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Abstract: We investigate the complete analyticity (CA) of the two-dimensionalq-state
Potts model for large values ofq. We are able to prove it for every temperatureT >
Tcr(q), provided we restrict ourselves to nice subsets, their niceness depending on the
temperatureT . Contrary to this restricted complete analyticity (RCA), the full CA is
known to fail for some values of the temperature aboveTcr(q).

Our proof is based on Pirogov-Sinai theory and cluster expansions for the Fortuin-
Kasteleyn representation, which are available for the Potts model at all temperatures,
providedq is large enough.

1. Introduction

In this paper we are dealing with the two-dimensionalq-state Potts model, which is the
statistical mechanics model onZ2 with formal Hamiltonian

H(σ) = −
∑

{x,y}
δσ(x),σ(y), (1.1)

whereσ(x) = 1, . . . , q is the spin variable at the sitex ∈ Z2,δσ(x),σ(y) is 1 forσ(x) = σ(y)
and is 0 otherwise, the summation is taken over nearest neighbors, andq > 1 is an integer.
The caseq = 2 is the well known Ising model.

It is known that the Potts model undergoes a first-order phase transition at a certain
transition temperatureTcr = Tcr(q), providedq is large enough. Namely, the model has
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q different Gibbs states for temperaturesT < Tcr, q + 1 states atT = Tcr and one state
for T > Tcr (see, for example, [KS]). We are going to study the Potts model in this last
high temperature regime, and we want to investigate the problem of whether the unique
Gibbs state the model has in that regime is completely analytic.

The notion of “Complete Analyticity” (CA) of an interactionU was introduced in
[DS2] and [DS3] for lattice spin systems. It can be defined in many different equivalent
ways. According to one of them one has to consider an arbitrary finite subset3 of Zd,
and to compare the conditional Gibbs measures in3 defined byU and two boundary
conditions which only differ at a single sitey. Namely, one asks for the distance in
total variation between the restrictions of these Gibbs measures to an arbitrary subset
3′ ⊂ 3 to decay exponentially with the Euclidean distance fromy to 3′. In the papers
[DS2] and [DS3] complete analyticity was shown to be equivalent to several properties
of the conditional Gibbs measures corresponding to finite subsets of the lattice and
arbitrary boundary conditions. All these properties are in the form of some estimates
which are uniform, both in all the finite subsets of the lattice and in all the corresponding
boundary conditions. They include the analytic dependence of the logarithm of the
(conditional) partition function on the interaction parametersU = {UA, A ⊂ Zd, |A| <
∞}, the representation of the logarithm of the partition function as a sum of a volume
term and a boundary term, the exponential decay of the truncated correlation functions,
etc. Later, Stroock and Zegarlinski showed in [SZ] that complete analyticity is also
equivalent to some statements about the various corresponding Glauber-type dynamics
(i.e., reversible spin flip dynamics) and their corresponding Dirichlet forms – including
logarithmic Sobolev inequalities, and exponential convergence to equilibrium. Again all
the statements were uniform over all boundary conditions and all finite subsets of the
lattice.

It is natural to ask in the case of concrete models, like the Ising model, for which
values of the parameters one has all these nice properties. It was realized that the notion
of complete analyticity as originally defined, uniform over all finite subsets of the lattice,
is actually too strong to hold in certain cases in which one still expects the system to
have a very decent behavior. In particular, it is violated for the Ising model at low
temperature and small nonzero field (for uncountably many curves in dimensionD = 2
and for an open region of the (T, h)-plane forD ≥ 3, see [EFS], pp. 1010–15). Another
explicit two-dimensional counterexample, due to one of us, was described in [MO2]. In
this example the Hamiltonian considered is just slightly more complicated than the one
of the Ising model, but the analysis is much simpler. The idea behind these examples is
that if one considers arbitrary subsets ofZ2, then pathologies should not be unexpected,
simply because the subsets may have boundaries which are comparable in size to the sets
themselves. From the point of view of the physics involved in such problems, one is ready
to compromise over such weird shapes and be satisfied with a condition of complete
analyticity restricted to “reasonable” subsets of the lattice, including sufficiently thick
rectangles, say. A project of this type was carried out by Martinelli and Olivieri in [MO2],
[MO3] and related results appeared also in [LY]. In these papers results similar to those of
Stroock and Zegarlinski were proven, in the form of equivalences between statements of
complete analyticity, properties of reversible spin-flip dynamics and logarithmic Sobolev
inequalities, uniformly only over certain subsets of the lattice, including all (sufficiently
large) cubes. This weaker property was called “strong mixing for cubes” in [MO2],
[MO3], [MOS] and “restricted complete analyticity” (RCA) in [SS].

As was remarked by Roland Dobrushin, the notion of restricted complete analyticity
for a given lattice model is equivalent to (full) complete analyticity of another model,
obtained from the initial one by partitioning the lattice into cubic blocks of a certain size



Complete Analyticity of the 2D Potts Model above the Critical Temperature 375

and considering the spin configurations of the initial system in the blocks to be the spin
values of the new system. Therefore one can formulate the notion of restricted complete
analyticity in as many equivalent ways as it is possible for the usual complete analyticity.

