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Abstract 

Hesselink, W.H., Nondeterminacy and recursion via stacks and games, Theoretical Computer 
Science 124 (1994) 273-295. 

The weakest-precondition interpretation of recursive procedures is developed for a language with 
a combination of unbounded demonic choice and unbounded angelic choice. This compositional 
formal semantics is proved to be equal to a game-theoretic operational semantics. Two intermediate 
stages are exploited. One step consists of unfolding the declaration of the recursive procedures. 
Fixpoint induction is used to prove the validity of this step. The compositional semantics of the 
unfolded declaration is proved to be equal to a formal semantics of a stack implementation of the 
recursive procedures. After an introduction to boolean two-person games, this stack semantics is 
shown to correspond to a game-theoretic operational semantics. 

O. Introduction 

In sequential programming, Dijkstra's weakest preconditions (cf. I-5, 6]) form the 
semantic formalism most adequate for programming methodology. In this formalism, 
the meaning of a command expression c is expressed by wp. c, the function that assigns 
to a postcondition p the weakest precondition such that c is guaranteed to terminate 
in a state where p holds (to avoid circularity or contradictions, this should be read as 
an informal introduction and not as a formal definition). We let the application 
operator, bind to the left and therefore write wp.c.p instead (wp.c).p for the weakest 
precondition of postcondition p. 
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Sequential composition of command expressions, demonic nondeterminate choice 
of command expressions and (mutually) recursive procedures are treated in the 
following way. The weakest precondition of the sequential composition (c; d) of 
command expressions e and d for postcondition p is given by 

wp. (e; d). p = wp. c. (wp. d. p). 

Using composition of predicate transformers, this rule is equivalently expressed by 

wp.(c; d) = wp.c o wp.d. (0) 

The weakest precondition of the demonic choice (D i::c. i)  of a family of command 
expressions (i ~ I :: c.i) is given by 

wp.(Di :: c.i) .p =(Vi :: wp.(c.i).p). (1) 

For a recursive procedure h, the predicate transformer wp. h is defined as the strongest 
solution of the equation 

wp. h = w p .  (body. h). (2) 

In case of mutual recursion, function wp is the strongest solution of the system of 
equations (2) where h ranges over all procedure names. 

In compilers, recursive procedures are implemented by means of a stack of com- 
mands, say q. In that case, the meaning of stack q is given by the weakest precondition 
wp.q which is supposed to be the strongest solution of a system of equations like 

wp.e = identity, 

wp.(e; q) = wp.c o wp.q, (3) 

wp.(h; q) = wp.(D r ~alt. h :: r; q), 

where e is the empty stack, c ranges over simple commands, q ranges over strings of 
commands, h ranges over procedure names and body.h = (Drsait.h :: r). Of course, (3) 
is a direct consequence of (0) and (2), but that does not mean that the strongest 
solution of (2) also yields the strongest solution of (3). In fact, it is not obvious that the 
strongest solution of (3) satisfies (0). 

As early as 1975, De Bakker proved the compatibility of (0), (2) and (3) as defining 
equations in a special case by means of Scott induction, see [3]. The induction rule of 
De Bakker and Scott, however, is not valid for unbounded demonic nondeterminacy 
and has not been developed for angelic nondeterminacy. Therefore, we are glad to be 
able to prove this compatibility by other means and under weaker assumptions. 

In the versions of [6, 9], predicate-transformation semantics relies on certain 
postulates (the healthiness laws) that are equivalent to the condition that every 
command has well-defined relational semantics (total in the case of 1-6]). Recently, 
these healthiness laws have come under attack. In fact, in the refinement calculus 
of Back, Morgan, Morris and others, several specification constructs have been 
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proposed that lead to command expressions violating the healthiness laws. The 
simplest case is the operator o for angelic choice (cf. [-1, 13-15]). 

We use the notation (o i :: c. i) for the angelic choice between command expressions 
c.i. It is specified by its weakest precondition for postcondition p 

wp. (o i :: c. i).p = (3 i :: wp. (c. i). p). (4) 

In the case of a choice between two command expressions, the symbols o and • can be 
used as infix operators, so that 

wp.(co d).p = wp. c.p V wp.d.p,  

wp.(c 0 d).p = wp.c .p  A wp.d.p.  

Remark. In [13], the angelic choice (o i~ I  :: c. i) is denoted con i : I • c. i; the dummy i is 
called a logical constant. The construct is introduced in [13, Ch. 6, Section 21.3.5]. 
A nontrivial example is given in [13, Section 15.43. We have the impression that in the 
cases where the construct is used, it is used mainly for convenience, not because it is 
indispensable. The development of constructs useful to reduce the complexity of the 
design process, however, is an important issue. 

It must be admitted that the angelic choice in isolation has rather strange proper- 
ties. If, for example, j is an integer program variable, then command c = ( j := 0 o j := 1) 
satisfies 

wp.c.(j=O) 

= wp.(j := 0).(j =0) V wp.(j := 1).(j =0) 

= true V false 

= true 

and, by similar calculations, 

wp.c.(  j = 1)= true 

and 

wp. c. ( j = 0 A 3 = 1) =false. 

So the command is able to establish J =0  as well as j = 1. It seems to guess the 
postcondition we have in mind. For  this reason one might prefer to speak of 
specification c instead of command c. The angelic properties of c prohibit an opera- 
tional model in the usual style. In this special case, wp.c  can be expressed by means of 
the diamond operator of dynamic logic, cf. [7], but that formalism cannot express 
mixtures of demonic choice and angelic choice. In [2], a general command expression 
c is regarded as a game between a demon and an angel: predicate wp.c .p  means that 
the angel has a winning strategy to establish postcondition p. We shall formalize this 
point of view in Sections 3 and 4, see also [8]. 
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Remark. The term angelic choice is often used to refer to termination only, e.g., 
cf. [12]. Angelic choice in that restricted sense is still representable in relational 
calculus. 

