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A quantum molecular dynamics technique is used to compute the optical absorption at
room-temperature for the soliton model for trans-polyacetylene in the semiclassical limit.
Our simulation data for the optical absorption for dopant concentrations below 6% are
in good agreement with experiment.

The proposal1-3 that solitons play an important role in the physics of trans-
polyacetylene has led to considerable theoretical and experimental interest in
the system.4-6 Direct evidence for the existence of charged solitons in trans-
polyacetylene at dilute doping levels comes from optical absorption experiments.7
Within the soliton model there is a localized state associated with each soliton
which, due to the electron-hole symmetry of the model, is precisely located at
midgap.1-6 Therefore a midgap peak is expected to appear in the optical absorp-
tion upon doping with an intensity proportional to the dopant concentration. These
general features are observed in several optical absorption experiments.7-9

Because of the importance of the optical absorption experiments in providing
direct evidence for the existence of charged solitons in doped trans-polyacetylene,
a number of zero-temperature calculations of the optical absorption for the soliton
model were made to make a comparison between theory and experiment.7,10-12 All
these calculations are for dimerized chains (Peierls systems) in the presence of no
or one single soliton 7,10-12 and/or in the low density limit for solitons.10,11 More
recently, the frequency and temperature dependence of the optical conductivity for
a half-filled dimerized chain has been studied and comparison with experimental
results on trans-polyacetylene was made.13

The purpose of this work is to present the results of the optical absorption
spectra for the Su-Schrieffer-Heeger (SSH) modell-6 at room-temperature and for
all relevant dopant concentrations and to compare the experimental results with the
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theoretical predictions of the SSH model. The SSH model Hamiltonian reads1-6

ℋ = - Σ Σ [t - a (ui+l - Ui)] (c+i,sci+1,s + C+i+l,sCi,s) - µΣ Σ ni,s
i sis

1Σ 2 K Σ 2+ 2M Pi + _2 (Ui+l -ui) , (1)
, ,

where c+i,s and Ci,s are the creation and annihilation operators, respectively, for a
π-electron with spin s =↑,1 at the ith CH group, ni,s denotes the number opera-
tor at group i, µ is the chemical potential which fixes the number of π-electrons,
Ui is the coordinate describing the displacement of the ith CH group along the
molecular symmetry axis, Pi is the corresponding momentum, t is the hopping in-
tegral for the undimerized chain, a is the electron-phonon coupling constant, K
is the effective σ-spring constant and M is the total mass of the CH group.1-6
We used the following set of model parameters which is often adopted in model
calculations of polyacetylene2-6: t = 2.5 eV, a = 4.1 eV/Å, K = 21 eV/Å2 and
M = 3145 eV-1 / Å2. In this work we will only consider even-site rings of length L.

For numerical purposes it is useful to rewrite Hamiltonian (1) as14ℋ = ℋl +ℋ2
where

Σ Σ + { K Σ 2
ℋl = ci,sMij( Ui})Cj,s + _2 (Ui+1-Ui) , (2a)

i,j s i

1Σ 2
ℋ2 = 2M Pi , (2b)

i

and Mii( {ui}) = -µ, Mij( {ui}) = -t + a( Uj - Ui) for i, j nearest neighbors, and
Mij ( {ui}) = 0 otherwise. In the semiclassicallimit15 the grand-canonical partition
function for model (2) can be written as

(
2M ) L/2∫{Z = Tre-βℋ'e-βℋ2 = _π e-βE({ui})tre-βℋ, , (3)

β {ui}

where β denotes the inverse temperature and E ({Ui} ) = K Σi (Ui+l - Ui)2 /2 is the
potential energy of the lattice degrees of freedom. In the semiclassical approxima-
tion the electrons are treated quantum mechanically whereas the displacements may
be regarded as classical degrees of freedom, a good starting point for the description
of the electronic properties of trans-polyacetylene.1-6

Since ℋ is a quadratic form in the fermionic degrees of freedom the trace over
the fermions can be performed analytically, yielding for the partition function the
exact expression

∫{ (2Mπ) L/2 ∫{ 2Z = . ρ({ui}) = -- e-βE({ui}) [det (1 +e-βM({ui}))] , (4)
{u,} β {ui}

