

 University of Groningen

Effective control of logical discrete event systems in a trace theory setting using the reflection
operator
Smedinga, Reinder

Published in:
11th international conference on Analysis and optimalization of systems, discrete event systems, Sophia-
Antipolis, June 15-17, 1994

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R. (1994). Effective control of logical discrete event systems in a trace theory setting using the
reflection operator. In G. Cohen, & J-P. Quadrat (Eds.), 11th international conference on Analysis and
optimalization of systems, discrete event systems, Sophia-Antipolis, June 15-17, 1994 (Vol. 199). (Lecture
notes in control and information sciences; No. 199). Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/effective-control-of-logical-discrete-event-systems-in-a-trace-theory-setting-using-the-reflection-operator(11eeab44-7358-40f6-bf91-529d3026f8c4).html

E�ective control of logical discrete eventsystems in a trace theory setting using thereection operator?Rein Smedingadepartment of computing science, University of Groningenp.o.box 800, 9700 AV Groningen, the Netherlandstel. +31 50 633937 , fax +31 50 633800, E-mail: rein@cs.rug.nlLogical discrete event systems can be modelled using trace theory. In this paperwe present an e�ective algorithm to �nd a controller using an operator (thereection) that leads to systems that go beyond our scope.We de�ne a discrete event system (DES) to be a triple, see [Sme93b, Sme93c]:P = haP;bP; tP iwith aP the alphabet (set of events), bP � (aP)� the behaviour set, and tP �(aP)� the task set. aP is a �nite set of symbols, bP and tP are possibly in�nitesets of strings of symbols (traces). For any x 2 tP we assume that, after x, Pmay stop without performing another event, while after x 2 bP ntP the systemwill eventually perform another event or it deadlocks.We call a DES realistic, if the behaviour is pre�x-closed: bP = pref(bP) andeach completed task is a behaviour: tP � bP . An unrealistic DES goes beyondour scope of a discrete event system. Nevertheless, it will play a crucial role inthe remainder of this paper.The restriction of a trace x to some alphabet A, xdA, is de�ned by �dA = �,and xadA = xdA, if a 62 A, and xadA = (xdA)a, otherwise. Here � denotes theempty string. Alphabet restriction can easily be extended to work on trace sets:T dA = fxdA j x 2 Tg, and on DESs: P dA = haP \A;bP dA; tP dAi.For DESs P and R we de�ne the interaction, see [Sme93b, Sme93c], by:P kR = haP [aR; fx j xdaP 2 bP ^ xdaR 2 bRg;fx j xdaP 2 tP ^ xdaR 2 tRgiFor interactions of systems the common events can be seen as internal events.Such events need no longer be visible outside the interaction. Therefore, weintroduce the external interaction operator that deletes the common events:P edR = (P kR)d(aP � aR)? In Guy Cohen and Jean-Pierre Quadrat, editors, 11th International Conference onAnalysis and optimalization of Systems, Discrete event systems, Sophia-Antipolis,june 15-17, 1994, number 199 in Lecture notes in Control and Information sciences,pages 66-72. Springer Verlag, 1994.

For systems with equal alphabets we say P is a subsystem of R if:P � R , aP = aR ^ bP � bR ^ tP � tRFor DESs P and R with equal alphabets (aP = aR) we de�ne the di�erence byP nR = haP;bPnbR; tPntRiFrom Verhoef [T.V90, T.V91] we have the following de�nition of the reectionof some DES (in fact the complementary system):�P = haP; (aP)�nbP; (aP)�ntP iIf P and R are realistic, it can be shown that P kR, P edR, and P dA are alsorealistic. Notice that, if P is realistic, �P need not be. This is why we needunrealistic DESs as well. The realistic interior of some DES P is de�ned byreal(P) = haP; fx j x 2 bP ^ (8y : y 2 pref(x) : y 2 bP)g;fx j x 2 tP ^ (8y : y 2 pref(x) : y 2 bP)gireal(P) is the greatest realistic subsystem of P .In the sequel we will use a; b; : : : to denote events, x; y; : : : to denote strings,and P;R; : : : to denote DESs. jAj denotes the number of elements in a set A.1 A control problemAssume systems P , Lmin, and Lmax are given with Lmin � Lmax. Our controlproblem is �nding a system R such that Lmin � P edR � Lmax.In this formulation Lmin and Lmax describe minimal and maximal wanted beha-viours of the interaction. Mostly, Lmin describes the minimal acceptable beha-viour and Lmax the legal or admissible behaviour. Notice that aLmin = aLmaxand R should be such that aR = aP�aLmin. Events from aR are used to controlthe order of the remaining events. Earlier versions of this control problem (for-mulated using trace structures instead of DESs) can be found in [Sme89]. From[Sme92, Sme93c] we know that F (P;L) = �(P ed�L) may lead to a solution:Theorem1. The control problem has a solution if and only ifLmin � P edF (P;Lmax)and, if it is solvable, the greatest solution (with respect to �) is F (P;Lmax).If P , Lmin, and Lmax are realistic, the greatest possible realistic solution equalsreal(F (P;Lmax)).