For  a command expression c constructed by means of angelic choice, the predicate 
transformer wp.c is monotone, but it may fail to be conjunctive (as is shown in the 
above example). This paper is therefore addressed to the foundations of a wp-calculus 
in which wp.c can be any monotone predicate transformer. We determine an abstract 
system of equations of the form (3), such that its strongest solution satisfies (0), 
restricts to the strongest solution of (2) and allows unbounded demonic and angelic 
choices in procedure bodies. 

The plan of the paper is as follows. In Section 1 we introduce the syntax, the 
semantics and the compositional interpretation. Section 2 contains the development 
of the stack interpretation. In Section 3 we provide a brief theory of boolean 
two-person games, similar to the alternating Turing machines of [4]. This theory is 
used in Section 4 to present the game-theoretic operational semantics that corres- 
ponds to the stack interpretation of Section 2. In Section 5, we prove that the 
interpretations of Sections 1 and 2 agree. 

In Section 2 we need a rather severe restriction on the syntax of procedure 
declarations. Every declaration can be rewritten such as to satisfy this restriction. 
This is a kind of preprocessing called unfolding. The fact that unfolding does not 
change the predicate transformation semantics is proved in Section 6. In Section 7 
we briefly sketch the treatment of conditional correctness. Section 8 contains the 
conclusions. 

I. Unbounded choices and recursion with homomorphic interpretation 

In this section we introduce an abstract syntax for command expressions, a seman- 
tic formalism and a compositional interpretation function from syntax to semantics. 

We first discuss the syntax to be used. Let A be a set of symbols, to be called 
commands. We assume that A contains all simple commands and all procedure names 
that may be needed. Starting from A, we define the class Cmd of command expressions 
inductively by the clauses 
• A~_Cmd, 
• if c, deCmd then c; d~Cmd, 
• if(i~I::c.i) is a family in Cmd then (Di::c.i)eCmd and (<> i::c.i)eCmd. 
Since the index sets I are arbitrary, Cmd is not a set but a proper class in the sense of 
set theory, cf. [-10-l. This fact need not be a matter of great concern. 

We assume that the set of commands A is the disjoint union of two sets S and H, 
which may be infinite. The elements of S are called simple commands. Their semantics 
are supposed to be given. The elements of H are called procedure names. Every 
procedure h~H is supposed to be equipped with a body body.hECmd. 
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The semantics are expressed in terms of predicates on a given state space X. Let 
P be the set of predicates on X. The set P is ordered by strength, i.e., 

p <~ q - ( V x ~ X  : : p .x  ~q . x ) .  

Let M T  be the set of monotone predicate transformers, i.e., montone functions P ~  P. 
The set M T  is equipped with the induced order given by 

f <~g-(Vp~P :: f.p<~g.p). 

It is well known that P and M T  with these orders are complete lattices. The infimum 
or greatest lower bound (n) of a family of predicates p. i with i~I is denoted (infi :: p. i); 
it is the universal quantification (Vi::p.i). Similarly, the supremum or least upper 
bound (sup i :: p. i) is the existential quantification (3i :: p. i). The infimum of a family of 
predicate transformers f . i  with i~I is the predicate transformer given (argumentwise) 
by 

(inf i ::f. i). p = (inf i ::f. i. p) 

for every predicate p. Similarly for the supremum. 
Recall that the well-known theorem of Knaster-Tarski (cf. [17]) asserts that, for 

any complete lattice W, a monotone function D ~ W ~ W  has a least fixpoint and 
a greatest fixpoint. 

Every simple command s~S has an associate predicate transformer ws.s~MT.  So 
the semantics of the simple commands are given by a fixed function w s ~ S ~ M T .  We 
assume that S contains sufficiently many assignments and also the so-called guards. 
For a predicate b, the guard ?b is the simple command with ws.(?b).p = ( 7  b v p). It is 
well known that conditional choice can be expressed by 

i fb  then c else d fi = (?b; c • ?-7 b; d). 

In view of (0),(1),(2) and (4), the weakest precondition function w p ~ C m d ~ M T  is 
supposed to satisfy 

wp.(c; d) = wp. c o wp. d, 

wp.(Di :: c . i )=( inf  i :: wp.(c.i) ), 

wp.(~ i : :c . i )=(supi::wp.(c . i ) ) ,  (5) 

wp. s=ws . s  for s~S, 

wp.h=wp.(body.h)  for hsH.  

The first three clauses of (5) form a compositionality property. More generally, we 
define a function veCmd--*MT to be a homomorphism if and only if 

v.(c;d)=v.c  o v.d, 

v.(Di : : c . i )=( inf  i : : v.(c.i) ), 

v.(~> i::e . i )=(supi::v . (c . i ) ) .  
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Every function u e A ~ M T  permits precisely one homomorphism u°  ~ C m d ~  M T  with 
restriction (u° lA)= u, which is called the homomorphic extension of u. In fact, u ° can 
be easily constructed inductively. 

In the presence of recursive procedures, function wp need not be completely 
determined by system (5). We therefore define wp to be the homomorphic extension 
wp=wa  ° where wa is the least solution ~ E A - - * M T  of the system of equations 

~ . s = w s . s  for ssS,  

~ . h  = ~° . (body.h)  for heH.  
(6) 

In fact, the set A ~ M T  is made into a complete lattice by argumentwise extension of 
the order of MT.  Then it is easy to see that the right-hand side of (6) is a monotone 
function of w, so that the theorem of Knaster-Tarski yields a unique least solution 
for (6). Function wp is called the homomorphic interpretation. 

