

 University of Groningen

NONDETERMINACY AND RECURSION VIA STACKS AND GAMES
Hesselink, Willem

Published in:
Theoretical Computer Science

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1994). NONDETERMINACY AND RECURSION VIA STACKS AND GAMES. Theoretical
Computer Science, 124(2), 273-295.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/nondeterminacy-and-recursion-via-stacks-and-games(d330bc2a-790d-41f4-82d0-c813e56aee1d).html

Theoretical Computer Science 124 (1994) 273-295 273
Elsevier

Nondeterminacy and
stacks and games

recursion via

Wim H. Hesselink
Rijksuniversiteit Groningen, Department of Computing Science, P.O. Box 800, 9700 A V Groningen,
The Netherlands

Communicated by J.W. de Bakker
Received August 1991
Revised May 1992

Abstract

Hesselink, W.H., Nondeterminacy and recursion via stacks and games, Theoretical Computer
Science 124 (1994) 273-295.

The weakest-precondition interpretation of recursive procedures is developed for a language with
a combination of unbounded demonic choice and unbounded angelic choice. This compositional
formal semantics is proved to be equal to a game-theoretic operational semantics. Two intermediate
stages are exploited. One step consists of unfolding the declaration of the recursive procedures.
Fixpoint induction is used to prove the validity of this step. The compositional semantics of the
unfolded declaration is proved to be equal to a formal semantics of a stack implementation of the
recursive procedures. After an introduction to boolean two-person games, this stack semantics is
shown to correspond to a game-theoretic operational semantics.

O. Introduction

In sequential programming, Dijkstra's weakest preconditions (cf. I-5, 6]) form the
semantic formalism most adequate for programming methodology. In this formalism,
the meaning of a command expression c is expressed by wp. c, the function that assigns
to a postcondition p the weakest precondition such that c is guaranteed to terminate
in a state where p holds (to avoid circularity or contradictions, this should be read as
an informal introduction and not as a formal definition). We let the application
operator, bind to the left and therefore write wp.c.p instead (wp.c).p for the weakest
precondition of postcondition p.

Correspondence to: W.H. Hesselink, Rijksuniversiteit Groningen, Department of Computing Science,
P.O. Box 800, 9700 AV Groningen, The Netherlands. Email: wim@cs.rug.nl.

0304-3975/94/$07.00 © 1994--Elsevier Science B.V. All rights reserved
SSDI 0304-3975(92)00016-A

274 W.H. Hesselink

Sequential composition of command expressions, demonic nondeterminate choice
of command expressions and (mutually) recursive procedures are treated in the
following way. The weakest precondition of the sequential composition (c; d) of
command expressions e and d for postcondition p is given by

wp. (e; d). p = wp. c. (wp. d. p).

Using composition of predicate transformers, this rule is equivalently expressed by

wp.(c; d) = wp.c o wp.d. (0)

The weakest precondition of the demonic choice (D i::c. i) of a family of command
expressions (i ~ I :: c.i) is given by

wp.(Di :: c.i) .p =(Vi :: wp.(c.i).p). (1)

For a recursive procedure h, the predicate transformer wp. h is defined as the strongest
solution of the equation

wp. h = w p . (body. h). (2)

In case of mutual recursion, function wp is the strongest solution of the system of
equations (2) where h ranges over all procedure names.

In compilers, recursive procedures are implemented by means of a stack of com-
mands, say q. In that case, the meaning of stack q is given by the weakest precondition
wp.q which is supposed to be the strongest solution of a system of equations like

wp.e = identity,

wp.(e; q) = wp.c o wp.q, (3)

wp.(h; q) = wp.(D r ~alt. h :: r; q),

where e is the empty stack, c ranges over simple commands, q ranges over strings of
commands, h ranges over procedure names and body.h = (Drsait.h :: r). Of course, (3)
is a direct consequence of (0) and (2), but that does not mean that the strongest
solution of (2) also yields the strongest solution of (3). In fact, it is not obvious that the
strongest solution of (3) satisfies (0).

As early as 1975, De Bakker proved the compatibility of (0), (2) and (3) as defining
equations in a special case by means of Scott induction, see [3]. The induction rule of
De Bakker and Scott, however, is not valid for unbounded demonic nondeterminacy
and has not been developed for angelic nondeterminacy. Therefore, we are glad to be
able to prove this compatibility by other means and under weaker assumptions.

In the versions of [6, 9], predicate-transformation semantics relies on certain
postulates (the healthiness laws) that are equivalent to the condition that every
command has well-defined relational semantics (total in the case of 1-6]). Recently,
these healthiness laws have come under attack. In fact, in the refinement calculus
of Back, Morgan, Morris and others, several specification constructs have been

Nondeterminacy and recursion via stacks and 9ames 275

proposed that lead to command expressions violating the healthiness laws. The
simplest case is the operator o for angelic choice (cf. [-1, 13-15]).

We use the notation (o i :: c. i) for the angelic choice between command expressions
c.i. It is specified by its weakest precondition for postcondition p

wp. (o i :: c. i).p = (3 i :: wp. (c. i). p). (4)

In the case of a choice between two command expressions, the symbols o and • can be
used as infix operators, so that

wp.(co d).p = wp. c.p V wp.d.p,

wp.(c 0 d).p = wp.c .p A wp.d.p.

Remark. In [13], the angelic choice (o i~ I :: c. i) is denoted con i : I • c. i; the dummy i is
called a logical constant. The construct is introduced in [13, Ch. 6, Section 21.3.5].
A nontrivial example is given in [13, Section 15.43. We have the impression that in the
cases where the construct is used, it is used mainly for convenience, not because it is
indispensable. The development of constructs useful to reduce the complexity of the
design process, however, is an important issue.

It must be admitted that the angelic choice in isolation has rather strange proper-
ties. If, for example, j is an integer program variable, then command c = (j := 0 o j := 1)
satisfies

wp.c.(j=O)

= wp.(j := 0).(j =0) V wp.(j := 1).(j =0)

= true V false

= true

and, by similar calculations,

wp.c.(j = 1)= true

and

wp. c. (j = 0 A 3 = 1) =false.

