fields ~, n = 1,. . . , N— 1, such that the
generator w~,of highest spin, only dependson the single scalar 4N 1’ the
generatorw~’, of nest to highestspin, only dependson the two scalars4~N—1’

4~N—2’etc. Finally, the Virasorogeneratorw~is the only generatorthat depends
on all scalars4~,.. . , ~. This particulardependenceof the generatorson the
scalarsautomaticallyleadsto the nestedsubalgebrastructuredindicatedin (2). For
instance,sincethe highestspingeneratorw~only dependson 4N ~, andall other
generatorscontain otherscalarsas well, the Poisson-bracketalgebraof w~must
close on itself thusleadingto the subalgebra~ etc.

An immediateconsequenceof the new basis is that the scalar4 which only

occurs in the Virasoro generatorcan be replaced there by a term
containingan arbitrarynumberof scalarsX~’without upsettingthe closureof the
algebrasince this term commuteswith all the other generators.This leadsto a

multi-scalarrealizationof the w~-a1gebra.Suchmulti-scalarrealizationswere first
consideredin ref. [14]. The abovestructureis summarizedschematicallyin table 1.

In order to constructthe BRST chargeof the completewy-algebraonecannow
first consider the smallestsubalgebrav~generatedby w~.Its corresponding

BRST chargewe denoteby Q~.One then considersthe next subalgebrav,~’f~
generatedby ~ w~’} which hasits own BRST chargeQ~’.Since v~C

we have that Q~C Q~~. By this we meanthat if one sets the ghostvariables
correspondingto the spin-(N— 1) symmetriesequal to zero the expressionfor

~ equalsthat of Q~.In general,this doesnot imply that the BRST charge

TABLE 1
This table showsthegenericstructureof thew~-algebrain thenew basisdiscussedin sect. 2. The left

column indicatesthegenerators{w~, we’) of the algebra.Theothercolumnsindicatethe
dependenceof the generatorson thescalars{X~’,42 4’N—~)

Generator Dependenton

42 4)3 ~.. 4)N-1

N—2 ~i.
WN ‘PN—2

N-IWN ‘PN—2 ~PN—1
N

WN PN-1
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can be written as ~ = Q~+ “rest” such that the “rest” terms are
separatelynilpotent. The fact that this doeshappenfor the w3-algebrais an
exception(see below). We thusarrive at the following “nested” structureof the
BRST chargeQN of the wy-algebra:

rbN uN—i uN—2 c c =
C C C ... k~N ~N —

Here the inclusion symbols indicate how the different (nilpotent) BRST charges
canbe obtainedfrom eachotherby settingcertainghostvariablesequalto zero.A
nice featureof this structureis that one can investigatesystematicallythe BRST
chargesof the different nested subalgebrasand thus iteratively construct the
BRSTchargeof the completewa-algebra.In this paperwe will presentresults for
the subalgebrasv~and v~

1 for any N.
Note that the generator w~always satisfies by itself the Virasoro algebra.

Thereforethereis, besidesthe nestedstructure(3), also a nilpotentBRST charge
correspondingto this Virasoro subalgebra.This BRST chargeis in fact given by

— Q~.This is the reasonthat for N = 3 the nestedstructure(3) is givenby

Q~=Q
0+Q~, (4)

whereQ0 = — Q~andQ1 = Q~aretwo anticommutingnilpotentBRST charges

[12,13].
It is to be expectedthat the nestedstructure(3) of the BRST chargessurvives

quantization~. The examplesgiven in this paperprovide argumentsin favour of
this conjecture.In that casethe nestedstructurediscussedin this papershouldbe
useful in the constructionof the spectrumof the Wy-string.

In refs. [15,16],a relationshipwassuggestedbetweenthe spectraof Wy-strings

andVirasoro minimal models.In the caseof the W3-stringthis relation hasbeen
made more explicit in refs. [12,17—20].In particular, it was shown that the
W3-string can be viewed as an ordinary c = 26 string, where the matter sector
includesa c = ~ Ising model. Fromthe pointof view of the nestedstructure(3), it

is easyto seehow the c = ~ Ising model entersinto the gameby observingthe
following numerology. Since the v~subalgebrahas its own nilpotent BRST
operatorQ~,onecanseparatelyconstructits cohomology.The BRST operatorQ~
is realizedby a singlefree scalar42 andthe ghostsof the spin-threesymmetries.It
turns out that thetotal centralchargec~of thesefields equals~ which is precisely
that of the Ising model. In this paperwe will apply a similar numerologyto the
nested structureof a generic w~-a1gebra.Our results suggesta very general
relationshipbetweenthe spectraof Wa-stringsand W minimal models.A similar
relationship is suggestedbetween the so-called non-critical Wa-strings and W

* To distinguishbetweenclassicaland quantumexpressions,we will write the quantumexpressions

with boldface.
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minimal models, thereby extending a conjecture made in ref. [13]. It will be
interestingto seewhethertheconjectureswill be confirmedby explicit calculations
of the spectraof (critical and/ornon-critical)Wy-strings.We hopethat the nested
structurediscussedin this paperwill considerablyfacilitatethis task.

The organizationof this paper is as follows. In sect. 2 we show how the
redefinitionof the w~-a1gebradiscussedabovecanbe carriedout for arbitraryN.

In sect.3 we presentgeneralresultsfor any N for the first two subalgebrasv~and
~ ~. In sect.4we discussthe specialcasesN = 3, 4, 5. The discussionof sects.2,
3 and 4 is alwaysat the classicallevel. In sect.5 we extendsomeof our resultsto
the quantumcase.For instance,for N = 4 we give the quantumBRST operator
correspondingto the w4-algebra.Finally, in sect. 6 we discussthe relationswith
(Virasoro)minimal modelsfor both critical Wy-strings and the non-critical W~-
stringsof ref. [9].