Remark. Let us say that procedure h calls h' if h' occurs in the command expression 
body. h. If relation "calls" is well founded, function wp is the only solution of system (5) 
(and hence of (6)). 

2. The stack interpretation 

In this section we introduce the stack interpretation, which looks like the stack 
implementation in actual compilers. In Section 4, we show that the stack interpreta- 
tion corresponds to a game-theoretic operational semantics. Since the stack is treated 
as the current task, the stack interpretation may be regarded as a kind of continuation 
semantics. 

For simplicity, our stack implementation of recursive procedures requires that the 
program be preprocessed in such a way that function body satisfies a much stricter 
syntax in which every choice is governed by a separate procedure name. The addi- 
tional procedure names play r61es similar to labels for jumps and stacked return 
addresses in compilers. 

Let A* be the set of strings of commands. We write ~ to denote the empty string and 
use the semicolon; to denote catenation of strings. We identify an element of A with 
the corresponding singleton string, so that A is regarded as a subset of A*. 

The restricted syntax is described as follows. We assume that the set H of procedure 
names is the disjoint union of two sets Hd and Ha and that every procedure h e H  is 
equipped with a set of strings (alternatives), denoted by alt.h ___A* such that the body 
body.h of h is given by 

(Drealt.h::r) if h~Hd, 
body.h= (o realt .h::r) if heHa. (7) 
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The preprocessing to transform an arbitrary declaration into one that can be 
expressed by means of (7) is called unfolding. More generally, unfolding is the process 
of replacing command subexpressions of procedure bodies by procedure names with 
the command subexpression as body. We are only interested in replacing nested 
choices. A declaration that satisfies (7) is thus regarded as completely unfolded. It may 
seem obvious that unfolding preserves the semantics. The proof of that fact, however, 
is nontrivial. It is given in Section 6. Meanwhile, we assume that (7) is satisfied. 

Example. Let x be an integer program variable. Let the recursive procedure h be 

declared by 

body.h = skip o x :=2  * x;(skip D x : = x +  1); h. 

If x is initially positive this procedure extends the binary representation of x with 
a "convenient" number of bits, but the values of these bits are not under control. For  
example, wp.h.(xe{5,8, 9}) is implied by x = 2 .  In this case, the unfolding uses one 
additional procedure name, say k, with heHa and keHd and 

alt. h = {skip, x:= 2 * x; k; h}, 

alt.k = {skip, x : = x +  1}. 

Of course, the example is only an illustration of the technique and not intended to be 
useful. [] 

The stack implementation of recursion is based on the treatment of a string of 
commands as a stack. This means that the interpretation is a function in A*--*MT. 
The recurrence equation that defines the stack implementation is obtained as follows. 
The empty stack is interpreted as the command "do nothing" and therefore should 
induce the identity transformation. The meaning of a nonempty stack (a; q) should be 
a predicate transformer expressed in terms of the head a of the stack and the meaning 
of the tail q of the stack. 

We therefore define the stack interpretation wk to be the least solution of the system 
of equations in veA*---,MT: 

v. e = identity, 

v.(a;q)=ws.aov.q if aeS, 
(8) 

v. (a; q) = (inf r E alt. a :: v. (r; q)) if a ~ Hd, 

v.(a; q) =(sup realt.a :: v.(r; q)) if aeHa 

for all qeA*. 
In (8), the argument of v is the stack. The idea is that, repeatedly, the next command 

is popped from the stack. If it is a simple command it is executed. If it is a procedure 
name, one of its alternatives is pushed onto the stack. In actual compilers, the original 
program is kept, so that only return addresses and parameters need to be stacked. 
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The set A * ~ M T w i t h  the induced order is a complete lattice. The right-hand side of 
(8) is a monotone function of v. Therefore, the theorem of Knaster-Tarski implies that 
system (8) has a least solution. This least solution is the stack interpretation wk. Note 
that it is not yet clear that wk.(q; r) = wk.q o wk.r for strings q and r. This will be proved 
in Section 5. The relationship between the interpretations wk and wp is also treated in 
Section 5. 

Definition (8) is a kind of tail recursion. We can therefore fix the postcondition, 
say p, and derive a recursive definition for the function f~A*--*P given by f .q= 
wk.q.p. In fact, it follows from the above t h a t f i s  the least solution of the system of 
equations 

f.~ =p, 

f.(a;q)=ws.a.(f.q) if aeS, 
(9) 

f.  (a; q) = (inf r E alt. a ::f. (r; q)) if a ~ Hd, 

f.(a;q)=(suprsait.a::f.(r;q)) if aeHa 

for all qsA*. 

3. Boolean two-person games 

In this section we prepare the game-theoretic semantics of the stack interpretation 
wk by developing a small theory of boolean games. The alternating Turing machines 
of [-4] form a special case of this theory. Conceptually, the theory is closely related to 
the AND/OR trees that occur in logic programming and artificial intelligence, cf. [16]. 

Let a boolean two-person 9ame be defined as a quadruple (V, ~ ,  k, v) where Visa  set, 
is a binary relation on Vand k is a predicate on Vand v~ V. The pair (V,-*) may be 

regarded as a possibly infinite directed graph. The function k~V-~B might be 
regarded as a colouring of the nodes, but we do not require that connected vertices 
have different colours. 

The set Vis interpreted as the set of configurations of the game; relation ~ is the set 
of moves. Function k indicates the player that takes the move. The element v is the 
initial configuration of the game. There are two players. The situation is symmetrical 
in the two players, but, for simplicity, we take sides and decide that the players are 
called angel and demon. For each vertex x: 

k.x means that the demon takes the move, 
--1 k.x means that the angel takes the move. 