So the command is able to establish J =0 as well as j = 1. It seems to guess the
postcondition we have in mind. For this reason one might prefer to speak of
specification c instead of command c. The angelic properties of c prohibit an opera-
tional model in the usual style. In this special case, wp.c can be expressed by means of
the diamond operator of dynamic logic, cf. [7], but that formalism cannot express
mixtures of demonic choice and angelic choice. In [2], a general command expression
c is regarded as a game between a demon and an angel: predicate wp.c .p means that
the angel has a winning strategy to establish postcondition p. We shall formalize this
point of view in Sections 3 and 4, see also [8].

276 W.H. Hesselink

Remark. The term angelic choice is often used to refer to termination only, e.g.,
cf. [12]. Angelic choice in that restricted sense is still representable in relational
calculus.

For a command expression c constructed by means of angelic choice, the predicate
transformer wp.c is monotone, but it may fail to be conjunctive (as is shown in the
above example). This paper is therefore addressed to the foundations of a wp-calculus
in which wp.c can be any monotone predicate transformer. We determine an abstract
system of equations of the form (3), such that its strongest solution satisfies (0),
restricts to the strongest solution of (2) and allows unbounded demonic and angelic
choices in procedure bodies.

The plan of the paper is as follows. In Section 1 we introduce the syntax, the
semantics and the compositional interpretation. Section 2 contains the development
of the stack interpretation. In Section 3 we provide a brief theory of boolean
two-person games, similar to the alternating Turing machines of [4]. This theory is
used in Section 4 to present the game-theoretic operational semantics that corres-
ponds to the stack interpretation of Section 2. In Section 5, we prove that the
interpretations of Sections 1 and 2 agree.

In Section 2 we need a rather severe restriction on the syntax of procedure
declarations. Every declaration can be rewritten such as to satisfy this restriction.
This is a kind of preprocessing called unfolding. The fact that unfolding does not
change the predicate transformation semantics is proved in Section 6. In Section 7
we briefly sketch the treatment of conditional correctness. Section 8 contains the
conclusions.

I. Unbounded choices and recursion with homomorphic interpretation

In this section we introduce an abstract syntax for command expressions, a seman-
tic formalism and a compositional interpretation function from syntax to semantics.

We first discuss the syntax to be used. Let A be a set of symbols, to be called
commands. We assume that A contains all simple commands and all procedure names
that may be needed. Starting from A, we define the class Cmd of command expressions
inductively by the clauses
• A~_Cmd,
• if c, deCmd then c; d~Cmd,
• if(i~I::c.i) is a family in Cmd then (Di::c.i)eCmd and (<> i::c.i)eCmd.
Since the index sets I are arbitrary, Cmd is not a set but a proper class in the sense of
set theory, cf. [-10-l. This fact need not be a matter of great concern.

We assume that the set of commands A is the disjoint union of two sets S and H,
which may be infinite. The elements of S are called simple commands. Their semantics
are supposed to be given. The elements of H are called procedure names. Every
procedure h~H is supposed to be equipped with a body body.hECmd.

Nondeterminacy and recursion via stacks and games 277

The semantics are expressed in terms of predicates on a given state space X. Let
P be the set of predicates on X. The set P is ordered by strength, i.e.,

p <~ q - (V x ~ X : : p .x ~q . x) .

Let M T be the set of monotone predicate transformers, i.e., montone functions P ~ P.
The set M T is equipped with the induced order given by

f <~g-(Vp~P :: f.p<~g.p).

It is well known that P and M T with these orders are complete lattices. The infimum
or greatest lower bound (n) of a family of predicates p. i with i~I is denoted (infi :: p. i);
it is the universal quantification (Vi::p.i). Similarly, the supremum or least upper
bound (sup i :: p. i) is the existential quantification (3i :: p. i). The infimum of a family of
predicate transformers f . i with i~I is the predicate transformer given (argumentwise)
by

(inf i ::f. i). p = (inf i ::f. i. p)

for every predicate p. Similarly for the supremum.
Recall that the well-known theorem of Knaster-Tarski (cf. [17]) asserts that, for

any complete lattice W, a monotone function D ~ W ~ W has a least fixpoint and
a greatest fixpoint.

Every simple command s~S has an associate predicate transformer ws.s~MT. So
the semantics of the simple commands are given by a fixed function w s ~ S ~ M T . We
assume that S contains sufficiently many assignments and also the so-called guards.
For a predicate b, the guard ?b is the simple command with ws.(?b).p = (7 b v p). It is
well known that conditional choice can be expressed by

i fb then c else d fi = (?b; c • ?-7 b; d).

In view of (0),(1),(2) and (4), the weakest precondition function w p ~ C m d ~ M T is
supposed to satisfy

wp.(c; d) = wp. c o wp. d,

wp.(Di :: c . i)=(inf i :: wp.(c.i)),

wp.(~ i : :c . i)=(supi::wp.(c . i)) , (5)

wp. s=ws . s for s~S,

wp.h=wp.(body.h) for hsH.

The first three clauses of (5) form a compositionality property. More generally, we
define a function veCmd--*MT to be a homomorphism if and only if

v.(c;d)=v.c o v.d,

v.(Di : : c . i)=(inf i : : v.(c.i)),

v.(~> i::e . i)=(supi::v . (c . i)) .

278 W.H. Hesselink

Every function u e A ~ M T permits precisely one homomorphism u° ~ C m d ~ M T with
restriction (u° lA)= u, which is called the homomorphic extension of u. In fact, u ° can
be easily constructed inductively.