2. A newbasisfor the wy-algebra

In this sectionwe will introducethe new basisfor the wy-algebra,startingfrom
realizationsof the wy-algebraobtainedfrom the Miura transformation[211.The
basic result of this section is given by formulae(27), (34)wherewe give a closed
expressionfor all generatorsof the classicalwy-algebrain the new basisdescribed
in the introduction.

The Miura transformationgeneratesrealizationsof WN in termsof N — 1 scalar

fields 4~,n = 1, . . . , N — 1. This constructionis iterative in the sensethat the
generatorsof the WN+1-algebracanbeexpressedin termsof thoseof the w~-alge-
braandoneadditionalscalarfield tt~N[15,22].We will denotethe generatorsof WN

in the Miura basis by M~,where 1 is the spin, 2 ~ I ~ N. The iterative structure
inducedby the Miura transformationreads

p~l — V’ N+ij D \lkA,fk
~ al,k ~‘-‘N)

11N’
k=0

whereit is assumedthat M~= 0 for k > N. B~representsthe scalar field 4~:

B~=~2n(n+1) ~‘ (6)

andthe coefficientsa in (5) are givenby

[N—l+ 1 —N(l—k)](N—k)!
k~l al,k=(—l) (N—l+1)!(l—k)! ‘ (7)

l<k’~N al,k=O. (8)
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TABLn 2
Generatorsof WN in theMiurabasisfor somelow valuesof N

N Generatorsof WN

2 M~=—(B
1)

2

3 M~=M~—3(B
2)

2
Mj~= 2[B

2M~+(B2)
3]

4 M~=M~—6(B
3)

2
M~= M~-f 2B

3M~+8(B3)
3

M~= 3[B
3M~—(B3)

2M?—(B
3)

4]

5 M~=M~—10(B
4)

2
M~= M~+2B

4M~+20(B4)
3

M~= M +3B
4M~— 7(B4)

2M~— 15(B
4)

4
M~= 4[B

4M~—(B4)
2M~÷(B

4)
3M~+(B

4)
5]

Eq. (5) generatesrealizationsof the classicalw~,-aIgebrastarting from M
0°= 1,

M~= 0. Note that in particular(5) then implies that

M~=1, (9)

M~=0, (10)

M~=-~n(n+1)(B~)
2. (11)

The standardform of the energy—momentumtensor is then obtained as T=

— 2M~.To illustrate the Miura basiswe give explicit resultsfor the generatorsof
WN, N= 2,3,4,5 in table2.

The generatorsM)~at fixed N form aclosedPoisson-bracketalgebra.Clearly,
this is then also the casefor any linear combinationof the Mj~.The redefinition
we will now discussusesthe iterative structure(5) to simplify the generatorsby
making appropriatelinear combinations.The aim is to constructa set of genera-
tors suchthat the highestspin dependson only onescalar,BN_i, the next highest
spin on two scalars,etc.

As an example,let usperformthis redefinitionexplicitly for the first nontrivial
case,N = 4. We startwith the highestspingenerator,M. As weseein table2, it
dependson M~and M. However, thesecan be expressedin termsof M

4
3 and

M~by inverting the relationsgiven in table2:

M~=M~+6(B
3)

2, (12)

M~=M~— 2B
3M~— 20(B3)

3. (13)
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This we substitutein the expressionfor M to obtain

M = 3[B3M~ — 3(B3)
2M~— 27(B

3)~]. (14)

The new spin-fourgeneratorw~is thendefinedas the linear combination

w =M — 3[B3M~ — 3(B3)
2M~]

= —81(B
3)

4. (15)

Now let usdefinew. We get from table 2

M=M~+2B
3M~+8(B3)

3. (16)

To expressM~in termsof M~,1 < 3, we must first makeuseof the N = 3 entries
in table2. Theseallow usto expressM~in termsof M~:

M~=2B
2M~+8(B2)

3. (17)

This, and(12), is thensubstitutedin (16). Theresult is

M~=2(B
2+B3)[M~+6(B3)

2}+8(B
2)

3+8(B
3)

3. (18)

ForM~we now makea redefinitionwhich getsrid of M~.The resultingspin-three
generatorw is

w = 8(B
2)

3+ 12B
2(B3)

2+ 20(B
3)

3. (19)

After employinga similarprocedurefor the spin-two generatorwe find that there
is no redefinitionto bemade.The result is

w~=M~=—(B
1)

2—3(B
2)

2—6(B
3)

2. (20)

The algorithmrelies on the useof the inverseof (5). To completethe redefinition
for w

4 requiredthe inverseof alk’~’~’for all N < 4.
Let us now considerthe above algorithm for general N. We start with the

highestspin of the WN+ 1-algebra.From (5) and(7) we obtain for this generator

N

M~t1
1=E(—1)’~N(BN)”T”~’Mj~. (21)

1=0

Now, (5) expressesthegeneratorsof WN+ in termsof thoseof WN, but,as in (12),
(13), we can use (5) in the oppositedirection to expressthe M~,I = 0, ..., N, in
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termsof ~ k = 0,..., N. As we sawin the w4-exampleabove,this requiresthe
inverse of the (N + 1) X (N + 1) lower-triangularmatrix alk”~ 1, 1, k = 0,. . ., N.
The inversetakeson the following form:

k ~ I fl,kN+l = ~ (~--: )( -N)
tm

= (~~)
2F1(1,—1+k; —N+k; —N), (22)

l<k.~N fl,k’~’
T~=0. (23)

The inverseof (5) thenbecomes

M~=k=O (24)

This we can substitutein (21), to obtain

~

= — k=0 _NBN)~i_kM~±i. (25)