The introduction of the notion of restricted complete analyticity turns out to be
meaningful once one is able to establish this property beyond the region where the
standard (full) complete analyticity is known to hold. The first such result was obtained in
[MO2], where it was proven that thed-dimensional Ising model is RCA for any nonzero
value of the magnetic fieldh, provided the temperatureT is low enough:T ≤ T (d, h).
This includes values where the standard CA property is violated ([EFS]). It was actually
this result which prompted the remark quoted in the preceding paragraph. Indeed, if one
considers the model obtained by partitioning the Ising model into cubic blocks of sizel,
then there exists a scalel(h) such that forl ≥ l(h) the block model satisfies the so-called
B̃(0) property, introduced in [DS1], which means that the finite volume ground state
configurations should not depend on the boundary conditions for any volume. From that
property the low-temperature RCA follows as a direct corollary of results in [DS2]. The
next result in this direction was obtained in [MOS], where the authors showed, among
other things, that RCA holds for the two-dimensional zero-field Ising model down to the
critical temperature. Later some of us extended these results in [SS] by proving that RCA
for 2D Ising model holds everywhere on the (T, h)-plane except for the phase transition
segment ((T = 0, h = 0), (T = Tc, h = 0)) and the critical point (T = Tc, h = 0). It
should be mentioned that it is not known to which extent CA holds in the above region.
As mentioned above, in [EFS] this property was shown to be violated at low temperatures
and small fields. It is not known whether or not CA holds at all temperatures aboveTc.

In the present paper we study the same problem for the 2Dq-state Potts model. Our
main result is that if the number of statesq is large enough, then the model is RCA for
all temperaturesT above the transition temperatureTc = Tc(q). The validity of the RCA
property for the Potts model turns out to be of more importance than for the zero-field
Ising model: while CA for the Ising model still might hold at all temperatures above the
critical one, it definitely fails for the Potts model for some supercritical temperatures,
as was shown in [EFK]. For an estimate of the temperatures where CA does hold, see
[L1,L2].

More precisely, we are proving the following result. Letl be an integer, and consider
a natural partition of the latticeZ2 by 2l × 2l squares. Consider the collection of all
finite subsets3 ⊂ Z2, which can be represented as a finite union of these squares. Such
subsets3 will be calledl-regular. Then the following result holds:

Theorem 1. Restricted Complete Analyticity for the 2D Potts model.Consider the
two-dimensionalq-state Potts model withq large enough, at any temperatureT >
Tcr(q). Then each of the 12 equivalent properties of Complete Analyticity, formulated in
[DS3], is valid for everyl-regular box3, providedl ≥ l(T ), wherel(T ) is some finite
function.

The analysis of the result in [EFK] leads us to expect that the functionl(T ) has to
diverge asT ↓ Tcr(q) for such a theorem to hold.

We point out that our results hold for allq for which Theorem A below applies. While
in its original form this Theorem does not provide the expected range forq, presumably
Theorem A (or some version of it) will eventually be proven for allq for which there is
a first-order phase transition in the temperature.

The strategy of the proof of the main result is the following: we first note that
from the results of [MOS] it follows that for the two-dimensional systems the RCA
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property holds provided the system satisfies the weak mixing condition. The latter is
defined by saying that for an arbitrary finite subset3 of Z2, if we compare the Gibbs
measures with any two boundary conditions, then the distance in total variation between
the restrictions of the corresponding Gibbs measures to an arbitrary set3′ ⊂ 3 decays
exponentially with the Euclidean distance between3′ and∂3. (We want to stress that
in higher dimensions it may happen that weak mixing holds while RCA is violated –
one example being the Czech models, studied in [Shl] – and that is the reason why
our results are necessarily restricted to the two-dimensional case.) To show the weak
mixing we use the Edwards-Sokal (ES) coupling between theq-state Potts model and
the corresponding Fortuin-Kasteleyn random cluster model (or FK model). The latter is
described in detail below; for the box3 it is a probability distribution on the set of all
partitions of3 into connected components, which are called clusters. The conditional
distribution of the Potts model in3, given the configuration of FK clusters, which is
defined by the ES coupling, is remarkably simple: for every cluster independently one
has to choose one of the values 1, . . . , q with equal probability1

q , and to put all spins
in that cluster to be equal to the value chosen. The exception comes from the clusters
attached to the boundary, where the (common) value for the spins in the cluster is defined
by the boundary conditions. So, roughly speaking, the conditional distribution in3′ ⊂ 3

under the condition that there are no clusters connecting3′ with the boundary∂3 does
not depend on boundary conditions. As a result, we have weak mixing, provided we
can show that the probability that there exists a cluster, connecting3′ with ∂3, decays
exponentially with the Euclidean distance between3′ and∂3.