The weight ρ( {ui}) of the configuration {ui} is strictly positive and can be used
directly in a Metropolis Monte Carlo simulation of the variables {Ui}' Our algorithm
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samples the full phase space and is, by construction, free of minus-sign problems
or numerical instabilities.16 The latter enables us to cover a much wider range of
temperatures than the one which is usually accessible to other Quantum Monte
Carlo methods.17

Time-dependent quantities, such as the optical absorption, can be calculated
directly, in the real-time domain, without invoking procedures17 for extrapolating
imaginary-time data to the real-time axis. When a pulse of electric field is applied in
the direction of the molecular symmetry axis, the linear response in this direction is
given by σ(τ) = -i<[P( -τ), J]>, where J = i[ℋ, P] = iLl (-t + a (u1+1 - 11l)) X,s
(c+l,scI+1,s- c+l+1,sc1,s)is the current operator for the SSH model and P = Σ1ln1 is
the polarization operator. The time evolution of the polarization operator is defined
as P(τ) = eiτℋpe-iτℋ. In the semiclassicallimit σ(τ) = -i<[e-iτℋlPeiτℋl,J]> =
-i<[P, eiτℋl Je-iτℋl]>.

The Kubo formula for the optical conductivity reads18

σ(ω)=lim-i-. {-Σ<[lc+l,sCls,J]>+ ∫∞eiωτe-εT<[J,J(τ)]>dτ}. (5)
ε→0 ω + ZE " in

l,s 0

The time evolution of the current operator J( τ) = eiτℋl Je-iτℋl can be worked
out analytically, yielding

J() ,ΣΣ [( iτM) (-iτM) +τ = i κi,i+1 e j,i e i+1,k Cj,sCk,s
i,j,k s

( iτM) (-iτM) + ]- e k '+1 e , 'Ck SCj' s ,,i i,j , , (6)

with κi,i+1 = -t + α(ui+1 - ui)' The analytical expression for the commutator
appearing in (5) is given by

[J, J(τ)] = - Σ κi,i+1κj,j+1 (Fi,i+1,j,j+1 - Fi,i+1,j+1,j - Fi+1,i,j,j+1 + Fi+1,i,j+1,j),
i,j

(7)
where

Fi' " - ΣΣ{(eiτM) (e-iτM) c+ C',,+1,j,j+1 - i+1,j j+1,k ',S k,s
k s

( iτM) ( -iτM) + }- e k '+1 e , '+1 Ck sCi s .,j j,i, , (8)

Making use of the particular form of the Hamiltonian (2), the expectation value on
(6) can be worked out analytically. The resulting expression for the integrand in
(6) is used to sample the current-current correlation function for a set of τ-values
(typically 512). After collecting all data, application of a Fast Fourier Transform
yields the frequency-dependent conductivity. The computation time per τ-value
increases with the third power of L, effectively limiting the system size that we can
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study to L ≤ 256. Disregarding the statistical errors (which are too small to be
visible on the figures presented below) the results for model (3) in the semiclassical
limit are, for all practical purposes exact.16

The conductivity (6) contains a delta function Db (ω) where D is called the
Drude weight. As discussed originally by Kohn19 and more recently by Shastry and
Sutherland20 and by Scalapino et al.,21 D serves as a direct and sensitive measure
of a metal-insulator transition. If D = 0 the system is insulating and otherwise it
is conducting.

Fig. 1. Drude weight D as a function of the number of sites L. Bullets: D calculated from (11)
with U0 = 0.04 Å, circles: Quantum molecular dynamics results for T = 2.9 K, corresponding to
f3t = 10000. The line is a guide to the eye.

First we demonstrate that our method reproduces the optical conductivity and
the insulating feature of the half-filled system at zero-temperature. At half-filling
the configuration {ui} with equal spacing between the CH groups is unstable with
respect to a dimerization distortion, the Peierls instability,22 in which adjacent CH
groups move toward each other. The Hamiltonian which describes a completely
dimerized chain is given by

H = t+ L (c+2j+1,sc2j+2,s + h.c.) + t_ L (C+2j+2,sC2j+3,s + h.c.) , (9)
j,s j,s

where t± = t ± 2αu0 and u0 = |Σi(-1)i< Ui> |/2L is the distortion parameter. The
optical conductivity for model (9) can be worked out analytically, yielding

1 { (t2+ - t2_) 2 }σ ω) = lim -- - εk + 4 2'
( ε→0ω+iε Σk Σkεk(ε-iω) +4εk3

(10)

where εk = -√t2+ + t2_ + 2t+t_ cos(4πk/L). Extraction of the Drude weight gives
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for the dimerized chain