Herewe haveusedthe following result for the coefficients f:

= (l)kNN_k (26)

Now we canredefinethe highestspin(we will denotethe spin-l generatorof WN ifl

the new basisby wj,,~):

N
N+i — AKN±1 V’ i 7..ID

WN±1 ‘~‘N±1 + L~‘~ IVLIN) 11N+1

k=2

(27)

Note that we only use ~ for k = 2,. . ., N in the redefinition, sinceM~~
1and

M~~1are field-independentconstants(9), (10), which are not generatorsof the
WN±1-algebra.
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To obtain wj~f~we startwith

M~+~=M~+LaNIMN(BN). (28)

We thenrewrite M~usingour result (25)with N+ 1 —p N. In the secondterm of
(28)we substitute(24). The result is

N-i N-i

M)~f+~= — ~ M~[—(N— 1)BNi]~(BN)kflk~~+1
k=O 1=0

N-i N-i
+ ~ ~ ~ aNlflk. (29)

k=0 1=0

The lastsum canbe rewritten using

N-i

E N+i: N+i~ — N+if N+1aN,1 J1,k — Nk aNN JN,k

1=0

~ N+i 30
— Nk JN,k

Substitutingthisback in (29) gives finally

N-I N

M~J+1= — ~ Mj~±1[—(N—1)BNi}N_l(BN)fl,kN+i. (31)
k=0 1=0

Again we canredefineto obtain the generatorw~~1:

w~+,= —E[—(N— 1)BN_l]N(BN)lfl,ON±i. (32)

Note that the I = 0 term,which is independentof BN, is equalto w~.
This procedurecan be continuedfor all spins. To continueto lower spinsone

needsto determinefor each 1 the analogueof (25), (31), since, as for 1 = N, one

usesthe result for spin 1 + 1 in the calculationfor spin 1. The redefinitionthen
amountsto throwing away all contributionsof Mj..1~ in the result except that of
1 = 0. For spin 1 = N— 1 we obtain in this way

= — N-i [—(N— 2)BN2]N _l(BN1)k(BN)kf,kNfkoN±1, (33)
k,1=0
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TABLE 3
Generatorsof WN in ournew basisfor somelow valuesof N

N Generatorsof WN

2 w~= —(B
1)

2

3 w~=w~—3(B
2)

2

w~=8(B
2)

3

4 w~=w~—6(B
3)

2
w = w~+ 12B

2(B3)
2+ 20(B

3)
3

w — 81(B
3)

4

5 w~=w~—1O(B
4)

2

w~= w~-f 20B
2(B4)

2+20B
3(B4)

2+40(B
4)

3
w~= w —90(B

3)
2(B

4)
2— 120B

3(B4)
3—205(B

4)
4

w~= 1024(B
4)

5

from which onecangeneralizeto arbitraryspins:

N-I
N—I — V’ I I 5.1— I — 1 \ D

1N—I—k1
WN+1— — L.~ ~ ~

k1 k,~1=0

x

1B \kl—k

2

1B \kl_kl+IIB \‘~1±1‘. N—i) ~ N—il ~ N)

~ N—l±i~ N—i+2 ~ N~ N+i 34
XJkIk

2 Jk2,k3 Jk1,k1~1 Jk1~1,O

for 1 = 0, . . . ,N — 2. The highestspin generator~ is given in (27). Again, if we
selectthe termwithvanishingpowerof BN, we obtainw~

1.It is a simpleexercise
to show that for I = N — 2 the generatorw~is equal to (11), i.e., the energy—
momentumtensoris not modified by our redefinitions.

So in our new basis we have obtained in (27), (34) closed formulae for all
generatorsof the classical wa-algebra.Closure is guaranteedbecauseof the
closureof the algebrain the Miura basis.Of course,it is a formidableexerciseto
obtain the structure constants and the correspondingclassical BRST charge
explicitly for the completew~-aIgebra.In the next section,wherewe will address
these problems, we will therefore limit ourselvesto the D~(~

5-algebra,which

consistsof the generators~ and w~.
Forfuture referencewe give explicit resultsfor the redefinedgeneratorsfor the

algebrasWN, N= 2, 3, 4, 5 in table3.

3. The v~÷~and v~÷1subalgebras

The advantageof the new basisintroducedin the previoussection is that for
eachsubalgebraof WN one can define a nilpotent BRST chargeQ. Clearly the
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Q’s, as the subalgebras,form a nestedstructure,in which Q~,the BRST charge
for the v~-subalgebra,containsas contributionsall Q~for s’ ~ s. Since eachof
theseQ’s is separatelynilpotent,this nestedstructureshouldsimplify the construc-
tion of, e.g.,the physicalstatesof the correspondingquantumtheory, assumingof
coursethat a quantumextensionof this nestedstructurecan begiven. In this and
the next sectionwe will further discussthe classicalstructureof the algebraandits

BRST current.The quantumextensionwill be consideredin some specific exam-
ples in sect.5.

For simplicity, let usstartwith the v~4~-algebra.Its only generatoris given in
(27). It is a simple matter to calculatethe Poissonbracketwith itself. The basic

OPEis given by *

8 1
Bm(Z)Bn(W)=~ mn 2~ (35)

2n(n+1) (z—w)

For the generatorw~’ we thenfind

wf~il(z)w~ii(w)~(_1)~vN~v(N+ 1)

~( (z _w)2 + ~ z - w ) [(BN)~w~(w)}. (36)

The BRST current for the algebra(36) is easily obtained.Introducing the ghost
and antighostpair (cN±i,bN+i), with the contraction

61k
ci(z)bk(w) ~ (37)

for any 1, k, we obtain

jNN~= CN+iW~I~— ~(— 1)NNN(N+ 1)(BN)N_iacN+i CN+ibN+i. (38)

The pole of order one in the OPE of j with itself is a total derivative:

j(z)j(w) ... + ~ + ..., (39)

so that Q = ~ dzj(z) satisfies(Q, Q} = 0.

