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Void Growth in Glassy Polymers:
Effect of Yield Properties on
Hydrostatic Expansion

A. C. STEENBRINK AND E. VAN DER GIESSEN*
Delft University of Technology
Laboratory for Engineering Mechanics
Delft, The Netherlands

ABSTRACT: Void growth in plastically deforming glassy polymers is investigated by
means of a simple spherical symmetric model. This type of void growth occurs in cavi-
tated polymer-rubber blends and, at a smaller scale, during craze initiation. The study
serves to provide approximate values for the stresses required for elastic-viscoplastic void
growth under hydrostatic loading conditions. The constitutive model accounts for features
such as rate and temperature dependent yield, intrinsic strain softening after yield, and
subsequent hardening due to molecular alignment at large deformations. The separate ef-
fects of these features on void expansion and the stress distribution are studied. Due to the
relatively large strain at yield for most glassy polymers, elastic effects play an important
role even at macroscopic yield. Therefore, predictions of the maximum stress are sig-
nificantly lower than those based on rigid-plastic behaviour, especially for low void
volume fractions.

1. INTRODUCTION

IGNIFICANT PLASTIC DEFORMATION in glassy polymers or in glassy
Spolymer—mbber blends usually leads to the formation and growth of voids. In
the case of polymer-rubber blends, voids are formed as a result of cavitation
within the rubber particles (see, e.g., References [1,2]). If the rubber modulus is
low, the voided rubber particle can be idealized as a void, leaving a microporous
material. The size of the voids is on the order of the initial particle diameter, i.e.,
ranging from 50 nm to 5 um. Void formation can also occur at an even smaller
size scale, as the beginning of a craze. The micromechanisms involved in craze
nucleation and growth have been extensively discussed, e.g., in References
[3-7]. From these studies, it appears that the first stage is void nucleation in a re-
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318 A. C. STEENBRINK AND E. VAN DER GIESSEN

gion of high dilatation or hydrostatic stress, which most likely occurs near defects
or stress concentrations. Subsequently, void growth takes place. The fibrillar
microstructure of the craze is presumed to be the result of multiplication of voids,
for example, through a meniscus instability mechanism [5]. It is difficult to estab-
lish which of these three steps is the critical one for crazing. In both examples of
voids in polymers, the dependence of void nucleation and growth on the stress
state is a complicated one, but the hydrostatic component of stress is commonly
considered to be the key quantity.

The micromechanical models that have been proposed in the references cited
above usually employ quite simplistic models for the material behaviour. They
have provided elementary qualitative understanding but have limited quantitative
predictive power. Also, the role of plastic void growth around cavitated rubber
particles in polymer-rubber blends is not well understood. To improve this, it is
crucial to account for finite deformation effects as well as for advanced features
of the material behaviour of amorphous polymers, like rate-dependent yield, in-
trinsic softening, and progressive strain hardening due to molecular orientation.

Recent numerical studies of void growth in glassy polymers [8,9] have demon-
strated the importance of the typical softening and hardening behaviour, leading
to plastic flow occurring by the initiation and propagation of shear bands. The
resulting phenomenology of void growth has been found to be quite different
from void growth in metals, which is by now well documented (see Reference [10]
for a review). Nevertheless, a first, reasonable approximation of the macroscopic
behaviour of the porous material could be obtained (see also Reference [11]) by
a modification of Gurson’s [12] model that was developed for metal plasticity. It
has been shown in Reference [9] that an important modification is to account for
elasticity, in view of the fact the yield strain in polymers is an order of magnitude
larger than for metals. The assumption of rigid-plastic material behaviour for
glassy polymers would lead to a severe overestimation of the macroscopic yield
stresses compared to analyses based on the actual stress field. An approximate
analytical solution for the problem of spherically symmetric void growth under
hydrostatic tension for elastic-viscoplastic polymers without softening and hard-
ening was then used in Reference [12] to modify Gurson’s relation.

The present paper is an extension of this analysis to investigate the effects of in-
trinsic softening and progressive hardening of glassy polymers. Also, the be-
haviour in the limiting case of vanishingly small initial voids, leading to a cavita-
tion instability, is discussed here.

2. PROBLEM FORMULATION

The analysis of spherical symmetric expansion of voids is greatly simplified if
incompressible material behaviour is assumed. In that case, the strain field is
kinematically determined and direct integration of the equilibrium equation
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yields the remote hydrostatic stress. Material compressibility tends-to reduce the
overall stiffness [9], but qualitatively, the results are not influenced. Therefore,
here too the assumption of incompressibility is maintained.