A player wins directly if its opponent takes the move and has no move. For the 
moment, any infinite execution path is regarded as a draw. 

In principle, we are only interested in the question whether one of the players has 
a winning strategy when the game starts in the initial configuration v. It turns out that 
the initial configuration only plays a r61e in the final interpretation of the game. For 
the investigation of the game itself, v need not be specified. 
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Example. Let V be the set of the integers. Let -* and k be given by 

x--*y - x¢{0,9} A y e { x - i , x - 5 } ,  

k .x  - xmod2=0 .  

The demon is lost in position 0. It follows that the angel has a winning strategy in the 
positions x with 

x~>0 A xmod6s{0,1,5}. 

Similarly, the demon wins in position 9 and has a winning strategy in the positions 
x with 

x~>9 A xmod6e{2,3,4}. [] 

We now assume that both players use an optimal strategy. Let W be the set of 
configurations where the angel does not lose. Then, once inside W, the demon cannot 
escape from W and the angel can remain inside W. This implies that 

(Vxe W:: (k .x~(Vy:  x-*y: y~ W)) A (-7 k .x~(3y:  x-*y: ye  W))). (10) 

Conversely, any set Wthat satisfies (10) can serve the angel as a refuge where it cannot 
lose. We therefore introduce the function D from subsets of V to subsets of V given by 

x~D. U - (k .x~(Vy:  x-*y: ye  U)) A (-7 k. x~(3y:  x-*y: y~ U)). (11) 

Function D is monotone with respect to inclusion. It now follows that the greatest 
fixpoint of D is the greatest set where the angel does not lose. 

By symmetry, it follows that the set W' where the demon does not lose is the 
greatest fixpoint of function D' given by 

xeD'.  U - (k.x~(3y: x~y:  ye U)) A (-7 k .x~(Vy:  x-*y: ye U)). (12) 

Consequently, the set of configurations where the angel wins is the complement 
V \  W'. In order to characterize V \  W' as a fixpoint, we observe that the complement 
of any fixpoint of D' is a fixpoint of D, and vice versa. This follows from the identity 

V \ D ' . U = D . (  V \U) ,  

{(12) and calculus} 

( k . x ~ - 7  (~y: x-*y: ye  U) ) 

A (-7 k . x ~ - 7  (Vy: x-*y: ye  U)) 

- {calculus and (11) with U : =  V\U} 

x e D . ( V \ U ) .  

This implies that V\ W' is the least fixpoint of D. This proves the following theorem. 

which is proved in 

xeD' .  U - 
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Theorem 3.1. The least fixpoint of D is the set of configurations where the angel wins. 
The greatest fixpoint of D is the set of configurations where the angel does not lose. 

4. Game-theoretic semantics 

We now develop game-theoretic semantics for the formalism of Section 2. The first 
task is to give an interpretation to the simple commands. 

We assume that every simple command csS  has an input-output relation [c~ on 
the state space X and that the set of simple commands is a disjoint union S = SauSd. 
Here Sa (Sd) stands for the set of simple commands with angelic (demonic) nondeter- 
minacy. The simple commands are interpreted in the following way. For a predicate 
p on X, we define 

ws.c.p.x=(Vy:(x,y)~c]]: p.y) if c~Sd, 
(13) 

ws.c.p.x=-(3y:(x,y)~c~: p.y) if c~Sa. 

Remark. This is a restriction on the simple commands. In fact, for ceSd (ceSa) the 
predicate transformer ws.c commutes with arbitrary conjunctions (disjunctions). 
Conversely, every predicate transformer that commutes with arbitrary conjunctions 
or disjunctions can be admitted as a simple command. For deterministic commands 
such as assignments the choice between Sd and Sa is irrelevant. 

Example. For a predicate b, the guard ?b~Sd and the assertion !b~Sa are defined by 
the same input-output relation [[!b~ = [[?b~ given by 

(x,y)s{?b~ - x = y  A b.x. 

It follows from (13) that 

ws.(?b).p.x - -nb.x  V p.x, 

ws.(!b).p.x - b.x A p.x. 

In fact, a universal quantification over the empty domain yields true and an existential 
one yields false. [] 

For a given postcondition p, the game-theoretic semantics of a string teA* with 
respect to the initial state z and postcondition p is defined as the boolean two-person 
game (V, ~ ,  k, v), where Vis the cartesian product X x A* and the initial configuration 
v is (z, t)~ V. Function k is given by stating that, for all x~X,  qeA* and a~A, 

k . ( x , e ) -p .x ,  

k. (x, a; q) - (a ~ Sd~3 Hd). 
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Relation --* is defined as the least relation on V that satisfies 
• if ceS A (x,y)e~[c~ then (x,c;q)~(y,q), 
• if he l l  A realt .h then (x,h;q)~(x,r;q). 
Note that the configurations (x, ~) have no transitions. 

The interpretation is that state z satisfies the weakest precondition of command 
string t for postcondition p if and only if, in the game starting at v--(z, t), the angel has 
a winning strategy, i.e., a strategy such that the game is guaranteed to reach a config- 
uration (x, a) where p.x holds. 

In this case, function D of (11) satisfies 

(x , e )eD.U=p.x  for all x~X,  

(x, c; q)eO. U =- (Vy: (x, y)E lie}: (y, q)e U) if c~Sd, 

(x,c; q)eO.U=(3y:(x,  y)e~c']: (y,q)eU) if c~Sa, 

(x,h;q)eD.U=_(VrEait.h::(x,r;q)eU) if h~Hd, 

(x,h;q)eD.U=-(3r~alt.h::(x,r;q)~U) if heHa. 