The analogues of the last statement were obtained for different models by different
methods. One was proven by Martirosyan [Mar2] for the low temperature Ising model
with magnetic field (in arbitrary dimension). This result was strengthened (and the proof
simplified) by one of us in [Sch]. Another result of this kind was obtained by one of us
for the so called Czech models in [Shl]. Here we prove it by using the cluster expansion
and Pirogov-Sinai theory for the large-q FK model, obtained in [LMMRS]. The specific
feature of the large-q FK model is that it admits a cluster expansion which converges
for all temperatures (and not only for low or high temperatures, like the Ising model).
That enables us to obtain the weak mixing for all temperatures above the critical one.

Once we know the weak mixing property, we can claim, by invoking the result
of [MOS], that theq-state Potts model has the following properties above the critical
temperatureTcr(q):
(i) – Restricted complete analyticity, in the sense that the sets3 in the definition that we
reviewed above are restricted to bel-regular,l = l(T ).
(ii) – Exponential convergence to equilibrium of the associated Glauber dynamics uni-
formly overl-regular subsets, uniformly over boundary conditions and over initial con-
ditions.
(iii) – Positive lower bound for the spectral gap of the generator of the associated Glauber
dynamics, uniform overl-regular subsets with arbitrary boundary conditions.
(iv) – Finite upper bound for the logarithmic Sobolev constant of the generator of the
associated Glauber dynamics, uniform overl-regular subsets with arbitrary boundary
conditions.
(v) – A constructive condition for uniqueness of the Gibbs measure in infinite volume
which was introduced by Dobrushin and one of us in [DS1] is satisfied.

In fact, these nice properties were stated in [MOS] to hold only for square subsets,
but they are valid for alll-regular subsets of the lattice and also all rectangles. We refer
the reader to [MOS] for the precise statements and the various necessary definitions.
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Another consequence of RCA is ([MO1]) that a sufficiently often iterated decimation
transformation (how often depends on how close one is to the transition temperature)
acting on the infinite volume Gibbs measure results in a Gibbs measure, even though
applying the decimation transformation only a few times can result in a non-Gibbsian
measure [EFK]. Similarly, the restriction of the RCA Gibbs measure to the spins on a
line will be a Gibbs measure, compare [L1,L2].

It should be noted, that our restriction to the two-dimensional case comes only from
the fact that in the final step of the proof we apply the results of [MOS], which are
essentially two-dimensional. However, all the results of the present paper which do not
rely on [MOS] hold in any dimension.

In the next section we introduce the necessary notation and review some known
results. The proof of our main statement is given in Section 3.

2. Notation and terminology

The lattice:The cardinality of a set3 ⊂ Z2 will be denoted by|3|. The expression
3 ⊂⊂ Z2 will mean that3 is a finite subset ofZ2. For eachx ∈ Z2, we define the usual
norm‖x‖ = max{|x1|, |x2|}. The distance between two setsA, B ∈ Z2 will be denoted
by

dist(A, B) = inf{||x − y|| : x ∈ A, y ∈ B}.

The (interior) boundary of a set3 ⊂ Z2 will be denoted by

∂3 = {x ∈ 3 :‖x − y‖ = 1 for somey 6∈ 3}.

For lattice squares centered at the origin, we will use the notation

3(l) = Z2 ∩ [−l, l]2.

We will consider also layers

L(l) = 3(l) \ 3(l − 1). (2.1)

The graph of bonds, i.e., (unordered) pairs of nearest neighbors is defined as

B = {{x, y} : x, y ∈ Z2 and‖x − y‖ = 1}.

Given a set3 ⊂⊂ Z2 we define also

B3 = {{x, y} : x or y ∈ 3 and‖x − y‖ = 1},

∂B3 = {{x, y} : x ∈ 3, y 6∈ 3 and‖x − y‖ = 1}.

A chain is a sequence of distinct sitesx1, . . . , xn, with the property that fori =
1, . . . , n−1, ||xi −xi+1|| = 1. The sitesx1 andxn are called the end-points of the chain
x1, . . . , xn, andn is its length. A chain is said to connect two sets if it has one end-point
in each set.

The configurations, observables and measures:At each site inZ2 there is a spin which
can take values 1, . . . , q, whereq is an integer. The spin configurations will therefore
be elements of the set{1, . . . , q}Z2

= �. Givenσ ∈ �, we writeσ(x) for the spin at
the sitex ∈ Z2. ForA ⊂ Z2 we denote byσA the restriction ofσ to A. Likewise, this
restrictionσA can be viewed as a subset of the set of all configurations:
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σA = {σ ∈ � : σ|A = σA}. (2.2)

The single spin space,{1, . . . , q} is endowed with the discrete topology and� is endowed
with the corresponding product topology. The following definition will be important
when we introduce finite systems with boundary conditions later on; given3 ⊂⊂ Z2

and a configurationη ∈ �, we introduce

�3,η = {σ ∈ � :σ(x) = η(x) for all x 6∈ 3}.

Real-valued functions with domain in�are called observables. Local observables are
those which depend only on the values of finitely many spins; more precisely,f : � → R
is a local observable if there exists a setS ⊂⊂ Z2 such thatf (σ) = f (η) whenever
σ(x) = η(x) for all x ∈ S. The smallestS with this property is called the support of
f , denoted supp(f ). The topology introduced above on�, has the nice feature that it
makes the set of local observables dense in the set of all continuous observables.