* In order to facilitate the transition to the quantumcase,it is convenientto representthe Poisson

bracketsby OperatorProductExpansions,in which only single contractionsof fields are considered.
After quantizationmultiple contractionshave to be takeninto accountaswell.
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Thus we seethat the BRST current for the v1~4~-a1gebracontainstermsthat

areno morethan cubic in the ghosts.This featureis no longerpresentwhenwe
considerthe v~ 1-algebra.

For generalN wewill only considerthe algebracontainingthe two generators
(27) and (32). In this casewe can obtain the structureconstantsof the algebra

explicitly in termsof the coefficientsf as given in (22). The v~4.i-algebra is given
by the OPEs(36) andthe following ones:

w~(z)w~~5(w)~ k=i

N+i~ \ ~ N+ii
k—2 WN±i~W) WN±lkW

X[BN(w)j + (40)
N(z—w)

2 (N+1)(z—w)

1 1 a
w~’+i(z)w~’±i(w)-~ 2

(z—w) ZW

~ — l)N+k+i(N k)(N—k — 1)fkoN+i

x [(N- 1)BNi(w)]N2[BN(w)]kw~+i(w)

1 N-3
~

Nk
0

x [(N- 1)BNi(w)]N-k-3[BN(w)]kw~(w)). (41)

Sincethe abovealgebrahasbeenobtainedfrom the Miura basisby a redefini-
tion, closureis guaranteed.Nevertheless,it is interestingto check how restrictive
the requirementsof closureareon the coefficientsin (36), (40)and(41). It is clear
that in (36) thereareno restrictionsat all: for a singlescalarwe can alwaysform
an algebrawith a singlegenerator,for any spin. In (40) the sumsmustbesuchthat
negativepowersof BN areavoided.Thisis indeedthecase,sincef10 = 0. Onecan
easily check that this is the only condition on the coefficients f required for

closure.In (41) the situationis morecomplicated.Onecan parametrizethe right
hand side of (41) with an expansionin powersof BN and BN with arbitrary
coefficients, multiplying the generators~ and w~. It turns out that the
requirementsof closurecan be solved for all unknown coefficients,but that two
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consistencyequationsremain. In termsof the coefficientsf thesearetwo quadratic
identitiesof the form

(N—i) N-i
~ I 1\15.1l~\4~ N+i~ N+1

itT k 1k )Jk,0 JN—i—k,0
‘ k=0

1 N-i

~N(N+1) kO

N—2

— ~ (N—k)(N—k — 1)fk,ON+ifNk_i,ON+t=0, (42)
k=0

(N—i) N______ V’ I/itT I\f N+if N+i

itT L.~I~kIV — “~)Jk,o JN—k,0~v k=0

~N(N+1) k0

N—2

+ ~ (N—k)(N—k—i)fk,oN+ifN_k,QP~~~=0. (43)
k=0

Calculationsfor the coefficients fk,oN~ for generalN and k = 0, 1,..., aredone
usingtheexplicit form (22). In somecalculations,suchas in the checkof (42), (43)
we also needfor generalN the coefficients fN_k0”~ for k = 0, 1 .... We have
thenusedthe following representationof the f’s:

N+i_ ~(N—1\ (N)k
fN-k,o — 10~k—I) (1 +N)~

X[i_(_N)N-k±1~(N_~+1)(_ 1+N)J] (44)

The BRST chargefor the ~ i-algebrais much morecomplicatedthan (38) for
the v, -algebra.In particular, therewill be ghostcontributionsof higherorder
than cubicterms.The sameappliesto theBRST chargefor the general~ ~-alge-
bra. We havenot attemptedto obtain theBRST current 1 for general1 and N.
Instead,we will give in the next section explicit expressionsfor somespecific
valuesof 1 and N.

Using a dimensionalargument,it is possibleto give a limit on the terms of
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higherorderin theghostfields that may appearin theBRST charge.Let usbriefly
presentthis argumentfor the v,~~1-algebra.There we havetwo pairs of ghosts,
(bN+i, cN±i) and (bN, cN). The conformal spin of the BRST currentequalsone,
the ghostfields b~and c,, havespins n and 1 — n. Also, Q hasghostnumberone.
A (2n + 1)-order ghostcontribution to Q for the v,~ ~-a1gebrawould be of the
form

~ k +1= n, p + q =n + 1, (45)

where the powersof the anticommutingghost fields are given by, e.g., (bAY’
b~(ab~)... (a

1b,,). The conformal weight Sb and s~of the product of all b- and
c-ghostsin (45) is then

5b =k2 +k(1 —n) +nN+ ~n(n —1),

s~=p2 — 2p —np— (n + 1)N+ ~(n + 1)(n + 2).

The minimumvaluesfor s,, and s~are reachedfor k = ~(n — 1) and p = ~(n + 2),
respectively.The value of the sumof the minima of Sb and s~is given by

= -~(2n2+2n—1) —N. (46)

Forsucha ghostterm to exist in the BRST currentwe musthave5min ~ 1, so that
it is possibleto obtain SQ= 1. Thereforewe shouldhave

2n2+2n—i~4(N+1) (47)

for the v~~~
1-algebra.For the v~-algebrathis implies that terms of fifth order in

the ghostscanbewritten down.However,as we shall seein the next section,only
cubic ghost terms actuallyappear.For the v~-algebrafifth-order ghost terms are
possible,but seventh-orderghost terms are not. In that casewe find that the
fifth-order termsare requiredin the BRST charge.