The approach followed here was briefly outlined in Reference [9] and will be
elaborated on here. We consider a hollow sphere with initial dimensions ao, bo
for the inner and outer radius, respectively. The deformed geometry is specified
by the corresponding quantities a and b, so that the current void volume fraction
is f = (a/b)*. Loading is applied by prescribing a fixed expansion rate b/b at the
outer radius. Owing to spherical symmetry, the problem is a one-dimensional
one, which is described here in terms of the radial coordinate r measured in the
deformed configuration.

Throughout the deformation process, the principal directions of stretch coin-
cide with the tangential and radial directions. Assuming incompressibility, the
principal stretches are given by

A== No= 1/ (@)

when r, is the initial position of the material point currently at r. The correspond-
ing tangential and radial logarithmic strain rates, €, and €,, obey the incom-
pressibility condition €, + 2¢, = 0. The equivalent shear rate v is now given
as’

=N T2 +2é3=Jéé,=«/6£ 2

By virtue of incompressibility again, the stress state is completely determined
by the equivalent shear stress 7 = (g, — a,)/\/3—, where o, and o, denote the
radial and tangential components of the Cauchy stress tensor. These stress com-
ponents are subject to the radial equilibrium condition

do, 2 _
o T r(or —0)=0 3)

with boundary conditions ¢,(a) = 0and o,(b) = 0,.. By integration of Equation
(3), the applied hydrostatic stress g,. can be expressed in terms of the current
shear stress distribution inside the sphere as

e

The definition of ~ used here differs from more usual definitions by a factor of /2 in order to be compatible with
the definitions used in the constitutive model [14,15] (Section 2.1).
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320 A. C. STEENBRINK AND E. VAN DER GIESSEN

It is noted that the integral is taken over the current deformed configuration in
order to account for the changes of the geometry during the deformation process.

The shear stress distribution, 7(r), to be substituted in Equation (4) follows
from the response to the local shear process described by Equation (2) in ac-
cordance with the constitutive behaviour. The evaluation of Equation (4) at each
stage of the deformation process is performed numerically.

2.1 Material Behaviour

The three-dimensional constitutive model used here and in References [8,9] is
based on the original Haward-Thackray [13] model for plastically deforming
polymers. A simple one-dimensional representation is shown in Figure 1. The in-
itial elastic response is characterised by a linear spring. The plastic response is
iconized by a dashpot, which represents rate and temperature dependent yield,
and a parallel Langevin spring, which is used to account for the hardening effect
caused by molecular alignment. For application to Equation (4), it is convenient
to formulate the constitutive equations in terms of shear stresses. The shear stress
7 1s decomposed into a viscoplastic part 7,, in the dashpot and a shear back stress
7, to describe orientational hardening:

T=T"T,+ T &)

For elastically incompressible material, the stress rate is related to the elastic part
of the shear rate through

» S
S It

T = ¢y — 47) with ¢ = 6)
So

where E is Young’s modulus. For the plastic shear rate y#, we adopt the yield
model proposed by Argon [14], i.e.,

. . Aso |
Ry

where v, and A are material parameters, T is the absolute temperature, and s, is
the shear strength. The effect of strain softening is incorporated in a phenomeno-
logical way by using a plastic shear dependent shear strength s instead of s, [15],
governed by

S = h(l — s/s )y (8)

The saturation value of s is s.., while 4 specifies the slope of the softening part.
We assume that the deformation takes place isothermally. Furthermore, visco-
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linear spring

Th

T
vp
Langevin spring _‘j dashpot

T

Figure 1. Schematic, one-dimensional representation of the elastic-visoplastic material
model.

elastic effects are neglected; therefore, the elastic modulus E is interpreted as the
ratio of yield stress and yield strain in uniaxial tension.

2.2 Orientation Hardening

The strain hardening effect for glassy polymers at large deformations is con-
sidered to be analogous to the stretching of the macromolecular network of a
cross-linked rubber [13]. Several three-dimensional hardening models have been
proposed [15-18], leading to constitutive equations for the back stress tensor b,
specified in components b; in the principal directions of the plastic stretches. For
the calculation of the back stresses, we ignore the difference between total and
plastic stretches (cf. [8,9]); the resulting deviation in the back stress levels re-
mains small as long as the elastic strains remain small compared to the plastic .
strains. The equivalent shear stress 7, in Equation (5) is given by the tangential
and radial components of b as 7, = (b, — b,)IN3.