2 State graphsIn order to have algorithms to compute solutions for our control problem e�ect-ively, we introduce so-called state graphs for our DESs and construct a controller,according to theorem 1, in terms of algorithms on these state graphs.It is well-known that we can associate with a trace structure (language) a(�nite) state automaton. Each path in the automaton, starting in the initialstate and ending in a �nal state corresponds to a trace in the trace set. If thetrace structure is regular, the number of needed states is �nite. A DES is in facta pair of trace structures, so we could use two automatons to represent one DES.However, in this way we lose the correspondence between behaviour and task.Instead, we use a more general automaton, called a state graph here, containingtwo kinds of �nal states:De�nition2. A state graph is a tuple (A;Q; �; q; B; T) with A the alphabet, a�nite set of labels; Q the state set; �:Q� A ! Q the state transition function;q 2 Q the initial state; B � Q the behaviour state set; and T � Q the task stateset. � is a total function.The state set Q need not be a �nite set. Because we deal with paths in the graph,we extend � to ��:Q�A� ! Q, by: ��(p; �) = p, and ��(p; xa) = �(��(p; x); a).For a DES P we can construct a state graph using (extended) Nerode equi-valence with equivalence classes:[x]P = fy j (8z :: xz 2 bP , yz 2 bP ^ xz 2 tP , yz 2 tP)gGiven some state graph G = (A;Q; �; q; B; T) the corresponding DES equalsdes(G) = hA; fx j x 2 A� ^ ��(q; x) 2 Bg; fx j x 2 A� ^ ��(q; x) 2 Tgiand given some system P a possible state graph is:sg(P) = (aP; f[x]P j x 2 (aP)�g; �; [�]P ; f[x]P j x 2 bPg; f[x]P j x 2 tPg)with � de�ned by �([x]P ; a) = [xa]P .If the behaviour and the task set of a system are regular sets, the number ofequivalence classes is �nite and the resulting state graph has only a �nite numberof states. State graphs can be displayed as is shown in �gure 1.We have des(sg(P)) = P , but, in general, sg(des(G)) 6= G, because morestate graphs exist that correspond to the same DES.jBnT njB \ T~Qn(B [T) nzT nBFig. 1. Displaying of di�erent states ~1 ~4nz2 j3R -b-a; b?a 6a; b ��� a; bFig. 2. System from example 1

Example 1. Consider the system P = hfa; bg; faa; abg;fagi The following equi-valence classes can be found: p1 = [�] = f�g, p2 = [a] = fag, p3 = [aa] = faa; abg,and p4 = [b] = fa; bg�n(p1[p2[p3). In �gure 2 the corresponding graph is shown.q = [�] is denoted using an extra small arrow.For the operatoredwe need a nondeterministic graph (nd-graph), because we mayhave to delete labels. This results in graphs in which � is no longer a function.De�nition3. An nd-graph is a tuple (A;Q; ; q; B; T)nd with A, Q, q, B, andT as in de�nition 2 and :Q � (A [f�g)! 2Q the state transition map. Again is supposed to be total.The DES des(Gnd) corresponding to an nd-graph Gnd is given byhA; fx j x 2 A� ^ �(q; x)\B 6= �g; fx j x 2 A� ^ �(q; x) \ T 6= �giwhere �(Q0; x) represents the set of all states, reachable from a state in Q0 � Qvia a path x including zero or more �-transitions. � is the extension of .Example 2. In �gure 5 an nd-graph is given for P = hfa; bg; f�; a; b; abg;fa; b; abgiIn the remainder of this paper we use state graphs Gi = (Ai; Qi; �i; qi; Bi; Ti)(i = ; 1; 2) and nd-graph Gnd = (A;Q; ; q; B; T)nd. We give algorithms on stategraphs for all operators on DESs. We will use the same operator symbol forDESs as well as for state graphs.3 Algorithms on state graphsAlgorithm1. G1kG2 = (A1 [A2; Q1 �Q2; �; (q1; q2); B1 � B2; T1 � T2)where �((p1; p2); a) = (�1(p1; a); p2) if a 2 A1nA2= (p1; �2(p2; a)) if a 2 A2nA1= (�1(p1; a); �(p2; a)) if a 2 A1 \A2Complexity: O(jQ1j � jQ2j � jaP [aRj)Property: des(sg(P1)ksg(P2)) = P1kP2Example 3. Consider the graphs as given in �gure 3. According to the previousproperty the graph for the interaction is as given in �gure 4. Notice that thisgraph is not minimal: all non-behaviour states can be replaced by one non-behaviour state.Algorithm2. det(Gnd) = (A;2Q; �; q; B; T)where (for r 2 2Q): B = fr j r \B 6= �g q = �(q; �)T = fr j r \ T 6= �g �(r; a) = [p2r �(p; a)Property: des(det(Gnd)) = des(Gnd)