Clearly, the dimensionalargumentcanbe extendedto ~ 1-algebras.

4. ClassicalBRST charges

In this sectionwe give explicit expressionsfor the BRST chargesof w3, w4 and

the subalgebrav~C w5 in the new basis, thereby making explicit the nested
structure(3). To obtain thereBRST charges,it is convenientto usean iterative
procedure.Starting from the terms in the BRST chargethat are linear in the
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ghosts(the terms containingthegenerators),oneobtainshigher-orderghostterms
by demandingnilpotency.In the next orderonefinds that the coefficientsmultiply-
ing the cubic ghost terms are the structureconstantsof the algebra(in the new
basis).Since we are dealing with field-dependentstructureconstants,it may be
necessaryto addhigher-orderghostterms as well.

For pedagogicalreasons,we will discussfirst the case of the w3-algebrain

somewhatmoredetail [12]. The generatorsof the w3-algebraaregiven in table 3.
Using (6), thesegeneratorscanbewritten as

~r ...‘~ 2_ _)j~ \2 iI~~&\2

I — W3 — 2k ‘P1) 2k ‘P2)

W= —2~w~= ~i(a~2)
3. (48)

Note that the generatorsw~and w~have been rescaled.This makes T an
energy—momentumtensorgeneratingthe Virasoroalgebra.For W therescalingis
just a matterof convenience.

The OPEof W with itself is *

1 1 a
W(z)W(w) 2 + — (—6ia4

2W). (49)
(z—w) 2z—w

From this algebraonecan readoff the BRST currentj3( z) up to third-orderghost
terms,andit turns out that no higher-orderterms areneeded.It canbewritten as
13(Z) =j~(z), with

j~(z) =c3W—3ia42 c3ac3 b3,

j~(z)=c2(T+ ‘•~3,b3~ 2~2,b2) +j~(z), (50)

wherewe definedthe ghostenergy—momentumtensors

= —sb5ac5— (s — i)c9b5 ~, (51)

for arbitraryspin s.The expressionfor j~(z)agreeswith the formulafor generalN
given in (38). Note that the two chargesQ~and Q~— Q~areseparatelynilpotent.

It is instructive to comparethe above result for the BRST chargein the new

basis with the one in the Miura basis. The two expressionsare related to each
otherby a canonicaltransformationin the extendedphasespace[23]. It turns out

* The OPEs involving the energy—momentumtensorT arestandardand not givenhere.
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that the canonicaltransformationthat relates(50) to the Miura basisis generated
by

G = i342 c3b2. (52)

The exponentialactionof the generatorG on anextendedphasespacefunction F

is, in OPE language,

F(w) -~F(w)+~-~G(z)F(w)

1 dz dx

+ G(z)~—G(x)F(w) + .... (53)

This resultsin the following transformationsof the basisfields [12]:

c2—c2+i~42c3+~c3ac3b2,

C3 = C3,

1-. ~ I-. 11.
U3 — U3 — ltJ’P2 U2 ~ ~U2UU2 C3,

= ~42+ ~a(b2~3), (54)

wherethe tilde indicatesthe fields in the Miura basis.Due to anticommutativityof
the ghostvariables,only the first few termsin (53) contributeto (54). The BRST
current (50) now transformsinto its Miura form (suppressingthe tilde on both
fields and generators)[71

1(z) =c2(T+ l~3,b3+ 21~2,b2)+c3W+ ~c3ac3b2T. (55)

Note that the nestedstructureis absentin the Miura basis:the BRST current(55)

cannotbewritten as the sumof two separatenilpotentcurrents.
The advantageof using the new basis insteadof the Miura basis is evenmore

apparentwhen we discussw4. The BRST chargefor w4 in the Miura basis has

recentlybeencalculatedin refs. [10,11]. The authorsof refs. [10,11]find that the
BRST currentcontainstermsup to seventhorder in the ghosts.As wewill show
below,in the new basiswenot only makethe nestedstructureof the BRST charge
explicit, butwe furthermorefind that in the newbasisall higher-orderghostterms
vanishandthat at most trilinear ghosttermsoccur.
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The generatorsof the w4-algebrain the new basisaregiven in table3:

T= -2w~= - ~(a~1)
2- ~(a~

2)
2-

W= 3iV~~ = (a~
2)

3+ ~a4
2(a43)~+

v= —~w=(a~3)
4, (56)

where we havemadesome convenientrescalingsof the generators.The nontrivial
OPEs(not involving the energy—momentumtensor)amongthesegeneratorsare

1 1 a
W(z)W(w)~ 2~ (—9a4,

2W—~V),
(z—w) ZW

—6a~v—9a~V
W(z)V(w)= 2 2

(z—w)

— ~a~2317—6a
24

2V— ~-3(343 V)
+

(z—w)

V(z)V(w) ((z _w)2 + 2 z w ) ~_ i6(a~3)
2V]. (57)

From this algebra,one can read off the BRST current j

4(z) up to third-order
ghost terms, and it turns out that no higher-orderterms are needed.It can be
written as j4(z) =j~(z), with

.4 2
j4(z) =c4V—8(344) c43c4 b4,

j~(z)= c3W—~a42 C30C3 b3 — ~C33c3 b4 — ~34~C3c43b4

— 63~2C33c4 b4 + /~3~33C3 C4b4 — 3V’~
3q’3 c

3C43b4

+ j~(z),

i~(z)=c2(T+ ‘~3,b3+ ‘~4,b4~2~’C2,b2)+i~(z). (58)

The nestedstructureof the BRSTchargesmanifestsitself throughthe fact that the
BRSTchargesassociatedwith j~,j~andj~are all nilpotent. Furthermore,j~—

is the BRST currentof theVirasoro algebra,and is separatelynilpotent.
So far, for w3 and w4 in the newbasis,we havenot encounteredterms in the