In the presence of recursive procedures, function wp need not be completely
determined by system (5). We therefore define wp to be the homomorphic extension
wp=wa ° where wa is the least solution ~ E A - - * M T of the system of equations

~ . s = w s . s for ssS,

~ . h = ~° . (body.h) for heH.
(6)

In fact, the set A ~ M T is made into a complete lattice by argumentwise extension of
the order of MT. Then it is easy to see that the right-hand side of (6) is a monotone
function of w, so that the theorem of Knaster-Tarski yields a unique least solution
for (6). Function wp is called the homomorphic interpretation.

Remark. Let us say that procedure h calls h' if h' occurs in the command expression
body. h. If relation "calls" is well founded, function wp is the only solution of system (5)
(and hence of (6)).

2. The stack interpretation

In this section we introduce the stack interpretation, which looks like the stack
implementation in actual compilers. In Section 4, we show that the stack interpreta-
tion corresponds to a game-theoretic operational semantics. Since the stack is treated
as the current task, the stack interpretation may be regarded as a kind of continuation
semantics.

For simplicity, our stack implementation of recursive procedures requires that the
program be preprocessed in such a way that function body satisfies a much stricter
syntax in which every choice is governed by a separate procedure name. The addi-
tional procedure names play r61es similar to labels for jumps and stacked return
addresses in compilers.

Let A* be the set of strings of commands. We write ~ to denote the empty string and
use the semicolon; to denote catenation of strings. We identify an element of A with
the corresponding singleton string, so that A is regarded as a subset of A*.

The restricted syntax is described as follows. We assume that the set H of procedure
names is the disjoint union of two sets Hd and Ha and that every procedure h e H is
equipped with a set of strings (alternatives), denoted by alt.h ___A* such that the body
body.h of h is given by

(Drealt.h::r) if h~Hd,
body.h= (o realt .h::r) if heHa. (7)

Nondeterminacy and recursion via stacks and games 279

The preprocessing to transform an arbitrary declaration into one that can be
expressed by means of (7) is called unfolding. More generally, unfolding is the process
of replacing command subexpressions of procedure bodies by procedure names with
the command subexpression as body. We are only interested in replacing nested
choices. A declaration that satisfies (7) is thus regarded as completely unfolded. It may
seem obvious that unfolding preserves the semantics. The proof of that fact, however,
is nontrivial. It is given in Section 6. Meanwhile, we assume that (7) is satisfied.

Example. Let x be an integer program variable. Let the recursive procedure h be

declared by

body.h = skip o x :=2 * x;(skip D x : = x + 1); h.

If x is initially positive this procedure extends the binary representation of x with
a "convenient" number of bits, but the values of these bits are not under control. For
example, wp.h.(xe{5,8, 9}) is implied by x = 2 . In this case, the unfolding uses one
additional procedure name, say k, with heHa and keHd and

alt. h = {skip, x:= 2 * x; k; h},

alt.k = {skip, x : = x + 1}.

Of course, the example is only an illustration of the technique and not intended to be
useful. []

The stack implementation of recursion is based on the treatment of a string of
commands as a stack. This means that the interpretation is a function in A*--*MT.
The recurrence equation that defines the stack implementation is obtained as follows.
The empty stack is interpreted as the command "do nothing" and therefore should
induce the identity transformation. The meaning of a nonempty stack (a; q) should be
a predicate transformer expressed in terms of the head a of the stack and the meaning
of the tail q of the stack.

We therefore define the stack interpretation wk to be the least solution of the system
of equations in veA*---,MT:

v. e = identity,

v.(a;q)=ws.aov.q if aeS,
(8)

v. (a; q) = (inf r E alt. a :: v. (r; q)) if a ~ Hd,

v.(a; q) =(sup realt.a :: v.(r; q)) if aeHa

for all qeA*.
In (8), the argument of v is the stack. The idea is that, repeatedly, the next command

is popped from the stack. If it is a simple command it is executed. If it is a procedure
name, one of its alternatives is pushed onto the stack. In actual compilers, the original
program is kept, so that only return addresses and parameters need to be stacked.

280 W.H. Hesselink

The set A * ~ M T w i t h the induced order is a complete lattice. The right-hand side of
(8) is a monotone function of v. Therefore, the theorem of Knaster-Tarski implies that
system (8) has a least solution. This least solution is the stack interpretation wk. Note
that it is not yet clear that wk.(q; r) = wk.q o wk.r for strings q and r. This will be proved
in Section 5. The relationship between the interpretations wk and wp is also treated in
Section 5.

Definition (8) is a kind of tail recursion. We can therefore fix the postcondition,
say p, and derive a recursive definition for the function f~A*--*P given by f .q=
wk.q.p. In fact, it follows from the above t h a t f i s the least solution of the system of
equations

f.~ =p,

f.(a;q)=ws.a.(f.q) if aeS,
(9)

f. (a; q) = (inf r E alt. a ::f. (r; q)) if a ~ Hd,

f.(a;q)=(suprsait.a::f.(r;q)) if aeHa

for all qsA*.

3. Boolean two-person games

In this section we prepare the game-theoretic semantics of the stack interpretation
wk by developing a small theory of boolean games. The alternating Turing machines
of [-4] form a special case of this theory. Conceptually, the theory is closely related to
the AND/OR trees that occur in logic programming and artificial intelligence, cf. [16].

Let a boolean two-person 9ame be defined as a quadruple (V, ~ , k, v) where Visa set,
is a binary relation on Vand k is a predicate on Vand v~ V. The pair (V,-*) may be

regarded as a possibly infinite directed graph. The function k~V-~B might be
regarded as a colouring of the nodes, but we do not require that connected vertices
have different colours.

The set Vis interpreted as the set of configurations of the game; relation ~ is the set
of moves. Function k indicates the player that takes the move. The element v is the
initial configuration of the game. There are two players. The situation is symmetrical
in the two players, but, for simplicity, we take sides and decide that the players are
called angel and demon. For each vertex x:

k.x means that the demon takes the move,
--1 k.x means that the angel takes the move.

A player wins directly if its opponent takes the move and has no move. For the
moment, any infinite execution path is regarded as a draw.