nj1 j2~3R -a�b@@Rb ��	a� �6a; bnj1 j2~3R -b�c@@Rc ��	b� �6b; cFig. 3. State graphs G1 (upper diagram)and G2 for example 3
~13 ~23 j22nj11 j21 j12~32 ~31 ~33R -b�b-a -b-c�b -c6c 6c ���	c 6a?b ?a ?b� �?a; b � �? c
� �6 a � �6 a � �6 a; b; c��@@I c�� @@Rb �� ���	a

����a
Fig. 4. Interaction of G1 and G2j1 j2j3 nj4 ~5R -a-�@@@Rb?a ?b @@@Ra; b; �?a; b; �-� -a; bFig. 5. An nd-graph representingthe system from example 2 ~1 ~2nj3 j4R -c?a 6a; ��c@@@R� � �?a; c; ��a; c; � j124 nj23~2R -a; c ?a; c��-a; cFig. 6. An nd-graph and its deterministicequivalence for example 4The above construction is a generalization of the well-known construction to�nd the deterministic equivalent of a nondeterministic automaton. Apart fromunreachable states, each state in det(Gnd) is the set of states that can be reachedfrom another set by doing zero or more �-moves, followed by one normal move,followed by zero or more �-moves.Example 4. We can use the above construction on the graph of �gure 6 (left) toget a deterministic graph.We �nd: q = �(q; �) = fp1; p2; p4g, �(fp1; p2; p4g; a) =fp2; p3g, �(fp1; p2; p4g; c) = fp2; p3g, �(fp2; p3g; a) = fp2g, �(fp2; p3g; c) =fp2g, �(fp2g; a) = fp2g, and �(fp2g; c) = fp2g, which leads to the graph of�gure 6 (right). Notice that we only have examined the reachable states. Thebehaviour and task states are B = ffp1; p2; p4g; fp2; p3gg and T = ffp2; p3gg. Itcan easily be checked that this graph also represents the same system.Algorithm3. GdA1 = det(Gnd) with Gnd = (A \A1; Q; ; q; B; T)ndwhere: (p; �) = [a2AnA1 �(p; a) (p; a) = f�(p; a)g (for a 2 A \A1)Complexity: O(jAj � jQj) (for computing Gnd)Property: des(sg(P)dA) = P dAWe also have: des�(sg(P)ksg(R))d(aP � aR)� = P edR, that shows a way to geta graph for P edR:

Algorithm4. G1edG2 = (G1kG2)d(A1 �A2)~ ~nj jR -c?a 6a; b�c@@@Rb � �?a; b; c�a; b; cFig. 7. sg(P) for example 5 nj nj~ nzR -c?a 6a; b�c@@@Rb � �?a; b; c�a; b; c nj j~R -c?a; b ��� a; b� �?a; b; cFig. 8. Graph �sg(P) (left) and its realistic in-terior for example 6.Example 5. Consider the system P = hfa; b; cg; fa; b; bcg; fa; bcgi. Its correspond-ing graph sg(P) is given in �gure 7. The graph sg(P)dfa; cg is to be found in �g-ure 6, constructed using algorithm 3. Making this graph deterministic leads to agraph representing the system hfa; cg; f�; a; cg;fa; cgiwhich is equal to P dfa; cg.The reection operator of a graph is simply the graphs complement, i.e., inter-change the types of all states:Algorithm5. �G = (A;Q; �; q;QnB;QnT)Complexity: O(jQj)Property: des(�sg(P)) = �PFinding the DES-interior means �nding all states reachable from q with pathsnot going through non-behaviour states:Algorithm6. real(G) = (A; fqg;1; q;�;�) if q =2 B= (A;B [fqg; �; q; B; F \B) otherwisewhere q is a fresh state (=2 B) and �(p; a) = �(p; a) if �(p; a) 2 B, �(p; a) = qotherwise, and �(q; a) = q for all a 2 A.Complexity: O(jAj � jQj)Property: des(real(sg(P))) = real(P)The graph (A; fqg;1; q;�;�) is a representation for the empty system:des((A; fqg;1; q;�;�)) = hA;�;�iAlgorithm7. G1nG2 = (A;Q1 � Q2; �; (q1; q2); B1 �Q2nB2; T1 �Q2nT2)with �((p1; p2); a) = (�1(p1; a); �2(p2; a)).Complexity: O(jA) � jQ1j � jQ2j)Property: des(sg(P)nsg(R)) = P nRExample 6. Computing �sg(P) for the system displayed in �gure 7 leads to thesystem as displayed in �gure 8 (left). In �gure 8 (right) the realistic part of thatsystem can be found.

Example 7. Reconsider the systems as displayed in �gure 3. Computing G1nG2leads to the same graph as in �gure 4 but with other state types: B = fp13g andT = fp12; p13g.Because we deal with paths in a graph starting in the initial state it has noe�ect if states ared added that cannot be reached from the initial state. Suchstates can, if present, also easily be eliminated. Algorithms can be made moree�cient if only the states, reachable from the initial state, are really computed.Moreover, we can use an extension of the standard algorithm on automatons(see [HU79]) to minimize state graphs. Also, we can easily extend the operatorsto work on nd-graphs as well. Therefore we can do without the operator detfrom algorithm 2.4 E�ectively computableIf P and L are regular, i.e., can be displayed using �nite state graphs, we seefrom the algorithms and properties above, that real(F (P;L)) can be computedin polynomial time. Moreover, to test the condition for having a solution, wecan compute the graph equivalence of Lmin n(P edreal(F (P;Lmax))). If Lmin �(P edreal(F (P;Lmax))), this results in an empty graph, i.e., B = � and T = �.Theorem4. Let Gmin, Gmax, and GP be state graphs for Lmin, Lmax, and P ,respectively. Then isGR := real(�(GP ed�Gmax))a state graph for real(F (P;Lmax)). It can be computed in polynomial time.If computation of Gminn(GP edGR) results in an empty graph, the control prob-lem is solvable and GR represents the largest possible solution. Also this lastcomputation can be done in polynomial time.5 ConclusionsWe have shown that a trace theory based approach leads to an elegant de�nitionof a logical discrete event system and gives a nice algorithm to �nd a solutionfor a control problem, where we, temporally, go beyond the scope of a DES. Thealgorithm can be translated to work on state graphs, leading to an e�ectivelycomputable solution if the systems itself are regular. Proofs of all properties canbe found in Smedinga [Sme92].References[BKS93] S. Balemi, P. Koz�ak, and R. Smedinga, editors. Discrete Event Systems:Modeling and Control, volume 13 of Progress in Systems and Control The-ory. Birkh�auser Verlag, Basel, Switzerland, 1993. (Proceedings of the JointWorkshop on Discrete Event Systems (WODES'92), August 26{28, 1992,Prague, Czechoslovakia).

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages,and computation. Addison Wesley, 1979.[Sme89] R. Smedinga. Control of discrete events. PhD thesis, University of Gronin-gen, 1989.[Sme92] R. Smedinga. The reection operator in discrete event systems. TechnicalReport CS9201, Department of computing science, University of Groningen,1992.[Sme93a] R. Smedinga. Discrete event systems. course-notes, second version, Depart-ment of computing science, University of Groningen, 1993.[Sme93b] R. Smedinga. Locked discrete event systems: how to model and how to un-lock. Journal on Discrete Event Dynamic Systems, theory and applications,2(3/4), 1993.[Sme93c] R. Smedinga. An Overview of Results in Discrete Event Systems usinga Trace Theory Based Setting, pages 43{56. Volume 13 of Balemi et al.[BKS93], 1993.[T.V90] T.Verhoe�. Solving a control problem. Internal report, Eindhoven Uni-versity, 1990.[T.V91] T.Verhoe�. Factorization in process domains. Internal report, EindhovenUniversity, 1991.

This article was processed using the LaTEX macro package with LMAMULT style