BRST currentthat areof higher than third order in the ghosts.This is not always
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the case.The most simpleexamplewhereonehasto go beyondthe trilinear ghost
terms,evenin the newbasis,is given by the BRST currentcorrespondingto the v~

subalgebraof w
5. In particular,we find that the BRST current j~containsterms

quintic in the ghosts.The nestedstructureof the currentsis givenby

j5
5 = c

5[-j4~i~/iO(ac~4)~J+ ~iVfO~C~C5b5(3q~4)
3,

= C4[ — 9(~~)4 — 3(3~ )2(34~ )2 — l~/f~ 343(344)3— ~o(~44)~]

[ 2 i \2]
+[g(3413) ~(34~) jC~C~b~

+ { — ~i~/iOa4~— ~ 3433] C~C
4b5

+ [ i5(~4~)2—

1~fJ~343 34) — 19(a43)2j!b

+ [~vi~ 3433 3434 + ii (34) )2] ‘b

[ 3 \2 \21

+[~(3433) —g(34)
4) 1C5C4b5

+ 1~/j~ 32453 3434 C5C4b5

— ~C~C5C4b~b5+ ~-C~c~c4b5b4+ C5C~C4b~b4

+j~. (59)

5. Quantization

So far, our discussionhasbasicallybeenat the classicallevel. In this sectionwe
will discusssome aspectsof the quantisation,in particularthe constructionof the
quantumBRST operators.The resultsof this section indicate that the nested
structurefound at the classicallevel survivesthe quantization.

Our strategyis to use the classicalresultsof the previoussectionsas a starting
point for the construction of the quantum BRST operators~. In practice, the
easiestway to obtain explicit expressionsfor theBRST operatorsfor low valuesof
N is to parametrizeall possiblequantumcorrectionsto the classicalBRST charge,
and then to determine the coefficients occurring in the ansatzby requiring
nilpotency of the quantumBRST operator.We will use this explicit method to

discussthe quantizationof the w4-algebra~.

* Note that wewrite the quantumexpressionswith boldface.

** The quantizationof the w3-algebrain thenew basiswas done in ref. 112] and we will not repeatit
here.
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We would like to stressthat the use of the new basis greatly facilitates the
constructionof the quantumBRST operator.The nestedstructureenablesone to
constructthe BRST operatorin an iterativeway. Onestartswith Q~,the BRST

operatorcorrespondingto the highestspin generatorof WN. This will dependon
only one scalar,and on the spin-N ghostsbN, CN. Next one goeson to ~
which will dependon oneadditionalscalarandthe spin-(N— 1) ghostpair aswell.
In thisway, one obtainsat eachlevel a nilpotent BRST operator,whichcontains
theoperatorsof thehigherspin subalgebras.In thelaststeponeobtainsthe BRST
operatorof the completeWy-algebra.

For N = 4 the quantumextensionj~of the highestspin contributionj~to the
classicalBRST currentwasalreadygiven in ref. [18]. We now give the result for
the full w4-algebra,including alsoj~andj~:

= ~[(a~y~ + ~ 3243(343)2+ 413243 324)

+ ~33433 3453+~VI~a”43~]

— 8(3453)
2C

4C~b4+ ~V1~3
243

3c4c~b~

+ ~v
1I~3453 c

4c~b4+ ~C4C4”b4— ~-c4ç~b~~, (60)

i~= C~[(34)~ + ~3432(3433)2 +

+ ~ ~ 3243+ ~VI~~452 32433+ ~V~J 345 3245

~ /~~+49 ‘P2~ 10Y” ‘P3

— p452 C3C3b3 — ~~/~i5C~C3b3— ~JC3Cb4

— ~~4)2 C3C4b~— 63452 C3C~b4— ~/~i5C~’C4b4

+ ~/~JC3C~b4+ ~V’~3433 C~C4b4— 3~3433 C3C~b4

(61)

= C2[ — ~(343i)2 — ~(3452)2 — i(343)2

±~iIö3243 _~5~3243 ~-
2-Vi~324)31

+ c
2c~b2+ 3C2C~b3+ 2C2C3b~+ 4c2c~b4+ 3c2C4b~

+j~. (62)
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It turns out that there existsanothernilpotent BRST chargefor the quantum

W4-algebrawhich hasa differentsign for thebackgroundchargeof 452. Soj~— j~is
the sameexceptthat

_[~j324)~ +~~~3
245

2. (63)

Using the otherchoiceof sign for the backgroundcharge,we find thatj~is the
samebutthat j~is now givenby

= C3[(34)~) + ~3452(34)3)2 +

— ~V~ö~452 3243 + ~iiV’~ ~432 32433+ ~ 343 3243

+ ~ — ~V’~ ~31
— ~~452 c3c~b3+ ~1~j7 c~’C3b3— ~C3C~b4

— ~~432 C3c4b~— 634)2 C3C~b4+ ~1~5 C3C~b4

— ~V~öC~C~b4+ ~/~J34~C3C4b4 — 3v~3433 c3c4b4

+j~. (64)

It is notclearto uswhetherthissecondsolution canbe relatedto thefirst oneby a

canonicaltransformation.
Our resultfor the W4-algebrais basedon oneof the solutionsforj~obtainedin

ref. [18], namely the solution wherethe backgroundchargeof the fields are the
sameas in the Miura basis.Besidesthis solution, the authorsof ref. [18] found one
additionalsolution for j~with a different valueof the backgroundchargefor 4~.
We have attemptedto extendalso this solution with a j~andj~.However, the
calculationshowsthat for this additional solution suchan extensionis impossible.