We will also use bond variables. For every bond{x, y} ∈ B we introduce the bond
variablenxy, taking values 0 and 1. The bond configurationsn will be the elements
of the setB = {0, 1}B. We call the bond{x, y} open with respect to the configuration
n, if nxy = 1, and closed otherwise. Two bonds open with respect ton will be called
connected byn, if there is a chain of endpoints of bonds open with respect ton, joining
the endpoints of these bonds. A maximal connected component of open bonds will be
called a (open) cluster ofn. A single site, not connected to any other site, forms a cluster
by definition.

We introduce now the sets of bond configurations which are compatible with (site)
boundary conditions. Namely, for every3 ⊂⊂ Z2 and every configurationη ∈ �, we
introduce

B3,η ={n ∈ B : nxy = 0 for all {x, y} /∈ B3,

η(u) = η(v) for all u, v /∈ 3, connected byn}.
(2.3)

We denote byB3 the larger family of all bond configurations, which are indifferent
to the boundary conditions:

B3 = {n ∈ B : nxy = 0 for all {x, y} /∈ B3}.

We endow� also with the Borelσ-algebra corresponding to the topology introduced
above. In this fashion, each probability measureµ on this space can be identified by the
corresponding expected values

∫
fdµ of all the local observablesf .

The Gibbs measures:We will consider always the formal Hamiltonian (1.1). In order
to give precise definitions, we define, for each set3 ⊂⊂ Z2, each boundary condition
η ∈ � and eachσ ∈ �3,η

H3,η(σ) = −
∑

{x,y}∈B3

δσ(x),σ(y). (2.4)

Given3 ⊂⊂ Z2, η ∈ �, andE ⊂ �, we write

ZP
3,η,T (E) =

∑
σ∈�3,η∩E

exp(−βH3,η(σ)), (2.5)

whereβ = 1/T is the inverse temperature, and the superscriptP stands for “Potts”. We
abbreviateZP

3,η,T = ZP
3,η,T (�).
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The Gibbs (probability) measure in3 with boundary conditionη at temperatureT
is now defined on� as

µ3,η,T (σ) =


exp(−βH3,η(σ))

ZP
3,η,T

, if σ ∈ �3,η,

0, otherwise.

(2.6)

The Fortuin-Kasteleyn model:For every bond configurationn ∈ B3,η we define the
total number of open bonds by

|n| =
∑

{x,y}∈B3

nxy.

For every bond configurationn ∈ B3,η we define the numberC3(n) of inner clusters in
3 to be the number of open clusters ofn, which contain no points outside3.

The FK (probability) measure in3 with boundary conditionη at temperatureT is
defined onB by

µ3,η,T (n) =


(eβ − 1)|n|qC3(n)

ZFK
3,η,T

, if n ∈ B3,η,

0, otherwise,

(2.7)

where the FK partition function

ZFK
3,η,T =

∑
n∈B3,η

(eβ − 1)|n|qC3(n). (2.8)

The Edwards-Sokal coupling:Finally we remind the reader of the construction of the
ES coupling between the Potts model and the Fortuin-Kasteleyn random cluster model.

Consider the box3, and for any bond{x, y} ∈ B3 let us introduce a new variable
nxy, taking values 0 and 1. Using now the identity exp{βδu,v} = 1 + (eβ − 1)δu,v, we
can rewrite the expression for the Gibbs factor exp(−βH3,η(σ)) in the formula for the
Gibbs distribution (2.6). Namely, for everyσ ∈ �3,η we have

exp(−βH3,η(σ))= exp{β
∑

{x,y}∈B3

δσ(x),σ(y)}

=
∑

nxy∈B3

∏
{x,y}∈B3

[δnxy,0 + (eβ − 1)δnxy,1dDeltaσx,σy ]

=
∑

nxy∈B3,η

∏
{x,y}∈B3

[δnxy,0 + (eβ − 1)δnxy,1δσx,σy
].

(2.9)

The second equality is straightforward, and the third one holds because the bond con-
figurations fromB3 \ B3,η are not contributing to the sum. So we can now introduce
the Edwards-Sokal probability distribution on the pairs (σ, n) ∈ �3,η × B3,η by

µ3,η,T (σ, n)=

∏
{x,y}∈B3

[δnxy,0 + (eβ − 1)δnxy,1δσx,σy ]

ZP
3,η,T

≡
∏

{x,y}∈B3
[δnxy,0 + (eβ − 1)δnxy,1δσx,σy

]

ZES
3,η,T

,

(2.10)



380 A.C.D. van Enter, R. Fernández, R. H. Schonmann, S. B. Shlosman

where the Edwards-Sokal partition functionZES
3,η,T is defined by:

ZES
3,η,T =

∑
nxy∈B3,σ∈�3,η

∏
{x,y}∈B3

[δnxy,0 + (eβ − 1)δnxy,1δσx,σy
] ≡ ZP

3,η,T . (2.11)