Let W0 be the greatest region where the angel wins. By Theorem (3.1), W0 is the least 
fixpoint of function D. Let function f e A * ~  P be given by 

f . q . x - ( x , q ) ~  WO. 

Then f is the strongest solution of the system of equations: 

f . ~ . x = p . x  for all x e X ,  

f .(c; q ) . x - ( V  y: (x, y)e[[c]]: f .q. y) 

f.  (c; q). x - (3 y: (x, y)e [[c~]: f . q, y) 

f.(h; q).x =- (Vrealt. h ::f.(r; q).x) 

h.(h; q).x - (3 realt,  h ::f. (r; q).x) 

By definition 

f.(c; 

if ceSd, 

if csSa, 

if hEHd, 

if heHa. 

(13), the second clause and the third one can be unified to 

q).x=ws.c.( f .q) .x  if c~S. 

Since infima and suprema in P correspond to pointwise universal and existential 
quantification, this implies that f is the strongest (i.e. least) solution of system (9) 
obtained in Section 2. This proves that the game-theoretic semantics coincides with 
the stack interpretation wk of Section 2. 

5. The stack theorem 

In this section we show the agreement between the stack interpretation wk and the 
homomorphic interpretation wp. More precisely, we show that wp and wk agree on 
the set A* of strings of commands. 
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The functions wp and wk are defined by means of the least solutions of the systems 
(6) and (8). System (8) implies that wk behaves properly with respect to the choice 
operators, but does not (yet) guarantee wk.(q; r) = wk.q  o wk.r. In order to discuss this 
property, we define a function v e A * - - . M T  to be multiplicative if and only if 

v. ~ = identity, 

v . (q;r )=v.qov .r .  

Every function u~A  ~ M T  permits precisely one multiplicative function u * ~ A * - - . M T  

with restriction (u*lA)= u, which is called the multiplicative extension of u. In fact, it is 
easy to see that u* can be constructed inductively. 

We now observe that, under assumption (7), the function wa = (wplA)  defined as the 
least solution of the system of equations (6) is also the least solution ~ A ~ M T  of the 
system 

~ . a = w s . a  if a~S, 

~ . a = ( i n f r ~ a l t . a : : ~ * . r )  if a~Hd,  (14) 

~ . a = ( s u p r ~ a l t . a : : ~ * . r )  if a~Ha.  

Now the aim is to prove that wk = wa*. In order not to be hindered by the case 
distinctions in (8) and (14), we apply abstraction and introduce a function 

Q~(A*--. MT)-- . (A-- .  M T)  

to express the right-hand sides of (8) and (14). This function Q is defined by 

ws.a o v.~ if a~S, 

Q . v . a = t ( i n f r e a l t . a  ::v.r) if aEHd, (15) 
! 
~(suprealt.a ::v.r) if a~Ha,  

for all w A * ~ M T .  Here the reader may recall that Q.v .a=(Q.v ) .a .  

We first show that Q can be used to express (14). For every ~ A ~ M T ,  function 
~ *  c A * - - . M T  is multiplicative and therefore satisfies ws. a o ~ * .  e = ws. a for all a~S. 

This implies that system (14) is equivalent to 

~ . a = Q . ~ * . a  for all a~A.  (16) 

It is easy to see that function Q is monotone. Function wa can therefore be defined as 
the least solution ~ A - - . M T  of system (16). 

In order to use Q to express system (8), we note that the term v.q in the second 
clause of (8) can also be written as v.(e; q). So, in each case, the argument of v at the 
right-hand side of (8) is postfixed with string q. We therefore introduce the function 

R ~ A *  ~ (  (A* ~ M T ) ~ ( A *  ~ M T )  ), 

given by 

R.q . v . s=v . ( s ;q )  for all q , s~A*,  v ~ A * ~ M T .  (17) 
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We claim that system (8) is equivalent to the system of equations in v e A * - ~ M T  

v.a = identity, 
(18 )  

v.(a;q)=Q.(R.q.v).a for all aeA, qeA*. 

In fact, if aeS then Q.(R.q.v) .a=ws.aoR.q.v .e=ws.aov.q .  For  aeHd we have 

Q.(R.q.v).a=(inf realt.a : : R.q.v.r)  =(inf realt.a :: v.(r; q) ). 

The calculation for procedure names aEHa is completely analogous. 

With respect to the comparison of the interpretations wk and wa*, we now have 
that wa is the least solution of equation (16) and wk is the least solution of equation 

(18). It  turns out that we need only two abstract properties of function Q for the proof  
of wk = wa*. The first one is that function Q is monotone. The second property is 
contained in the next lemma. 

Lemma 5.1. Let function L e M T ~ ( ( A * ~ M T ) ~ ( A * ~ M T ) )  be given by 

L . f . v . s =v . so f  for all f ~ M T ,  seA*, v~A*-~MT. 

Then Q.(L. f .v) .a=Q.v.aof  for all f e M T ,  v ~ A * ~ M T  and a~A. 

Proof. There are three cases to consider. For  aeS, it suffices to observe that 

Q.(L. f .v) .a=Q.v .aof  

- { ( 1 5 ) }  

ws.a o L . f  .v.e= ws.a o v.e o f 

- {definition of L} 

true. 

For  aeHd, we observe 

Q.(L.f .v) .a=Q.v.a of 

- {(15); let r range over alt.a} 

(infr :: L.f.v.r) = (infr :: v.r) of 

- {definition of L} 

(inf r :: v. r of) -- (inf r :: v. r) of  

- {a rule for predicate transformers} 

true. 