Σ ( 2 2)2 Σ 1D = - εk + t+ - t_ _3 .
k k εk

(11)

In Fig. 1 the Drude weight is shown as a function of system size. Our quantum
molecular dynamics results (circles) for βt = 10000 (or T = 2.9K) agree very well
with the results obtained from (11) (bullets). The Drude weight for L = 4n-site rings
is negative and goes to zero as the number of lattice sites increases. Systems with
more than 64 sites are needed to obtain D = 0, as is expected for a semiconductor at
zero-temperature. Negative values for D are also seen in short half-filled Hubbard
rings with 4n-sites.23 Our simulation technique also reproduces the exact values of
σ(w) as given by (10) (data not shown).

Fig. 2. Optical absorption σ(w) for a ring of 128 sites for various dopant concentrations. Thick
solid line: y = 0, thick dashed line: y = 0.008, thick dash-dotted line: y = 0.016, thick dotted
line: y = 0.02, thick dash-triple dotted line: y = 0.031, thin solid line: y = 0.047, thin dashed line:
y = 0.063, thin dash-dotted line: y = 0.078, thin dotted line: y = 0.109. w is measured in units of
t = 2.5 eV.

The optical absorption spectra σ(w) at room-temperature (in practice we set
T = 290 K, corresponding to βt = 100) for various dopant concentrations y = 1- n,
where n is the density of electrons in the chain are depicted in Fig. 2 for rings of
128 sites. For the undoped case (thick solid line) σ(w) shows an interband tran-
sition peak at w = 1.42 ± 0.13 eV. Upon doping and for dopant concentrations
below 6%, a midgap absorption peak appears at w = 0.64 ± 0.13 eV. The inten-
sity of the midgap absorption peak comes from the interband transition over the
whole spectral range. The optical conductivities for different dopant concentrations
(y < 0.06) cross in one point (the isosbestic point) at w = 1.03 ± 0.13 eV. These
features are also observed experimentally.7-g However, in comparison with exper-
iment our peak positions and our isosbestic point are located at somewhat lower
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energies. In Fig. 3 we show the intensity of the midgap absorption peak (optical
density) as a function of dopant concentration for y < 0.06. Our numerical results
(bullets) indicate that for y < 0.031 the intensity of the midgap absorption peak
increases linearly with the dopant concentration. In the intermediate doping regime
0.031 < Y < 0.06, the doping dependence of the intensity of the midgap absorp-
tion changes. Similar behavior is seen in the optical absorption measurements of
Feldblum et al.8 (circles). However, our results show that for 0.031 < y < 0.06
the midgap absorption peak becomes higher than the interband transition peak,
in disagreement with some experiments7-9 but in agreement with others.24 In the
heavily doped regime (y > 0.06) the low-energy absorption shrinks with increasing
dopant concentration and shifts toward lower energy, while the interband transition
has completely disappeared, as seen in Fig. 2.

Fig. 3. Concentration dependence of the midgap optical absorption (arbitrary units). Circles:
Experimental data.8 Bullets: Simulation data taken from Fig. 1. The dotted lines are a guide to
the eye.

At low temperature (e.g. T = 2.9 K or βt = 10000) only states with an even
number of electrons are thermodynamically stable in a system containing an even
number of sites. Moderate doping (y < 0.031) results in the creation of soliton-
antisoliton pairs only.16 At room temperature this is no longer the case: The system
is thermodynamically stable with respect to the removal of a single (or odd number
of) electron(s), independent of the filling. Our calculations show that for moderate
doping and an odd number of electrons, the thermodynamically relevant states
consist of configurations with a single polaron and/or soliton-antisoliton pairs, an
example being shown in Fig. 4. From Fig. 1 it is clear that the optical conductivity
for systems containing a polaron (see the thick dashed and thick dotted line) does
not show any extra features compared to the conductivity of systems without a
polaron. Further evidence for this is provided by the data shown in Fig. 2 (second
and fourth bullet, counting from left to right). Our results for the density of states
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Fig. 4. Lattice distortion for a ring of 256 sites for y 0.012 (3 electrons removed from the
half-filled ring). The line is a guide to the eye.

(not shown) indicate that the polaron and the soliton-antisoliton pairs contribute
to the weight at ω = 0.5
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