The statement that the formula (2.10) indeed introduces a probability measure as well
as the equality of the two partition functions follow immediately from the identity (2.9).
A straightforward check shows that the marginal distribution of then-variables under
the measure (2.10) is nothing else than the FK measure (2.10), and therefore the three
partition functions are equal:

ZP
3,η,T = ZES

3,η,T = ZFK
3,η,T . (2.12)

3. The Proof of Theorem 1

3.1. The general strategy.As we already said in the introduction, the RCA property
will be established once we check the weak mixing property for the Potts model. This
property is the following estimate on the variation distance:

V ar(µ3,η1,T |A, µ3,η2,T |A) ≤ C
∑

x∈A,y/∈1

exp{−c dist(x, y)}, (3.1)

which should hold for everyA, 1, such thatA ⊂ V ⊂⊂ Z2, and whereµ3,η,T |A is
a restriction of the measure, whileC, c are positive constants, which do not depend on
A, 1, η1, η2.

Actually, the proof of the implication{weak mixing} ⇒RCA, given in [MOS], does
not use the full strength of the weak-mixing property (3.1). It is enough to know (3.1)
only for some specialA-s and1-s. Namely, let somek be fixed, and consider the subsets
3, which can be obtained by taking unions, intersections and complements of at mostk
lattice rectangles of sizes not greater thanl, for some reall. Let 0< p < 1 be some real
number, and letA = A(3, l, p) = {x ∈ 3 : dist(x, 3c) ≥ lp}. In that case (3.1) boils
down to

V ar(µ3,η1,T |A, µ3,η2,T |A) ≤ exp{−clp}, (3.2)

(with smallerc). To use [MOS] one needs to know (3.2) for alll sufficiently big and
k ≤ 2. In order to check (3.2) it is enough to prove for all such3, A the estimate∣∣∣∣µ3,η1,T (σA)

µ3,η2,T (σA)
− 1

∣∣∣∣ ≤ exp{−clp} (3.3)

for every configurationσA, uniformly in η1, η2, which clearly implies (3.2). We will
give the proof only for the case of the square box3(l); for the reader who will read it,
the generalization will be obvious.

Without loss of generality we can suppose thatη1, η2 ∈ σA, (see (2.2)) as is evident
from the definitions (2.4), (2.6). In this case the ratio in (3.3) can be rewritten as

ZP
3\A,η1,T ZP

3,η2,T

ZP
3,η1,T

ZP
3\A,η2,T

. (3.4)

Let us explain why one should expect the last ratio to be close to one in the regime
T > Tcr. The Potts model has one Gibbs state in that regime, which is called the chaotic
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state. Therefore the typical configuration of the system in the box3 under the boundary
conditionη is the following: near the boundary it is dictated by the boundary condition
η, whereas somewhere close to the boundary∂3 there is a long contour0, separating
the boundary layer from the rest of the box, where the system behaves chaotically. So
the partition function can be written as a sum over such contours,

ZP
3,η,T =

∑
0

ZP
3,η,T (0).

Within the precision we need, we can rewrite it as

ZP
3,η,T ≈

∑
0

(′)
ZP

3,η,T (0), (3.5)

where the summation is restricted to those0 which are close to the boundary∂3. The
partition functionZP

3\A,η,T can be written in the same way. However, the boundary of
the box3 \ A is not connected, so the analogue of (3.5) is the following:

ZP
3\A,η,T ≈

∑
0,0̄

(′)
ZP

3\A,η,T (0, 0̄), (3.6)

where again the summation is restricted to0 lying close to the boundary∂3 and to0̄

lying close to the boundary∂A. We have, therefore, approximate equalities:

ZP
3,ηi,T ≈

∑
0i

(′)
ZP

3,ηi,T (0i), (3.7)

ZP
3\A,ηi,T ≈

∑
0i,0̄

(′)
ZP

3\A,ηi,T (0i, 0̄). (3.8)

So it is enough to estimate the ratio

ZP
3\A,η1,T (01, 0̄)ZP

3,η2,T (02)

ZP
3,η1,T

(01)ZP
3\A,η2,T

(02, 0̄)

for every triple (01, 02, 0̄) of contours, which are close to the corresponding parts of the
boundaries of our subsets. To see the desired cancellation we observe that the logarithm
of the partition functionZP

3\A,η,T (0, 0̄) can be represented as a volume term plus a
boundary term, and if the two boundaries∂3, ∂A are well separated, this boundary
term is nearly a sum of two terms corresponding to the contours0, 0̄ (again with the
same precision). This is the strategy we are going to follow.

There are different options to study these partition functions. One way is to use the
variant of the Pirogov-Sinai theory for the Potts model, developed in [Mar1]. Technically
however it is easier to pass first to the FK representation, introduced above, and then use
the Pirogov-Sinai theory for it, developed in [LMMRS]. To implement this program we
rewrite (3.4) with the help of the identity (2.12) as

ZP
3\A,η1,T ZP

3,η2,T

ZP
3,η1,T

ZP
3\A,η2,T

=
ZFK

3\A,η1,T ZFK
3,η2,T

ZFK
3,η1,T

ZFK
3\A,η2,T

. (3.9)
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We want to express the above partition functions in terms of more familiar FK
partition functions with free and wired boundary conditions. We then want to use the
corresponding contour models to treat the latter. In order to proceed we need some more
notation, notions and results which we borrow from [LMMRS].