In principle, we are only interested in the question whether one of the players has
a winning strategy when the game starts in the initial configuration v. It turns out that
the initial configuration only plays a r61e in the final interpretation of the game. For
the investigation of the game itself, v need not be specified.

Nondeterminacy and recursion via stacks and games 281

Example. Let V be the set of the integers. Let -* and k be given by

x--*y - x¢{0,9} A y e { x - i , x - 5 } ,

k .x - xmod2=0 .

The demon is lost in position 0. It follows that the angel has a winning strategy in the
positions x with

x~>0 A xmod6s{0,1,5}.

Similarly, the demon wins in position 9 and has a winning strategy in the positions
x with

x~>9 A xmod6e{2,3,4}. []

We now assume that both players use an optimal strategy. Let W be the set of
configurations where the angel does not lose. Then, once inside W, the demon cannot
escape from W and the angel can remain inside W. This implies that

(Vxe W:: (k .x~(Vy: x-*y: y~ W)) A (-7 k .x~(3y: x-*y: ye W))). (10)

Conversely, any set Wthat satisfies (10) can serve the angel as a refuge where it cannot
lose. We therefore introduce the function D from subsets of V to subsets of V given by

x~D. U - (k .x~(Vy: x-*y: ye U)) A (-7 k. x~(3y: x-*y: y~ U)). (11)

Function D is monotone with respect to inclusion. It now follows that the greatest
fixpoint of D is the greatest set where the angel does not lose.

By symmetry, it follows that the set W' where the demon does not lose is the
greatest fixpoint of function D' given by

xeD'. U - (k.x~(3y: x~y: ye U)) A (-7 k .x~(Vy: x-*y: ye U)). (12)

Consequently, the set of configurations where the angel wins is the complement
V \ W'. In order to characterize V \ W' as a fixpoint, we observe that the complement
of any fixpoint of D' is a fixpoint of D, and vice versa. This follows from the identity

V \ D ' . U = D . (V \U) ,

{(12) and calculus}

(k . x ~ - 7 (~y: x-*y: ye U))

A (-7 k . x ~ - 7 (Vy: x-*y: ye U))

- {calculus and (11) with U : = V\U}

x e D . (V \ U) .

This implies that V\ W' is the least fixpoint of D. This proves the following theorem.

which is proved in

xeD' . U -

282 W.H. Hesselink

Theorem 3.1. The least fixpoint of D is the set of configurations where the angel wins.
The greatest fixpoint of D is the set of configurations where the angel does not lose.

4. Game-theoretic semantics

We now develop game-theoretic semantics for the formalism of Section 2. The first
task is to give an interpretation to the simple commands.

We assume that every simple command csS has an input-output relation [c~ on
the state space X and that the set of simple commands is a disjoint union S = SauSd.
Here Sa (Sd) stands for the set of simple commands with angelic (demonic) nondeter-
minacy. The simple commands are interpreted in the following way. For a predicate
p on X, we define

ws.c.p.x=(Vy:(x,y)~c]]: p.y) if c~Sd,
(13)

ws.c.p.x=-(3y:(x,y)~c~: p.y) if c~Sa.

Remark. This is a restriction on the simple commands. In fact, for ceSd (ceSa) the
predicate transformer ws.c commutes with arbitrary conjunctions (disjunctions).
Conversely, every predicate transformer that commutes with arbitrary conjunctions
or disjunctions can be admitted as a simple command. For deterministic commands
such as assignments the choice between Sd and Sa is irrelevant.

Example. For a predicate b, the guard ?b~Sd and the assertion !b~Sa are defined by
the same input-output relation [[!b~ = [[?b~ given by

(x,y)s{?b~ - x = y A b.x.

It follows from (13) that

ws.(?b).p.x - -nb.x V p.x,

ws.(!b).p.x - b.x A p.x.

In fact, a universal quantification over the empty domain yields true and an existential
one yields false. []

For a given postcondition p, the game-theoretic semantics of a string teA* with
respect to the initial state z and postcondition p is defined as the boolean two-person
game (V, ~ , k, v), where Vis the cartesian product X x A* and the initial configuration
v is (z, t)~ V. Function k is given by stating that, for all x~X, qeA* and a~A,

k . (x , e) -p .x ,

k. (x, a; q) - (a ~ Sd~3 Hd).

Nondeterminacy and recursion via stacks and games 283

Relation --* is defined as the least relation on V that satisfies
• if ceS A (x,y)e~[c~ then (x,c;q)~(y,q),
• if he l l A realt .h then (x,h;q)~(x,r;q).
Note that the configurations (x, ~) have no transitions.

The interpretation is that state z satisfies the weakest precondition of command
string t for postcondition p if and only if, in the game starting at v--(z, t), the angel has
a winning strategy, i.e., a strategy such that the game is guaranteed to reach a config-
uration (x, a) where p.x holds.

In this case, function D of (11) satisfies

(x , e)eD.U=p.x for all x~X,

(x, c; q)eO. U =- (Vy: (x, y)E lie}: (y, q)e U) if c~Sd,

(x,c; q)eO.U=(3y:(x, y)e~c']: (y,q)eU) if c~Sa,

(x,h;q)eD.U=_(VrEait.h::(x,r;q)eU) if h~Hd,

(x,h;q)eD.U=-(3r~alt.h::(x,r;q)~U) if heHa.

Let W0 be the greatest region where the angel wins. By Theorem (3.1), W0 is the least
fixpoint of function D. Let function f e A * ~ P be given by

f . q . x - (x , q) ~ WO.

Then f is the strongest solution of the system of equations:

f . ~ . x = p . x for all x e X ,

f .(c; q) . x - (V y: (x, y)e[[c]]: f .q. y)

f. (c; q). x - (3 y: (x, y)e [[c~]: f . q, y)

f.(h; q).x =- (Vrealt. h ::f.(r; q).x)

h.(h; q).x - (3 realt, h ::f. (r; q).x)

By definition

f.(c;

if ceSd,

if csSa,

if hEHd,

if heHa.