The proof  for a~Ha is similar. [] 
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The main stepping stones for the proof of wk = wa* are the following two lemmas. 
We first need a result concerning fixpoints in an arbitrary complete lattice W. It is 
well known that the least fixpoint x0 of a monotone function De W ~  W can be 
constructed by 

xO = ( in f~e  W: D . ~  ~< ~: ~). (19) 

A subset V of W is said to be sup-closed if it contains the suprema of all its subsets. 
Note that the least element of W is the supremum of the empty set and, hence, an 
element of every sup-closed set. A subset V of W is said to be D-invariant if D. v e V for 
all ve V. In our favorite version of the theorem of Knaster-Tarski  (cf. [9, Section 4.2]), 
it is stated that the least fixpoint x0 of D is an element of every subset V of W that is 
sup-closed and D-invariant. This is a kind of induction principle. It is used in the first 
lemma. 

Lemma 5.2. Let  W be a complete lattice and D e  W-*  W a monotone function with least 

f ixpoint  xO. Le t  Z be an ordered set with a monotone function E e Z - ~ Z .  Let  F e  W ~ Z  

be such that F o D = E o F and that F commutes with suprema. Then F.xO is the least 

f ixpoint  o f  E. 

x O e  W D W 

Z ~ Z 

Proof. F.xO is a fixpoint of E since E. (F .xO)=F. (D .xO)=F.xO.  

In order to show that F.xO is the least fixpoint, we argue as follows. Let z ~ Z  be any 
fixpoint of E. We have to prove that F.xO <~ z. For this purpose, it suffices to prove that 
x0 is an element of the subset V of W given by 

u ~ V  = F.u<~z. 

Since xO is the least fixpoint of D, the result quoted above implies that it suffices to 
prove that the set V is sup-closed and D-invariant, 

The set V is sup-closed in W since, for any subset U of W, 

F. (sup U) ~< z 

- {F commutes with suprema} 

( s u p u e U  :: F.u)<..z 

= {definition supremum} 

( V u e U : : F . u ~ z ) .  
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The  set V is D-invariant since, for any ~ e  W, 

F.(D.~)<~z 

= {F o D = E o F; z fixpoint of E} 

E.(F.~)  <~ E.z  

{E is monotone}  

F . ~  <~ z. [] 

We use Lemma 5.2 to prove the next stepping stone: the function wk is "submulti-  

plicative". 

Lemm a  5.3. wk.so wk.r<<, wk.(s;r) for all s ,r~A*.  

Proof.  We fix string r and define function g E M T  by 9 = w k . r  and function yeA*-*  

M T by y. s = wk. (s; r). Now the assertion is equivalent to wk. s o g <~ Y. s for all s 6 A*, or 
equivalently to 

L. g. wk <~ y. (20) 

Fo rmula  (20) is proved by showing that  y is a fixpoint of a function E and that  L.g.  wk 

is the least fixpoint of E. 
We clearly have y . e = w k . r = g .  For  every string qeA* and command  asA ,  we 

observe that  

y. (a; q) 

= {definition of y} 

wk. (a; q; r) 

= {wk solves (18)} 

Q. (R. (q; r). wk). a 

= {(17) with definition of y yields 

R. (q; r). wk. s = wk. (s; q; r) = y. (s; q) = R. q. y. s 

for every s~A* and hence R. (q; r). wk = R. q.y} 

Q.(R.q.y).a. 

This proves that  y is a fixpoint of the function 

Ee(A* ~ M T ) ~ ( A * ~ M T ) ,  
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E.v.e=g, (21) 

E.v.(a;q)=Q.(R.q.v).a for vsA*~MT,  aeA, qeA*. 

So, in order to prove (20), it suffices to show that L.g.wk is the least fixpoint of E. 
Function wk is the least solution of (18) and hence the least fixpoint of the function 

De(A*--~MT)--*(A* ~MT),  

given by 

D. v. ~ = identity (22) 

D.v.(a;q)=Q.(R.q.v).a for veA*~MT, a~A, q~A*. 

We now use Lemma 5.2 with xO=wk and F=L.g to prove that L.g.wk is the least 
fixpoint of E. Therefore, it remains to prove that L.g commutes with suprema and 
satisfies 

L.goD=EoL.g. (23) 

Function L.g commutes with suprema in A*~MT, since for any subset U of 
A * ~ M T  and any string seA* and any predicate p, 

L.g.(sup U).s.p =(sup u~ U :: L.g.u).s.p 

-= {Lemma 5.1} 

(sup U).s.(g.p) = (sup ue U :: L.g.u ). s.p 

- {suprema in A * ~ M T  and in MT are pointwise} 

(sup u~ U:: u.s.(g.p)) = (sup u~ U:: L.g.u.s.p) 

- {Lemma 5.1} 

true. 

to prove formula (23). We first observe that, for every v s A * ~ M T  It remains 
and seA*, 

(L.g o D).v.s=(EoL.g).v.s 

{composition twice} 

L.g.(D.v).s=E.(L.g.v).s 

{Lemma 5.1} 

D.v.sog=E.(L.g.v).s. (24) 
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Formula (24) is proved by a case distinction according to the definitions (21) and (22). 
For s = c  both sides of (24) reduce to g. For s:=a;q, we observe that 

D. v.(a; q) o g = E. (L.g. v). (a; q) 

--- {(21) and (22)} 

Q.(R.q. v).a o g = Q.(R.q.(L.g.v) ).a 

= {Lemma 5.1 with v:=R.q.v andf :=g}  

Q.(L.g.(R.q.v) ) .a=Q.(R.q.(L.g.v) ).a 

{equals for equals} 

(V tEA* :: L.g.(R.q.v). t = R.q.(L.g.v). t) 

{Lemma 5.1 and (17)} 

(V tEA* :: R.q.v . t  o g = L.g.v.(t; q) ) 

= {(17) and Lemma 5.1} 

true. 