The result (60) for j~provides a nice exampleof a phenomenonwhich we
discussedin the introduction,namely that at the quantumlevel consistencyof the

theory requires the existenceof a nilpotent BRST operatorbut not of a closed
quantumalgebra.Indeed,althougha nilpotentBRST operatorQ~exists, it is not
possibleto find a quantum extensionof the classical v-subalgebrain the full
Hilbert space~.

The quantumBRST operatorfor the W4-algebrain the Miura basishasrecently
beenobtainedin refs. [10,11]. Due to the complexity of their result it is hard to

* Note that it may be possible to obtain closure by introducing additional generatorsbesidesthe

spin-fourgeneratorin the quantumalgebra.This hasbeendone for W3 in ref. [20].
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comparewith our N = 4 BRST current (60)—(62) but we expect that the two
expressionsare relatedthrougha canonicaltransformation.

6. W-strings and minimal models

As we alreadydiscussedin the introductionit has becomemore and more clear
that thereexists a relationbetweenthe spectraof W-stringsand certainminimal
models [15,16,12,17—19,13,20].In this section we will suggest a very general
relationship between W-strings and minimal models by exploiting the nested
structurediscussedin this paper. It would be interesting to see whether our
suggestionscanbe confirmedby explicit calculationsof the spectraof W-strings.
We will first discussthe caseof critical W-stringsandthen investigatenon-critical
W-strings.

6.1.CRITICAL W-STRINGS

By a “critical” W-string, we mean that we work with only one copy of a
W-algebra.This W-algebrais realizedin terms of so-called“matter” fields, the
“Liouville” fields being absent~.

As a warming-upexercisewe first considerthe BRST operatorQ~,correspond-
ing to the highest spin of the W~-algebra.This operator has already been

constructedfor N ~ 6 in ref. [181.The result,for generalN, is that Q~dependson
a singlescalarfield 4N1’ andon the ghostfields bN, CN of the spin-N symmetries.
It is nilpotent,andcommuteswith an energy—momentumtensordependingon the
samefields, of the form

T~{=_~(343N_i)2_aN_13245N_i !“~N3CN (N— l)(3bN)CN. (65)

[Q.~,T,~]= 0 determinesthe backgroundchargeaN_i. For generalN

2 (N—i)(2N+i)2

(aN_i) = 4(N+i) (66)

should be one of the allowed values of the backgroundcharge. This has been
verified for N ~ 6 in ref. [18]. The authorsof ref. [18] find that also othervaluesof

* The distinction between“matter” and “Liouville” fields is a little ambiguous,since in the caseof

W-algebras,someof the“matter” fields must havea backgroundchargeandmight thereforealsobe
called “Liouville” fields.We will adopta conventionwhere the“Liouville” fields are introducedlater
asa separaterealizationof the W-algebra(seebelow). This definition of a “non-critical” W-string is
in accordancewith theone usedin ref. [9].
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the backgroundchargearepossible.With thevalueof aN_1 as in (66)we find that

the total centralchargeof T~is *

2(N-2)
~ 1 + 12(aN_i)2_2(6N2_6N+ 1) = N+ 1 (67)

Thisvalue correspondsto the centralchargeof a minimal modelof the WN_
1-alge-

bra. In general,theunitaryminimal modelsof the W,~-algebraarecharacterizedby

central charges(for any integerq > M)

M(M+ 1)
CM,q_=(M_1)(1_ q(q+1) )‘ (68)

so that (67) correspondsto CN_i,N• For N = 3, (67) thencorrespondsto the central

chargeof a Virasoro minimal model, namely the c = ~ Ising model. Mounting
evidencethat the cohomologyof Q~indeedproducesthe result of the C = ~ Ising
model has been given in refs. [12,17—19,201.The relationship betweencritical
W,~-stringsand minimal models for general N was further explored in refs.
[22,24,20].In particular,it wasnotedthat in a particularrealizationof WN [22], the
scalarfields 432,...,

45N—i’ togetherwith the ghostfields correspondingto thespins
3,. . ., N, form an energy—momentumtensorwith centralcharge

(69)

correspondingto the q = N minimal model of the Virasoro algebra.We will now
show,usingthenestedstructureof the Wy-algebra,that it is possibleto interpolate
betweenC~and c,~,,.

The backgroundchargesof the N — 1 scalarfields that realizethe Wy-algebras
areknown in the Miura basis [15,22].Theiterative relationwhich determinesthe
matterpart of the energy—momentumtensoris in the quantumcase

TN= TN_i— ~(34)N_i)2+ix~(N— i)N ~245N-i, (70)

wherex is a parameter.The total centralchargeof all scalarsis then

N-i

Cm = ~ [i — 6x2n(n + 1)1 = (N— 1)[1 — 2x2N(N+ 1)]. (71)

* Note that this is exactly thevalueof the centralchargecorrespondingto a SU(N — 1) parafermionic

theory[19].
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On the otherhand,the total centralchargeof the ghostfields is givenby

N
Cgh= —2 ~ (6n2—6n+ 1) = —2(N— 1)(2N2+2N+ 1). (72)

n=2

Criticality thereforerequires

I 1
x=i(2N+1)V 2N(N+1) (73)

This determinesthe backgroundchargesof all scalarfields 43~:

2N+1 !n(n+1)
2 N(N+i) (74)

This indeedgives (66) for n = N — 1.
In sect. 2 we performeda redefinition of the generatorsof the classical

wy-algebra,starting from the classicalform of theMiura basis.In this redefinition
the energy—momentumtensorwas notmodified.We conjecturethat similarly, the

energy—momentumtensorin our nestedbasis will havethe sameform as in the
quantum Miura basis~. The backgroundchargesof all scalar fields are then
known, and we can analyzethe central chargeof that part of the total energy—
momentumtensorthat correspondsto the BRST operatorQ~,andcontainsthe
matter fields ~ ~ and the ghost fields b~,c~,.. . , bN, CN. The total

central chargeis given by

c~= —2 L (6k2—6k+i)+ N-i [1+12(ak)2]
k=n k=n—I

n(n—i)
=(n—2) 1N(N+1) (75)

This is equal to CfliN, the central chargeof the q =N minimal model of the
J4’~—

1-algebra.For n = 2 we find of coursethat C~= 0, becausethis case corre-
spondsto the critical Wy-string. For n = N we obtain (67). Note that the relation
(75) betweencritical Wa-stringsand minimal models of the W’, — 1-algebrawas
suggestedbefore, from a different point of view, in ref. [22].