(13), the second clause and the third one can be unified to

q).x=ws.c.(f .q) .x if c~S.

Since infima and suprema in P correspond to pointwise universal and existential
quantification, this implies that f is the strongest (i.e. least) solution of system (9)
obtained in Section 2. This proves that the game-theoretic semantics coincides with
the stack interpretation wk of Section 2.

5. The stack theorem

In this section we show the agreement between the stack interpretation wk and the
homomorphic interpretation wp. More precisely, we show that wp and wk agree on
the set A* of strings of commands.

284 W.H. Hesselink

The functions wp and wk are defined by means of the least solutions of the systems
(6) and (8). System (8) implies that wk behaves properly with respect to the choice
operators, but does not (yet) guarantee wk.(q; r) = wk.q o wk.r. In order to discuss this
property, we define a function v e A * - - . M T to be multiplicative if and only if

v. ~ = identity,

v . (q;r)=v.qov .r .

Every function u~A ~ M T permits precisely one multiplicative function u * ~ A * - - . M T

with restriction (u*lA)= u, which is called the multiplicative extension of u. In fact, it is
easy to see that u* can be constructed inductively.

We now observe that, under assumption (7), the function wa = (wplA) defined as the
least solution of the system of equations (6) is also the least solution ~ A ~ M T of the
system

~ . a = w s . a if a~S,

~ . a = (i n f r ~ a l t . a : : ~ * . r) if a~Hd, (14)

~ . a = (s u p r ~ a l t . a : : ~ * . r) if a~Ha.

Now the aim is to prove that wk = wa*. In order not to be hindered by the case
distinctions in (8) and (14), we apply abstraction and introduce a function

Q~(A*--. MT)-- . (A-- . M T)

to express the right-hand sides of (8) and (14). This function Q is defined by

ws.a o v.~ if a~S,

Q . v . a = t (i n f r e a l t . a ::v.r) if aEHd, (15)
!
~(suprealt.a ::v.r) if a~Ha,

for all w A * ~ M T . Here the reader may recall that Q.v .a=(Q.v) .a .

We first show that Q can be used to express (14). For every ~ A ~ M T , function
~ * c A * - - . M T is multiplicative and therefore satisfies ws. a o ~ * . e = ws. a for all a~S.

This implies that system (14) is equivalent to

~ . a = Q . ~ * . a for all a~A. (16)

It is easy to see that function Q is monotone. Function wa can therefore be defined as
the least solution ~ A - - . M T of system (16).

In order to use Q to express system (8), we note that the term v.q in the second
clause of (8) can also be written as v.(e; q). So, in each case, the argument of v at the
right-hand side of (8) is postfixed with string q. We therefore introduce the function

R ~ A * ~ ((A* ~ M T) ~ (A * ~ M T)),

given by

R.q . v . s=v . (s ;q) for all q , s~A*, v ~ A * ~ M T . (17)

Nondeterminacy and recursion via stacks and games 285

We claim that system (8) is equivalent to the system of equations in v e A * - ~ M T

v.a = identity,
(18)

v.(a;q)=Q.(R.q.v).a for all aeA, qeA*.

In fact, if aeS then Q.(R.q.v) .a=ws.aoR.q.v .e=ws.aov.q . For aeHd we have

Q.(R.q.v).a=(inf realt.a : : R.q.v.r) =(inf realt.a :: v.(r; q)).

The calculation for procedure names aEHa is completely analogous.

With respect to the comparison of the interpretations wk and wa*, we now have
that wa is the least solution of equation (16) and wk is the least solution of equation

(18). It turns out that we need only two abstract properties of function Q for the proof
of wk = wa*. The first one is that function Q is monotone. The second property is
contained in the next lemma.

Lemma 5.1. Let function L e M T ~ ((A * ~ M T) ~ (A * ~ M T)) be given by

L . f . v . s =v . so f for all f ~ M T , seA*, v~A*-~MT.

Then Q.(L. f .v) .a=Q.v.aof for all f e M T , v ~ A * ~ M T and a~A.

Proof. There are three cases to consider. For aeS, it suffices to observe that

Q.(L. f .v) .a=Q.v .aof

- { (1 5) }

ws.a o L . f .v.e= ws.a o v.e o f

- {definition of L}

true.

For aeHd, we observe

Q.(L.f .v) .a=Q.v.a of

- {(15); let r range over alt.a}

(infr :: L.f.v.r) = (infr :: v.r) of

- {definition of L}

(inf r :: v. r of) -- (inf r :: v. r) of

- {a rule for predicate transformers}

true.

The proof for a~Ha is similar. []

286 W.H. Hesselink

The main stepping stones for the proof of wk = wa* are the following two lemmas.
We first need a result concerning fixpoints in an arbitrary complete lattice W. It is
well known that the least fixpoint x0 of a monotone function De W ~ W can be
constructed by

xO = (in f~e W: D . ~ ~< ~: ~). (19)

A subset V of W is said to be sup-closed if it contains the suprema of all its subsets.
Note that the least element of W is the supremum of the empty set and, hence, an
element of every sup-closed set. A subset V of W is said to be D-invariant if D. v e V for
all ve V. In our favorite version of the theorem of Knaster-Tarski (cf. [9, Section 4.2]),
it is stated that the least fixpoint x0 of D is an element of every subset V of W that is
sup-closed and D-invariant. This is a kind of induction principle. It is used in the first
lemma.

Lemma 5.2. Let W be a complete lattice and D e W-* W a monotone function with least

f ixpoint xO. Le t Z be an ordered set with a monotone function E e Z - ~ Z . Let F e W ~ Z

be such that F o D = E o F and that F commutes with suprema. Then F.xO is the least

f ixpoint o f E.

x O e W D W

Z ~ Z

Proof. F.xO is a fixpoint of E since E. (F .xO)=F. (D .xO)=F.xO.