This concludes the proof of (24) and hence of (23). [] 

Remark. In this proof, one can go further and show that y is the least fixpoint of 
function E. This implies that function wk is multiplicative. Then the proof of our next 
result becomes simpler. The extension required, however, is longer than the gain in the 
proof of the next result. Since the latter also implies that wk is multiplicative, we prefer 
the present order of presentation. 

Theorem 5.4. wk=wa*. 

Proof. The equality is proved by means of three inequalities 

(wklA )* <~ wk <% wa* <~ (wklA )*, (25) 

where (wkl A)* is the multiplicative extension of the restriction of wk to the set A. 
Since wk is a solution of (18) we have wk.e=idemity. Using Lemma 5.3 and 

induction on the length of string t, we then get (wk[A)*. t <% wk. t for every string t. This 
is the first inequality of (25). 

For the second inequality, we show that function wa* is a solution of equation (18). 
Since wa* is multiplicative, we have wa*.~=identity. In order to verify the other 
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conjunct of (18), we first observe that 

(Vs~A* :: R . q . w a * . s = L . ( w a * . q ) . w a * . s )  

--- {(17) and Lemma 5.1} (26) 

(Vs~A* :: wa*.(s; q) = wa*.s o wa*.q) 

=-- {wa* is multiplicative} 

true. 

Now function wa* satisfies the second conjunct of (18) because of 

wa*.(a; q) = Q.(R.q .  wa* ).a 

= { wa* is multiplicative and (26)} 

wa*.a o wa*.q = Q.( L.(wa*.q).  wa* ).a 

= {Lemma 5.1} 

wa*.a o wa* . q = Q . wa* . a o wa* . q 

- { a s A  and wa solves (16)} 

true. 

This proves that wa* solves (18). Since wk is the least solution of (18), this implies 
wk <~ wa*, the second inequality of (25). 

Since wk satisfies (18) with q := e, we have wk. a = Q. wk. a for all a s A. From the first 
inequality of (25) and the fact that function Q is monotone, it follows that 

Q.(wklA )* <~ Q. wk = wklA.  

From (19) it now follows that the least solution wa of (16) satisfies 

{(19), (16)} 

(inf ~: Q.~* ~ ~:  ~)  

{Q.(wklA)* ~(wklA)} 

(wklA). 

Since multiplicative extension is monotone, this implies w a * ~ ( w k f A ) * ,  the third 
inequality of (25). [] 

Theorem 5.4 implies that wk and wp are equal for all command expressions on 
which both are defined. In particular, these functions give the same semantics to every 
procedure name. It also follows that function wk is multiplicative. 

w a  
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6. Unfolding 

Up to this point, we assumed that the declaration body was fixed and satisfied 
condition (7). From the point of view of programming methodology this is an 
awkward assumption. So we need a formalism to compare different declarations, 
possibly with different sets of procedure names. More precisely, the unfolding may use 
more procedure names than the original declaration. 

Let K ___ H. Put  B = S u K  so that B is a subset of A. Let Cmdk be the subclass of Cmd 
generated by B(in the same way as Cmd is generated by A). A declaration q~eH~Cmd 
will be called an unfolding of a declaration O s K ~ C m d k  if, for every hEK, the body 
0 .h  can be obtained from the body q~.h by, repeatedly, replacing some procedure 
name h' in cp. h by its body q~.h'. Before giving the formal definition, we first give an 
example. 

Example. Take K = {h0} and H = {h0, hl}. Let c, d, e a n d f b e  simple commands. Let 
the declarations q~ and 0 be given by 

0.h0 = c o d; (e [If; h0), 

(p.hO=c o d; hl, 

~o.hl =eDf;hO. 

Then q~ is an unfolding of 0, since 0.h0 can be obtained from q~.h0 by replacing hl by 
its body (p.hl (just once, here). [] 

The formal definition of unfolding is as follows. We use the auxiliary concept of 
admissible preorders. 

Recall that a preorder is a binary relation that is reflexive and transitive. Let 
a preorder < on Cmd be called admissible if and only if sequential composition, angelic 
choice and demonic choice are all monotonic with respect to <, in the sense that 
• s<s' A t<t'~s;t<s';t '  for all s,s',t,t '~Cmd, 
• if (i :: s.i) and (i :: t.i) are families of commands with index i ranging over the same 

set and s.i<t.i for all i, then (Di::s.i)<(Oi::t.i) and (oi::s.i)<(~i::t . i) .  
Let ~p~H--,Cmd be a declaration. The rewrite preorder < ~ on Cmd is such that s < ~ t 

expresses that command t can be obtained from s by replacing some procedure names 
h in s by their bodies (p.h. Relation <~ is formally defined as the least admissible 
preorder that satisfies h < e (p.h for all heH. Declaration q~ is called an unfolding of 
a declaration O~K~Cmdk  if and only if ~0.h< ~0.h for all h~K. 

The reader may verify that this adequately formalizes the concept of unfolding 
described in Section 2. We now have to show that an unfolding q~ of a declaration 
0 induces the same semantics. For  this purpose the dependence of wp on 
the declaration is made explicit by subscription with the relevant declaration. So we 
write wpo~Cmd~MT and wpq, e C m d k ~ M T  to denote wp induced by (p and 0, 
respectively. 
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Theorem 6.1. Let cp be an unfolding of  0. Then wpo is equal to the restriction of wpo 
to Cmdk. 