3.2. Pirogov-Sinai theory of the FK model and cluster expansions.We call aplaquettep
any four-tuple of bonds inB, which form an elementary cell. We call two bonds adjacent,
if they share a vertex, and we call them coadjacent if they belong to the same plaquette.
These definitions lead to natural notions of connectedness and coconnectedness of a
subset ofB. Let X ⊂ B be a subgraph with no isolated sites. We denote byv(X) ⊂ Z2

the set of its vertices, and by|X| the number of its bonds. The subsetvI (X) ⊂ v(X) of
inner vertices consists of all vertices which belong to four bonds ofX. The bondb ∈ X
belongs to the boundary∂X ⊂ X iff b ∈ p, wherep is a plaquette such thatp 6⊂ X.
The bondb /∈ X belongs to the coboundaryδX ⊂ Xc iff v(b) ∩ v(X) 6= ∅. We denote
by C(X) the number of connected components of the graphX.

Let now V ⊂ B be a finite subgraph without isolated vertices. We introduce the
partition functions with free and wired boundary conditions by

Zf (V ) =
∑

X⊂V,X∩δV c=∅
(eβ − 1)|X|qC(X)+|vI (V )\v(X)|,

Zw(V ) =
∑

X⊂V,∂V ⊂X

(eβ − 1)|X|qC(X)−C(V )+|vI (V )\v(X)|.

The following limits exist and are equal:

lim
V →B

(1/|V |) ln Zf (V ) = lim
V →B

(1/|V |) ln Zw(V ) = f (β).

A coconnected subset0 ⊂ B is called acontour, if it is a coboundary of someX ⊂ B.
If 0 is finite, then eitherX or Xc is finite. The unique infinite component ofB \ 0 is
called the exterior of0 and is denoted by Ext(0). We also introduceV (0) = B \ Ext(0),
and Int(0) = V (0) \ 0. Forb ∈ δX we introduced(b) as the number of endpoints ofb,
which belong toX, and we define the length of the contour0 by

||0|| =
∑
b∈0

d(b).

If X is finite, then0 is called acontour of the free class, and ifXc is finite, then0 is
called acontour of the wired class. Note, that some of the contours belong to both classes.
For each of the classes one introduces in the standard way the notions of compatible
contours and external contours.

For a familyθ = {01, . . . , 0n} of mutually compatible external contours inV we
introduceV (θ) = ∪iV (0i), Int(θ) = V (θ) \ θ, Ext(θ) = B \ V (θ), ExtV (θ) = V \ V (θ).

With these definitions we obtain the following relations between the partition func-
tions:

Zf (V ) =
∑

θf ⊂V

q|vI (V \Int(θf ))|Zw(Int(θf )), (3.10)

where the sum is over the familiesθf of mutually compatible externalf -contours inV ,
and

Zw(V ) =
∑

θw⊂V

(eβ − 1)|ExtV (θw)|Zf (V (θw)), (3.11)
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where the sum runs over the familiesθw of mutually compatible externalw-contours in
V , which do not intersect with the boundary∂V .

A contour modelis specified by assigning weightsϕ(0) to contours. The correspond-
ing partition function is defined by

Z(V |ϕ) =
∑
∂⊂V

∏
0∈∂

ϕ(0), (3.12)

where the sum is over admissible families∂ of contours inV . We are going to consider
contour models both forf - andw-contours; in the first case admissibility means that
contours0f are compatible and are inV , while in the second case it means that contours
0w are compatible, are inV and moreover0w ∩ ∂V = ∅.

For every family∂ of admissible contours we introduce the subsetθ(∂) ⊂ ∂ as the
collection of all external contours in∂. Evidently,

Z(V |ϕ) =
∑
θ⊂V

∏
0∈θ

ϕ(0)Z(Int(0)|ϕ), (3.13)

where the summation is over all familiesθ of external contours.
We are going to consider the probability distributionνV,ϕ on the ensemble of the

admissible contours inV , corresponding to the contour functionalϕ. Namely, we define
the probability to observe the family∂ by

νV,ϕ(∂) =

∏
0∈∂ ϕ(0)

Z(V |ϕ)
. (3.14)

By applying the Peierls transformation one gets immediately from this definition, that
the probability of a given contour0 to appear inV satisfies the Peierls estimate:

νV,ϕ{∂ : 0 ∈ ∂} ≤ ϕ(0). (3.15)

The contour model with a parametera ≥ 0 is defined by the following partition
function:

Z(V |ϕ, a) =
∑
θ⊂V

∏
0∈θ

ea|V (0)|ϕ(0)Z(Int(0)|ϕ), (3.16)

where the sum runs over all familiesθ of external contours.
We introduce also the probability distributionνV,ϕ,a(∂) for the contours of the con-

tour model with parameter by modifying the definition (3.14) in an obvious way. The
important difference is that oncea > 0, then the estimate (3.15) is no longer valid in
general.