In order to show that F.xO is the least fixpoint, we argue as follows. Let z ~ Z be any
fixpoint of E. We have to prove that F.xO <~ z. For this purpose, it suffices to prove that
x0 is an element of the subset V of W given by

u ~ V = F.u<~z.

Since xO is the least fixpoint of D, the result quoted above implies that it suffices to
prove that the set V is sup-closed and D-invariant,

The set V is sup-closed in W since, for any subset U of W,

F. (sup U) ~< z

- {F commutes with suprema}

(s u p u e U :: F.u)<..z

= {definition supremum}

(V u e U : : F . u ~ z) .

Nondeterminacy and recursion via stacks and games 287

The set V is D-invariant since, for any ~ e W,

F.(D.~)<~z

= {F o D = E o F; z fixpoint of E}

E.(F.~) <~ E.z

{E is monotone}

F . ~ <~ z. []

We use Lemma 5.2 to prove the next stepping stone: the function wk is "submulti-

plicative".

Lemm a 5.3. wk.so wk.r<<, wk.(s;r) for all s ,r~A*.

Proof. We fix string r and define function g E M T by 9 = w k . r and function yeA*-*

M T by y. s = wk. (s; r). Now the assertion is equivalent to wk. s o g <~ Y. s for all s 6 A*, or
equivalently to

L. g. wk <~ y. (20)

Fo rmula (20) is proved by showing that y is a fixpoint of a function E and that L.g. wk

is the least fixpoint of E.
We clearly have y . e = w k . r = g . For every string qeA* and command asA , we

observe that

y. (a; q)

= {definition of y}

wk. (a; q; r)

= {wk solves (18)}

Q. (R. (q; r). wk). a

= {(17) with definition of y yields

R. (q; r). wk. s = wk. (s; q; r) = y. (s; q) = R. q. y. s

for every s~A* and hence R. (q; r). wk = R. q.y}

Q.(R.q.y).a.

This proves that y is a fixpoint of the function

Ee(A* ~ M T) ~ (A * ~ M T) ,

288

given by

W.H. Hesselink

E.v.e=g, (21)

E.v.(a;q)=Q.(R.q.v).a for vsA*~MT, aeA, qeA*.

So, in order to prove (20), it suffices to show that L.g.wk is the least fixpoint of E.
Function wk is the least solution of (18) and hence the least fixpoint of the function

De(A*--~MT)--*(A* ~MT),

given by

D. v. ~ = identity (22)

D.v.(a;q)=Q.(R.q.v).a for veA*~MT, a~A, q~A*.

We now use Lemma 5.2 with xO=wk and F=L.g to prove that L.g.wk is the least
fixpoint of E. Therefore, it remains to prove that L.g commutes with suprema and
satisfies

L.goD=EoL.g. (23)

Function L.g commutes with suprema in A*~MT, since for any subset U of
A * ~ M T and any string seA* and any predicate p,

L.g.(sup U).s.p =(sup u~ U :: L.g.u).s.p

-= {Lemma 5.1}

(sup U).s.(g.p) = (sup ue U :: L.g.u). s.p

- {suprema in A * ~ M T and in MT are pointwise}

(sup u~ U:: u.s.(g.p)) = (sup u~ U:: L.g.u.s.p)

- {Lemma 5.1}

true.

to prove formula (23). We first observe that, for every v s A * ~ M T It remains
and seA*,

(L.g o D).v.s=(EoL.g).v.s

{composition twice}

L.g.(D.v).s=E.(L.g.v).s

{Lemma 5.1}

D.v.sog=E.(L.g.v).s. (24)

Nondeterminacy and recursion via stacks and games 289

Formula (24) is proved by a case distinction according to the definitions (21) and (22).
For s = c both sides of (24) reduce to g. For s:=a;q, we observe that

D. v.(a; q) o g = E. (L.g. v). (a; q)

--- {(21) and (22)}

Q.(R.q. v).a o g = Q.(R.q.(L.g.v)).a

= {Lemma 5.1 with v:=R.q.v andf :=g}

Q.(L.g.(R.q.v)) .a=Q.(R.q.(L.g.v)).a

{equals for equals}

(V tEA* :: L.g.(R.q.v). t = R.q.(L.g.v). t)

{Lemma 5.1 and (17)}

(V tEA* :: R.q.v . t o g = L.g.v.(t; q))

= {(17) and Lemma 5.1}

true.

This concludes the proof of (24) and hence of (23). []

Remark. In this proof, one can go further and show that y is the least fixpoint of
function E. This implies that function wk is multiplicative. Then the proof of our next
result becomes simpler. The extension required, however, is longer than the gain in the
proof of the next result. Since the latter also implies that wk is multiplicative, we prefer
the present order of presentation.

Theorem 5.4. wk=wa*.

Proof. The equality is proved by means of three inequalities

(wklA)* <~ wk <% wa* <~ (wklA)*, (25)

where (wkl A)* is the multiplicative extension of the restriction of wk to the set A.
Since wk is a solution of (18) we have wk.e=idemity. Using Lemma 5.3 and

induction on the length of string t, we then get (wk[A)*. t <% wk. t for every string t. This
is the first inequality of (25).

For the second inequality, we show that function wa* is a solution of equation (18).
Since wa* is multiplicative, we have wa*.~=identity. In order to verify the other

290 W.H. Hesselink

conjunct of (18), we first observe that

(Vs~A* :: R . q . w a * . s = L . (w a * . q) . w a * . s)

--- {(17) and Lemma 5.1} (26)

(Vs~A* :: wa*.(s; q) = wa*.s o wa*.q)

=-- {wa* is multiplicative}

true.

Now function wa* satisfies the second conjunct of (18) because of

wa*.(a; q) = Q.(R.q . wa*).a

= { wa* is multiplicative and (26)}

wa*.a o wa*.q = Q.(L.(wa*.q). wa*).a

= {Lemma 5.1}

wa*.a o wa* . q = Q . wa* . a o wa* . q

- { a s A and wa solves (16)}

true.