Proof. We first recall the definitions: wp~ = wa e sCmd--*MTwhere w a e A ~ M T i s  the 
least solution of (6), i.e., the least fixpoint of function D e M T A ~ M T  A given by 

D . ~ . s = w s . s  for ssS, 

D . ~ . h = ~ e . ( c p . h )  for hsH.  

Similarly, wpo = wb e ~ C m d k ~ M T  where w b e B ~ M T  is the least fixpoint of function 
E e M T n ~ M T  B given by 

E . ~ . s = w s . s  for seS, 

E . ~ . h = ~ e . ( O . h )  for hsK.  

Note that the operator e is overloaded: it is used to form the homomorphic extension 
from A to Cmd, and also from B to Cmdk. This overloading is harmless in the sense 
that, for ~ e M T  A, the restriction of ~ o  to Cmdk equals the extension (~IB) ®. This 
equality implies that it is sufficient to prove that wb=(walB). 

We use the unfolding property to prove that, for every ~ e M T  A, 

~<~D.~  ~ ( (D .~ ) IB)<E. (~ IB) ,  

~ ) D . ~  ~ ( ( D . ~ ) I B ) ) E . ( ~ I B ) .  
(27) 

In fact, assume ~ < D . ~ .  This implies ~®.h<~e~®.(fp.h) for all h~H, and hence 
h,~ (p.h for all hsH,  where relation ,~ on Cmd is defined by 

s,~t =- ~®.s<~e~°.t. 

It is easy to verify that relation ,~ is an admissible preorder. Since ,~ ~ is defined as the 
least admissible preorder that satisfies h,~ e cp. h for all h ~ H, this implies ,~ ~ ~ ,~. Since 
(p is an unfolding of 0, the definition of unfolding yields that ¢p. h ,~ ~ 0 .h  for all h~K 
and hence cp.h,~ ~.h for all h~K. In other words, we have 

~°.((o.h)~<~°.(~k.h) for all heK.  

By the definitions of D and E, this implies ((D. ~)]B) ~ E.(~[B). This proves the first 
formula of (27). The proof of the second one is completely analogous. 

We now show how (27) is used to prove wb=(walB). Since wa=D.wa, it follows 
from (27) that E. (walB) = ((D. wa) lB) = walB, so that walB is a fixpoint of E. Since wb 
is the least fixpoint of E, this implies wb<~(wa[B). In order to prove the other 
inequality, we let X be the subset of M T  a that consists of the functions ~ with 

~ D . ~  A (~lB)<<,wb. 
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In order to prove that waeX, we first verify that X is D-invariant. In fact, for every 
~EX, we have D . ~ e X  because of 

D.~<~D.(D.~) A ((D.~)lB)<~ wb 

{wb fixpoint of E and transitivity} 

D.~<.D.(D.~) A ((D.~)IB)<~E.(~IB) A E.(~IB)<~E.wb 

{monotony and (27)} 

~<<.D.~ A (~,[S)<~wb. 

It is easy to verify that the set X is sup-closed, so by the version of the theorem of 
Knaster-Tarski given after formula (19), this implies that the least fixpoint of D is an 
element of X. This proves that wasX, so (wa[B)~ wb and hence (wa]B)= wb. 

7. Weakest liberal preconditions 

We presented above the case of total correctness, where the weakest precondition of 
a command expression implies its termination (the angel has a winning strategy). It is 
often useful also to consider conditional correctness, represented by the weakest 
liberal precondition function wlp. In terms of the game theory, wlp.c.p is the predicate 
that the angel need not lose. The simplest way to incorporate wlp into the theory is to 
define wlp as the multiplicative extension of the greatest solution of equation (6), (14) 
or (16). Indeed, least fixpoints can be replaced by greatest fixpoints throughout the 
theory. 

This elegant solution has the drawback that it implies that every simple command 
c satisfies wlp. c = wp. c, so that all simple commands always terminate. The alternative 
is to introduce two functions for the interpretation of the simple commands, say 
WSo, wsl sS-- .MT and two corresponding functions Qo and Q1 as defined in formula 
(15). Then wp is defined by means of least fixpoints with respect to Q0 and wlp is 
defined by means of greatest fixpoints with respect to Q1. The remainder of the theory 
of Sections 1, 2, 5 and 6 can be preserved. 

It should be mentioned, however, that conditional correctness is not a very useful 
concept in combination with the angelic choice. In particular, separate assertions of 
conditional correctness and termination do not combine to total correctness, as is 
shown in the next example. 

Example. Let 3 be an integer program variable and let repetition L be given by 

L = whi l e j#O do ~ 3 : = j - 1  od. 
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In the unfolded syntax, this command is represented by taking procedure names 
L~Hd and K~Ha with declaration 

alt. L = {? (j # 0); K; L,  ? (j = 0) }, 

al t .K = {e, J:=3 - 1}. 

Operationally, it is easy to see that 

wp. L. true = (j ~> 0), (28) 

wlp.L.(j ~0)=0 #0), 
(29) 

wp.L.( j SO)=false. 

It follows that wp.L.(j#O) differs from wp.L.true A wlp.L.(jv~O). The point is that 
the angelic choices needed for reaching termination in (28) differ from those needed for 
conditional correctness in (29). [] 

8. Conclusions 

We have related four semantic models for a programming language with recursion 
and with both (possibly unbounded) demonic and angelic choice. The four models are: 
• a compositional fixpoint semantics for an arbitrary declaration, 
• a compositional fixpoint semantics for a completely unfolded declaration, 
• a continuation semantics, called the stack interpretation, 
• a game-theoretic semantics. 
The four models have been proved to be equivalent. 
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