We employ two types of hardening models. The first type is based on the Neo-
Hookean model for rubber elasticity, which is characterized by the following ex-
pression for the strain energy density W:

R

c
W=+ A+ =3 )

where CR is the initial shear modulus and A, are the principal stretches. The prin-

cipal components of the back stress tensor are determined, analogous to rubber
elasticity theory, by
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aw

(nh) — )\ ——
b i an

(10)

up to an unspecified superimposed hydrostatic pressure; the latter is irrelevant for
the shear back stress 7, and is therefore omitted. In this model, there is no limit
to the extensibility of the material.

As opposed to this, the second type of hardening models is based on non-
Gaussian rubber models which involve a limited extensibility. The full network
model can be accurately represented by the following linear combination of the
three- and eight-chain models [17]

T’(ifull) — (1 _ Q)Ti(.a) + QT}(IB) (11)

where o controls the relative contributions of the respective hardening models,
denoted by 75* and 7{*’, and is being determined from the maximum principal
stretch (A, in this case), through ¢ = 0.85 )\,/\/}V Here, N is a hardening param-
eter that defines the finite extensibility of the network, with ... = VN. For
N — oo, the network model reduces to the Neo-Hookean model.

Explicit expressions of the back stresses according to the various hardening
models are given in Table 1, both in terms of components and equivalent shear
back stresses.

3. RESULTS AND DISCUSSION

In order to study the effects of the various features of the stress-strain response
of glassy polymers, we have considered five different parameter sets. The true
stress vs. logarithmic strain in uniaxial tension at a constant strain rate € =
00Ls™ for these five materials is shown in Figure 2.

The basic material parameter set is given by £ = 910 MPa, s, = 97 MPa,
h = 500 MPa, v, = 210" 57!, A = 240 K/MPa, T = 296 K. For each
material, the dataset is completed with the parameters given in Table 2. Material
a is perfectly plastic, i.e., it neither exhibits softening nor hardening. The yield
behaviour is still rate and temperature dependent as described by Equation (7).
Material b shows softening, but no hardening. For material c, the hardening re-
sponse is modelled with the full network model, taking C® = 57 MPa and
N = 6.3. In fact, this parameter set is the same as was used in previous studies
[9] to represent the behaviour of polycarbonate. For material d, the hardening pa-
rameter is increased to N = 12.6, so as to represent a material with a lower en-
tanglement density than material c. For material e, the hardening behaviour was
taken to be Neo-Hookean, or equivalently taking N — oo. Consequently, the ex-
tensibility of material e is unlimited, whereas materials ¢ and d have a limit
stretch of ., = VA.

Downloaded from http://ijd.sagepub.com at University of Groningen on January 29, 2010



323

Void Growth in Glassy Polymers

X/L — X yl00 = (X)J se pauyep uonouny unebue ay) sejousp 7 aseum (NA/N), - T

(EX + EX + LNEMN = Y yum (NAMY), - = ¢ jepow ureyd-ybie ayj Jod

= 'g ‘|epow ureyd-eaiy) ay} 104

Qé:lfl z?om = o Q,V NP0 E- a [91] japow ureyo-y613
NK - NK 8 NA 8
41 Mw 141 m“ !
eMCd'Y = "ININNMO T = ¢t ‘9NN, O T = 9 [S1] 1epow ureyd-eaiyL
MG = IN)yO = Wit gD = .\sz = w3 UB8Y00H-08N
eMl'q - 'q) = ! 'q 12Pol

‘SS9.)S }orq Jeays jusjeainba ay) pue (ssals oneisoiphAy pasodwriadns Aieniqie ue oy dn)
sjuauodwod ssans }oeq ay} 10§ suoipenba aanNysuod jo Alewwns ‘L ajqel

Downloaded from http://ijd.sagepub.com at University of Groningen on January 29, 2010



324 A. C. STEENBRINK AND E. VAN DER GIESSEN

05k

0.0

0.0 0.5 1.0 e 1.5

Figure 2. Uniaxial stress response for the unvoided material using material parameter sets
atoe.