This proves that wa* solves (18). Since wk is the least solution of (18), this implies
wk <~ wa*, the second inequality of (25).

Since wk satisfies (18) with q := e, we have wk. a = Q. wk. a for all a s A. From the first
inequality of (25) and the fact that function Q is monotone, it follows that

Q.(wklA)* <~ Q. wk = wklA.

From (19) it now follows that the least solution wa of (16) satisfies

{(19), (16)}

(inf ~: Q.~* ~ ~: ~)

{Q.(wklA)* ~(wklA)}

(wklA).

Since multiplicative extension is monotone, this implies w a * ~ (w k f A) * , the third
inequality of (25). []

Theorem 5.4 implies that wk and wp are equal for all command expressions on
which both are defined. In particular, these functions give the same semantics to every
procedure name. It also follows that function wk is multiplicative.

w a

Nondeterminacy and recursion via stacks and games 291

6. Unfolding

Up to this point, we assumed that the declaration body was fixed and satisfied
condition (7). From the point of view of programming methodology this is an
awkward assumption. So we need a formalism to compare different declarations,
possibly with different sets of procedure names. More precisely, the unfolding may use
more procedure names than the original declaration.

Let K ___ H. Put B = S u K so that B is a subset of A. Let Cmdk be the subclass of Cmd
generated by B(in the same way as Cmd is generated by A). A declaration q~eH~Cmd
will be called an unfolding of a declaration O s K ~ C m d k if, for every hEK, the body
0 .h can be obtained from the body q~.h by, repeatedly, replacing some procedure
name h' in cp. h by its body q~.h'. Before giving the formal definition, we first give an
example.

Example. Take K = {h0} and H = {h0, hl}. Let c, d, e a n d f b e simple commands. Let
the declarations q~ and 0 be given by

0.h0 = c o d; (e [If; h0),

(p.hO=c o d; hl,

~o.hl =eDf;hO.

Then q~ is an unfolding of 0, since 0.h0 can be obtained from q~.h0 by replacing hl by
its body (p.hl (just once, here). []

The formal definition of unfolding is as follows. We use the auxiliary concept of
admissible preorders.

Recall that a preorder is a binary relation that is reflexive and transitive. Let
a preorder < on Cmd be called admissible if and only if sequential composition, angelic
choice and demonic choice are all monotonic with respect to <, in the sense that
• s<s' A t<t'~s;t<s';t ' for all s,s',t,t '~Cmd,
• if (i :: s.i) and (i :: t.i) are families of commands with index i ranging over the same

set and s.i<t.i for all i, then (Di::s.i)<(Oi::t.i) and (oi::s.i)<(~i::t . i) .
Let ~p~H--,Cmd be a declaration. The rewrite preorder < ~ on Cmd is such that s < ~ t

expresses that command t can be obtained from s by replacing some procedure names
h in s by their bodies (p.h. Relation <~ is formally defined as the least admissible
preorder that satisfies h < e (p.h for all heH. Declaration q~ is called an unfolding of
a declaration O~K~Cmdk if and only if ~0.h< ~0.h for all h~K.

The reader may verify that this adequately formalizes the concept of unfolding
described in Section 2. We now have to show that an unfolding q~ of a declaration
0 induces the same semantics. For this purpose the dependence of wp on
the declaration is made explicit by subscription with the relevant declaration. So we
write wpo~Cmd~MT and wpq, e C m d k ~ M T to denote wp induced by (p and 0,
respectively.

292 W.H. Hesselink

Theorem 6.1. Let cp be an unfolding of 0. Then wpo is equal to the restriction of wpo
to Cmdk.

Proof. We first recall the definitions: wp~ = wa e sCmd--*MTwhere w a e A ~ M T i s the
least solution of (6), i.e., the least fixpoint of function D e M T A ~ M T A given by

D . ~ . s = w s . s for ssS,

D . ~ . h = ~ e . (c p . h) for hsH.

Similarly, wpo = wb e ~ C m d k ~ M T where w b e B ~ M T is the least fixpoint of function
E e M T n ~ M T B given by

E . ~ . s = w s . s for seS,

E . ~ . h = ~ e . (O . h) for hsK.

Note that the operator e is overloaded: it is used to form the homomorphic extension
from A to Cmd, and also from B to Cmdk. This overloading is harmless in the sense
that, for ~ e M T A, the restriction of ~ o to Cmdk equals the extension (~IB) ®. This
equality implies that it is sufficient to prove that wb=(walB).

We use the unfolding property to prove that, for every ~ e M T A,

~<~D.~ ~ ((D .~) IB)<E. (~ IB) ,

~) D . ~ ~ ((D . ~) I B)) E . (~ I B) .
(27)

In fact, assume ~ < D . ~ . This implies ~®.h<~e~®.(fp.h) for all h~H, and hence
h,~ (p.h for all hsH, where relation ,~ on Cmd is defined by

s,~t =- ~®.s<~e~°.t.

It is easy to verify that relation ,~ is an admissible preorder. Since ,~ ~ is defined as the
least admissible preorder that satisfies h,~ e cp. h for all h ~ H, this implies ,~ ~ ~ ,~. Since
(p is an unfolding of 0, the definition of unfolding yields that ¢p. h ,~ ~ 0 .h for all h~K
and hence cp.h,~ ~.h for all h~K. In other words, we have

~°.((o.h)~<~°.(~k.h) for all heK.

By the definitions of D and E, this implies ((D. ~)]B) ~ E.(~[B). This proves the first
formula of (27). The proof of the second one is completely analogous.

We now show how (27) is used to prove wb=(walB). Since wa=D.wa, it follows
from (27) that E. (walB) = ((D. wa) lB) = walB, so that walB is a fixpoint of E. Since wb
is the least fixpoint of E, this implies wb<~(wa[B). In order to prove the other
inequality, we let X be the subset of M T a that consists of the functions ~ with

~ D . ~ A (~lB)<<,wb.