* This assumptionhas beenverified for N = 3 and N = 4 (see sect. 5) and for the highest spin

generatorfor N~ 6 [18]. Note that the discussionof the highest spin generatorgiven in ref. 120]
dependson the sameassumption.
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To summarize,the nestedstructureof the Wy-algebraandof the corresponding
BRST operatorsclarifies the connectionwith minimal models.

6.2. NON-CRITICAL W-STRINGS

The situationis different for the so-callednon-critical Wy-string [9]. In the case
of the non-critical string wehaveclassicallytwo copiesof a wy-algebra,whichwe
call Wm and w

1, for matter and Liouville, respectively.Although the algebrais
nonlinear,a combinedalgebracan neverthelessbe formedwith generatorsw~

(Wm)~~i+ i”
2(w,)~. In the caseN = 3 the quantumBRSToperatorfor this system

wasconstructedin refs. [9,25].The non-critical Wy-string is characterizedby the
central chargesof the matter and Liouville sectors,Cm and c

1 respectively.To
allow for a nilpotentBRST operatorthesecentral chargesmust satisfy (see (72))

Cm+Ci=2(N~ i)(2N
2+2N+ 1). (76)

We can again go to the nested basis discussedin previous sections,but the

required redefinitions can only be madefor either the matter or the Liouville
sector.Let uschoosethe Liouville sector~. Then C

1 is given by (71)

C1~~~~(N_i)[1_2X2N(N+1)], (77)

but, in contradistinctionto the situation consideredin sect. 5, (76) is now not
sufficient to expressx in termsof N. Therefore,the non-critical stringsof ref. [9]
haveonearbitraryparameter,x, which makesit possibleto avoid the relationwith
minimal models.If we chooseour nestedbasisfor the Liouville sector,thenwe can
make a nilpotent BRST operator dependingon the field

4)N~~’ one of the
Liouville scalars,the spin-N ghostandantighostfields and all fields of the matter
sector.Thetotal central chargecorrespondingto this caseis

~ = Cm + 1 — 6x2N(N— 1) — 2(6N2— 6N + 1)

(N_2)[(2N_ 1)2+2N(N— 1)x2j, (78)

the analogueof (67). Forgeneral x this doesnotcorrespondto a minimal model.
By choosing x appropriatelywe can of course obtain a minimal model. In

particular,we get the qth unitaryminimal model of the W~_
1-stringby choosingx

* The discussionbelow can be repeatedfor the casewherea nestedbasis is chosenin the matter

sector.
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equal to *

= —2— 2q(q+ i)~ (79)

Note that in this caseCm, which canbe determinedfrom (76), (77), is equalto

N(N+ 1)
Cm=(N~1) ~ q~q+i~ (80)

which correspondsto the qth minimal model of the Wy-string. The valuesof x

given in (79) were also consideredin refs. [26,27],where the cohomologyof the
non-critical W3-stringwas investigated.

Using the nestedbasis in the Liouville sectorwe get a seriesof nestedBRST
operators,Q~,dependingon all matterfields, the scalars

43n—i’ . ~, 4)N-i of the
Liouville sectorandthe ghostandantighostfields of the spin-n,.. . , N symmetries.
For general x the central chargeof the correspondingenergy—momentumtensor
is

C~= (n —2) [(2n — 1)2 + 2n(n — i)x21. (81)

When x is given by (79) thiscorrespondsto the qth unitaryminimal model of the
I4’~_

1-algebra.This relationwith minimal modelsextendsthe discussionin ref. [13].
Note that in the presentcaseof the non-critical string we havethe additional

freedomof selectingthe minimal model:thevalueof q is arbitrary in (79), while in
(75)we necessarilyobtainedq = N. This is to be expectedsincefor q = N we have
Cm = 0 andthe theory effectively reducesto the critical W-string. As mentionedin
the previousfootnote,for the non-critical W-string non-unitary minimal models
canbeconsideredin the sameway.

We concludethat in the caseof the non-critical stringthe relationwith minimal
modelsis not forcedupon us, andthat the non-critical stringthereforeallows for a
muchwider classof modelsthan the critical string. With a particularchoice of the
parameterx we obtainresultssimilar to those in the critical case.

It would be veryinterestingto investigatein further detail the relationsbetween
(critical and/or non-critical)W-strings and minimal models.The fact that in the
non-critical case this relationshipcan be avoided should havesome significance.
Probably the best way to proceed is by investigatingthe cohomology of the
different BRST operators in the “nested” basis discussedin this paper. An
interestingsimple examplewhere the spectrumcanbe calculatedis provided by

* Non-unitary minimal models can be obtained by choosingmore generallyx
2 = —2— ~(QM)2, with

QM = ,/~J7~— iJ~Z~[13]. For comparisonwith subsect.6.1 we will limit ourselvesin the text to
unitarymodels(p= q + 1), but theresultswhich follow can all be easilyextendedto thenon-unitary
case.
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taking a non-critical W3-stringwhere the Liouville sectoris realizedby just one

scalar[28].
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