The macroscopic response of the hollow sphere will be represented here in
terms of the hydrostatic stress o,, at the outer boundary versus the logarithmic
tangential strain at the inner boundary (as a convenient measure of deformation).
The response to a remote strain rate of b/b = 00ls™ is shown in Figure 3 for
three values of the initial void volume fractions (f, = 107, 1072 and 107!). As
observed in Reference [9], the macroscopic stress o, eventually reaches a maxi-
mum, beyond which macroscopic softening occurs with continued void growth.
The maximum is identified as the macroscopic yield stress ,,. The void expan-
sion at which this macroscopic yield stress takes place is very sensitive to the ini-
tial void volume fraction f,. However, in all cases, the overall dilatation at macro-
scopic yield remains small, i.e., In (b/b,) < 1. Comparison of the results for

Table 2. Properties for the softening and hardening
behaviour of materials a to e. The stress-strain
responses in uniaxial tension are shown in Figure 2.

a b c d e
Sss/So 1.0 0.79 0.79 0.79 0.79
CH/s, 0.0 0.0 0.059 0.059 0.059
N © © 6.3 12.6 o
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2.0
Gm/SO L

0.5

0.0 0.5 1.0 1.5 2.0
In (a/ao)

Figure 3. Remote stress vs. void expansion, In (ala,), for various initial void volume frac-
tions and parameters sets a and e. The crosses indicate the instant when network locking
occurs at the inner radius a.

materials a and b shows that softening tends to reduce the macroscopic yield
stress, although the effect is never more than around 10%. The materials with
hardening, according to sets c to e, show a behaviour which is intermediate to the
response of a and b. A noteworthy feature of the response of materials ¢ and d
is the deviation away from that of material e after some of void expansion. This
is due to the fact that after sufficient expansion, the limit stretch of the network,
Amax » 18 reached at the inner radius for materials ¢ and d, as indicated in Figure 3.

In this case, the response will depend strongly on the assumptions underlying
the material model. In terms of the one-dimensional model in Figure 1 which is
employed here, this means that the Langevin spring is locked, which also pre-
vents any further plasticity in the dashpot. Then, continued deformation can only
be sustained elastically. Consequently, very high stresses are developed at the
inner shell, but still the effect on the macroscopic stress is moderate, because the
thickness of the shell for which network locking occurs remains thin. An alter-
native speculation could be that if the limit stretch is reached, continued defor-
mation is governed by a disentanglement process, causing an increase of the
hardening parameter N. In the current formulation of the material model, this be-
haviour is not accounted for. Modification of the material model could be done
based on the stress and temperature induced network dissociation model by Raha
and Bowden [19,20], but this is far beyond the scope of this paper.
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326 A. C. STEENBRINK AND E. VAN DER GIESSEN

The differences in response for the various materials can be understood by ex-
amination of the radial distribution of the shear stress. For an initial void volume
fraction of fo = 1072, the stress distributions for materials a to e at a void expan-
sion of In (a/a,) = 0.5 are depicted in Figure 4. Yield, followed by softening and
hardening has occurred inside the inner part of the sphere, while the outer part
of the sphere is still elastic. It is seen that orientation hardening (materials c, d,
and e) causes an elevation of the shear stress at the inner shell, compared to the
pure softening material b. However, this effect decays rapidly because the strain
gradient is very high at the inner shell and the shear stress distribution for the
hardening materials approaches that of material b for larger radii. Also, the dif-
ferences in the hardening parameter N for materials ¢, d, and e cause subtle dif-
ferences in the shear stress at the inner shell. As these effects take place in a
relatively thin zone near the inner radius, their influence on the macroscopic re-
sponse in Figure 3 remains small.

The results for the macroscopic yield stress of materials a, b, and e with initial
volume fraction f, ranging from 107 to 0.4 are confronted in Figure 5 with pre-
dictions assuming rigid-plastic material behaviour. The latter kind of analysis
was proposed by McClintock and Stowers, and used later by Argon and Han-
noosh [4] in their crazing study. In that case, the maximum remote stress at fully
plastic flow, X,,, is derived from the infinitesimal strain version of Equation (4)
as

0.1} .

0.0 et S : — ] R R R R
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Radial distribution of shear stress at the macroscopic yield point, i.e., at
In (a/a,) ~ 0.05, for an initial void volume fraction f, = 10~2, and parameter sets a, b, e.
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Figure 5. Macroscopic yield stress vs. initial void volume fraction for parameter sets a, b,
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where 7, is the (rate-independent) shear flow stress. This result coincides with
Gurson’s [12] model for purely hydrostatic stress states. The approximation of
rigid-plastic material behaviour is usually appropriate for metals, but it can be
seen that it does not yield accurate results in the case of glassy polymers. This is
due to the relatively large strain at yield for most glassy polymers, which is typi-
cally between 5 to 10% (see, e.g., Figure 2), whereas in metals this is in the order
of 0.1%. Hence, significant geometry changes occur prior to macroscopic yield
in polymers, and part of the sphere is still elastic at macroscopic yield, as seen
in Figure 4. This leads to significantly lower stresses than according to Equation
(12), especially for smaller f;, as discussed in Reference [9].