A contour model with parameter is in fact associated to an “unstable phase” or
“wrong” boundary condition. The presence of a parametera > 0 favors the formation
of a “large” contour representing a flip into a “stable phase”, taking place very close to
the boundary (Lemma 1 below).

The advantage of contour models lies in the fact that they can be treated by means of
the cluster expansion technique. However, that is possible only for those contour models,
whose contour functional satisfies the estimate

|ϕ(0)| ≤ e−τ ||0||,

with τ reasonably big. In that case the functional is called aτ -functional, following
[PS1], [PS2], [Sin]. This ensures the existence of the free energy per bond:
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f (ϕ) = lim
V →B

(1/|V |) ln Z(V |ϕ).

Actually, it implies much more. Namely, one has the following formula for the partition
function:

ln Z(V |ϕ) =
∑
B⊂V

8(B),

where the sum runs over all connected subsets ofV , and8 is aϕ-dependent function,
which satisfies the bound

8(B) ≤ e− τ
2 d(B),

whered(B) is the number of bonds in the smallest connected set which contains all
boundary bonds ofB.

In particular, one has the following formula for the logarithm of the partition function:

ln Z(V |ϕ) = |V |f (ϕ) +
∑

b∈∂V

gϕ(b, V ), (3.17)

where the functiongϕ(b, V ) is defined for every pair consisting of a bondb and a box
V , such thatb ∈ ∂V , and has the following regularity properties:

|gϕ(b, V )| ≤ Ce− τ
2 , (3.18)

|gϕ(b, V1) − gϕ(b, V2)| ≤ Ce− τ
2 dist(b,V14V2) (3.19)

for b ∈ ∂V1 ∩ ∂V2, whereV14V2 stands for the symmetric difference. (The above
statements are standard from the point of view of the theory of cluster expansions and
can be found, for example, in [DKS], sect. 3.11.)

In [LMMRS] the contour functionals, which describe the FK model (in a sense which
will be explained later) were constructed. We will need the following result, which is
part of the main result of [LMMRS]:

Theorem A. Consider the two-dimensional FK model for theq-state Potts model,q
being large enough, in the regime whenβ < βcr(q). Then there existτ -functionals
ϕf , ϕw and a real parametera = a(β) > 0 such that

Zf (V ) = q|vI (V )|Z(V |ϕf ), (3.20)

Zw(V ) = (eβ − 1)|V |Z(V |ϕw, a). (3.21)

The following relations hold:

a + ln(eβ − 1) +f (ϕw) =
1
2

ln q + f (ϕf ) = f (β), (3.22)

ϕf (0f )Z(Int(0f )|ϕf ) = q−|v(Int(0f ))|Zw(Int(0f )), (3.23)

ϕw(0w)Z(Int(0w)|ϕw) = e−a|V (0w)|(eβ − 1)−|V (0w)|Zf (V (0w)). (3.24)

The parameterτ can be chosen arbitrarily large, providedq is sufficiently large.
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The relation between the contour models and the initial FK model comes from com-
paring the formulas (3.10), (3.11) with (3.12), (3.16), (3.20) and (3.21): the distribution
of the external contours of the FK model in the boxV with free b.c. coincides with the
distribution of the external contours inV defined by the contour model with contour
functionalϕf , while that of the FK model with wired b.c. coincides with the distribution
of the contour model with the functionalϕw and parametera. Indeed, in both cases the
partition function is written as a sum of products of terms, corresponding to compatible
external contours. Since the formulas (3.10), (3.11), (3.12), (3.16), (3.20) and (3.21) are
valid for all volumes, it implies that the factors corresponding to external contours are
actually the same.

3.3. The boundary clusters.We are ready now to rewrite the ratio (3.9) with the help of
the partition functions introduced above. We will consider first the case when3 is the
square box3(l). Letn ∈ B3(l),η, and consider all open clustersK of n, which have sites
in 3(l)c. Such clusters will be calledboundary clusters. By K = K(n) we denote the
collection of all boundary clustersK of n. The set of all possible collections of boundary
clustersK of configurations inB3(l),η will be denoted bySη. Denote byO = O(K) the
complement

O = B3(l) \ ∪K∈KK.

It is immediate to see that

ZFK
3(l),η,T =

∑
K∈Sη

Zf (O(K))(eβ − 1)
∑

K∈K |K|
. (3.25)

Let us introduce the shorthand notation3(l, lp) for the annulus3(l)\3(l−lp). Then
for every configurationn ∈ B3(l,lp),η we can introduce the set of its boundary clusters
in the same manner as it was done above. This set splits into two families: the familyK
of boundary clusters which are attached to the exterior boundary of the annulus3(l, lp)
and the familyK̄ of boundary clusters which are attached to the interior boundary of
3(l, lp) and are disjoint from the exterior one. The set of all such pairs (K, K) will be
denoted byS̃η. In the obvious notation one has the following analogue of the formula
(3.25):

ZFK
3(l,lp),η,T =

∑
(K,K)∈S̃η

Zf (O(K ∪ K))(eβ − 1)
∑

K∈K∪K |K|
. (3.26)

Let us introduce the subsetS ′
η ⊂ Sη formed by all familiesK, such that everyK ∈ K

has aheight

he(K, ∂3(l)):= max
{

dist
(
u, ∂3(l)

)
: u ∈ K

}
≤ lp/3 .