Nondeterminacy and recursion via stacks and games 293

In order to prove that waeX, we first verify that X is D-invariant. In fact, for every
~EX, we have D . ~ e X because of

D.~<~D.(D.~) A ((D.~)lB)<~ wb

{wb fixpoint of E and transitivity}

D.~<.D.(D.~) A ((D.~)IB)<~E.(~IB) A E.(~IB)<~E.wb

{monotony and (27)}

~<<.D.~ A (~,[S)<~wb.

It is easy to verify that the set X is sup-closed, so by the version of the theorem of
Knaster-Tarski given after formula (19), this implies that the least fixpoint of D is an
element of X. This proves that wasX, so (wa[B)~ wb and hence (wa]B)= wb.

7. Weakest liberal preconditions

We presented above the case of total correctness, where the weakest precondition of
a command expression implies its termination (the angel has a winning strategy). It is
often useful also to consider conditional correctness, represented by the weakest
liberal precondition function wlp. In terms of the game theory, wlp.c.p is the predicate
that the angel need not lose. The simplest way to incorporate wlp into the theory is to
define wlp as the multiplicative extension of the greatest solution of equation (6), (14)
or (16). Indeed, least fixpoints can be replaced by greatest fixpoints throughout the
theory.

This elegant solution has the drawback that it implies that every simple command
c satisfies wlp. c = wp. c, so that all simple commands always terminate. The alternative
is to introduce two functions for the interpretation of the simple commands, say
WSo, wsl sS-- .MT and two corresponding functions Qo and Q1 as defined in formula
(15). Then wp is defined by means of least fixpoints with respect to Q0 and wlp is
defined by means of greatest fixpoints with respect to Q1. The remainder of the theory
of Sections 1, 2, 5 and 6 can be preserved.

It should be mentioned, however, that conditional correctness is not a very useful
concept in combination with the angelic choice. In particular, separate assertions of
conditional correctness and termination do not combine to total correctness, as is
shown in the next example.

Example. Let 3 be an integer program variable and let repetition L be given by

L = whi l e j#O do ~ 3 : = j - 1 od.

294 W.H. Hesselink

In the unfolded syntax, this command is represented by taking procedure names
L~Hd and K~Ha with declaration

alt. L = {? (j # 0); K; L, ? (j = 0) },

al t .K = {e, J:=3 - 1}.

Operationally, it is easy to see that

wp. L. true = (j ~> 0), (28)

wlp.L.(j ~0)=0 #0),
(29)

wp.L.(j SO)=false.

It follows that wp.L.(j#O) differs from wp.L.true A wlp.L.(jv~O). The point is that
the angelic choices needed for reaching termination in (28) differ from those needed for
conditional correctness in (29). []

8. Conclusions

We have related four semantic models for a programming language with recursion
and with both (possibly unbounded) demonic and angelic choice. The four models are:
• a compositional fixpoint semantics for an arbitrary declaration,
• a compositional fixpoint semantics for a completely unfolded declaration,
• a continuation semantics, called the stack interpretation,
• a game-theoretic semantics.
The four models have been proved to be equivalent.

Acknowledgment

I gratefully acknowledge the contributions of J.E. Jonker to the proof of Theorem
5.4 and of A. Thijs to the concepts and results of Section 6. The criticisms of two
referees have led to great improvements of the presentation.

References

[-1] R.J.R. Back and J. von Wright, Refinement calculus, Part I: sequential nondeterministic programs, in:
J.W. de Bakker, W.-P. de Roever and G. Rozenberg, eds., Stepwise Refinement of Distributed Systems,
Lecture Notes in Computer Science, Vol. 430 (Springer, Berlin, 1990) 42-66.

[-2] R.J.R. Back and J. yon Wright, Duality in specification languages: a lattice theoretical approach, Acta
Inform. 27 (1990) 583~25.

[3] J.W. de Bakker, Een bewijsmethode voor recursieve procedures, Math. Centre Syllabus 21 (VII) (1975)
111-126 (in Dutch).

[4] A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J. ACM 28 (1981) 114-133.

Nondeterminacy and recursion via stacks and games 295

[5] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, N J, 1976).
[6] E.W. Dijkstra and C.S. Scholten, Predicate Calculus and Program Semantics (Springer, Berlin, 1990).
[7] D. Hard, Dynamic logic, in: D. Gabbay, F. Guenthner, eds, Handbook of Philosophical Logic,

Vol. 2 (Reidel, Dordrecht, 1984) 497-604.
[8] W.H. Hesselink, Modalities of nondeterminacy, in: W.H.J. Feijen et al. eds., Beauty is Our Business,

a Birthday Salute to Edsger W. Dijkstra (Springer, Berlin, 1990) 182-192.
[9] W.H. Hesselink, Programs, Recursion and Unbounded Choice (Cambridge Univ. Press, Cambridge

1992).
[10] W.H. Hesselink, Processes and formalisms for unbounded choice, Theoret. Comput. Sci. 99 (1992)

105-119.
[11] W.H. Hesselink and R. Reinds, Temporal preconditions of recursive procedures, in: J.W. de Bakker,

W.-P. de Roever and G. Rozenberg, eds., Semantics: Foundations and Applications; Proc. REX
Workshop June 1992, Lecture Notes in Computer Science, Vol. 666 (Springer, Berlin, 1993) 236-260.

[12] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).
[13] C. Morgan, Programming from Specifications (Prentice-Hall, Englewood Cliffs, NJ, 1990).
[14] C. Morgan and P.H.B. Gardiner, Data refinement by calculation, Acta Inform. 27 (1990) 481-503.
[15] J.M. Morris, A theoretical basis for stepwise refinement and the programming calculus, Sei. Comput.

Programming 9 (1987) 287-306.
[16] N.J. Nilsson, Principles of Artificial Intelligence (Springer, Berlin, 1982).
[17] A. Tarski, A lattice theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285-309.