In particular, we notice that according to Equation (12), the remote stress is
linear in In f,, whereas the yield stress *,, based on the actual stress distribution
according to Equation (4) levels off for low values of f,. According to the actual
stress distribution, it appears from Figure 5 that, in the limit of fo — 0, the
macroscopic yield stress remains finite. Thus, a cavitation instability is found,
i.e., an initially infinitesimal void grows without bound, when this so-called

Downloaded from http://ijd.sagepub.com at University of Groningen on January 29, 2010



328 A. C. STEENBRINK AND E. VAN DER GIESSEN

“cavitation limit” for X, is reached. As discussed in detail in Reference [21]
within the context of cavitation instabilities in metals, this instability relies on the
availability of sufficient elastic energy remotely from the void to drive its growth.
The phenomenon is a potential candidate for void nucleation in metals in condi-
tions where high hydrostatic stresses can develop locally [21], and is essentially
the same one as in Gent’s [22] model for void nucleation in Neo-Hookean elastic
rubbers.

Even though the uniaxial tension responses of materials a, b, and e are quite
different (see Figure 2), the macroscopic yield point is not very much affected
(see Figure 3), nor is the cavitation limit (see Figure 5). An estimate of the cavita-
tion stress can then be obtained from the approximate solution obtained in Refer-
ence [9] for a material without softening and hardening (i.e., # = 0 and
C® = 0). In the limit of f; — 0 this gives

Er_ LTy, (5) (13)

with 7, the equivalent shear stress necessary to sustain the equivalent shear
rate v, = V6b/b [see Equation (2)], at the outer boundary by plastic flow

alone, i.e.,
T > 6/5
T _ [1 + L 1(1)]
So ASO Yo

For the material parameters used here and for a remote strain rate of b/b =
00157, Equation (13) yields a cavitation stress of X,, = 1.56s,.

In the foregoing, we have neglected the effect of surface tension inside the void.
However, this may give a significant contribution for sufficiently small voids.
This problem has been considered in the past by, for instance, References [6,23]
for glassy polymers as well as for rubbery materials. For spherically symmetric
voids, the surface tension vy can be simply incorporated by changing the boundary
condition of Equation (3) into

o(a) = %;Z o.(b) = 0, (14)

This will introduce an additional threshold value for the macroscopic stress that
depends on the size of the void or the sphere. A conceptual difficulty arises for
infinitesimal voids, however, since Equation (14) leads to a singularity. In addi-
tion, it may be questioned if Equation (14) is indeed valid in the nucleation phase
when the void size is close to molecular dimensions.

Downloaded from http://ijd.sagepub.com at University of Groningen on January 29, 2010



Void Growth in Glassy Polymers 329

4. CONCLUSIONS

The effect of various features of yield in amorphous glassy polymers on the
overall behaviour of a voided material has been investigated in terms of a simple
hollow sphere model, similar to that used in References [12,9]. The macroscopic
hydrostatic stress required for void growth is lower for softening materials, but
the effect is quite limited. Also the strain hardening due to molecular orientation
has a moderate effect on the macroscopic response. However, once the limit
stretch of the molecular network is reached at the void radius, uncertainties re-
main in the model as to the subsequent behaviour of the material.

For the material parameter set used, typical for amorphous polymers like
polycarbonate, the macroscopic yield stress of the porous material is significantly
lower than in the case of a rigid-plastic matrix material, which forms the basis of
the Gurson model. This is due to the fact that part of the sphere around the void
is still elastic at the macroscopic yield point, especially for low void volume frac-
tions. This effect is a consequence of the relatively large strain at yield in amor-
phous polymers. An approximate analytical solution of the yield stress was used
in Reference [9] to modify Gurson’s [12] yield potential for this effect.

The present model predicts a cavitation instability in yielding amorphous
polymers. Depending subtly on softening and hardening characteristics, the cavi-
tation limit is in the range of about 1.7 and 1.9 times the shear yield strength s,.
This is significantly lower than the values found for cavitation instabilities in
metals [21], for the same reason mentioned above that the yield strain in polymer
is an order of magnitude larger than for metals.
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