In the same way we define the subsetS̃ ′
η ⊂ S̃η as the collection of all pairs (K, K) with

heights he(K, ∂3(l)) ≤ lp/3 and he(K, ∂3(l − lp)) ≤ lp/3. If we denote byS ′
η the set

of all familiesK of boundary clustersK satisfying the last restriction, then clearly

S̃ ′
η = S ′

η × S ′
η. (3.27)

Suppose now for a moment that we are able to show that
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ZFK
3(l),η,T =

[ ∑
K∈S′

η

Zf (O(K))(eβ − 1)
∑

K∈K |K|
]
(1 +Ce−τ̃ lp ), (3.28)

and that

ZFK
3(l,lp),η,T =

[ ∑
(K,K)∈S̃′

η

Zf (O(K ∪ K))(eβ − 1)
∑

K∈K∪K |K|
]
(1 +C ′e−τ̃ lp ), (3.29)

where the constantsC = C(l, p, η), C ′ = C ′(l, p, η) are uniformly bounded inl andη,
and τ̃ = τ̃ (τ ) > 0 is independent ofl andη. We claim that in such a case the relation
(3.3) follows from the expansion (3.17) and the relation (3.19). Indeed, let us insert the
expansions (3.28) and (3.29) into (3.9), with3 = 3(l), A = 3(lp). Using (3.27), we
have

ZFK
3(l,lp),η1,T ZFK

3(l),η2,T

ZFK
3(l),η1,T

ZFK
3(l,lp),η2,T

=

∑
K1∈S′

η1
,K2∈S′

η2

K∈Sη′
1
(=Sη′

2
)

Zf (O(K1 ∪ K))(eβ −1)
∑

K∈K1∪K |K|
Zf (O(K2))(eβ −1)

∑
K∈K2

|K|

∑
K1∈S′

η1
,K2∈S′

η2

K∈Sη′
2
(=Sη′

1
)

Zf (O(K1))(eβ −1)
∑

K∈K1
|K|

Zf (O(K2 ∪ K))(eβ −1)
∑

K∈K2∪K |K|

×(1 +C ′′e−̃τlp ).

Consider the ratio of the corresponding terms:

Zf (O(K1 ∪ K))(eβ −1)
∑

K∈K1∪K |K|
Zf (O(K2))(eβ −1)

∑
K∈K2

|K|

Zf (O(K1))(eβ −1)
∑

K∈K1
|K|

Zf (O(K2 ∪ K))(eβ −1)
∑

K∈K2∪K |K| .

Note that the total sets of the boundary clustersK, appearing in the numerator or in
the denominator, are the same, and each is equal toK1 ∪ K2 ∪ K. Hence all the factors

(eβ − 1)
∑

∗ cancel out. Now, the setsO(K∗ ∪ K), O(K∗) are in general not connected,
so the corresponding partition functions split into products, and the factors which appear
both in the numerator and in the denominator also cancel. A moment’s thought leads to
the conclusion that what is left equals the ratio

Zf (Õ(K1 ∪ K))Zf (Õ(K2))

Zf (Õ(K1))Zf (Õ(K2 ∪ K))
,

whereÕ(K∗∪K), Õ(K∗) are those connected components of the setsO(K∗∪K),O(K∗),
which contain the whole “middle level”, i.e. the set∂3(l − 1

2lp). The application of the
expansion (3.17) and the relation (3.19) implies immediately, that the last ratio is equal

to 1 +Ce−τ̃ lp with C = C(K1, K2, K, l, p) uniformly bounded inK1, K2, K, l, which
proves our statement (3.3).

The above argument shows, that the only things that remain to be proven are the
relations (3.28), (3.29). We will do this in the next subsection.

The reason why our project is bound to succeed is that above the critical temperature
β−1

cr (q) the FK model (as well as the Potts model) has a unique state – the chaotic one –
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which is characterized by the appearance of a large amount of small connected clusters.
So the boundary conditions, fixed around some boxV , are unable to influence the
behavior of the system in the bulk. More precisely, no matter which boundary conditions
we choose, there will be a contour in the vicinity of the boundary∂V , separating the
boundary influenced behavior outside it from the chaotic one inside. We start the rigorous
proof of this picture by considering the wired b.c. In that case the formula (3.21) tells
us that the corresponding distribution of the external contours coincides with the one
for the contour model with parameter. In light of that the appearance of the following
statement is natural:

Lemma 1 (Estimate on the volume of the unstable phase).Let θw = {01, . . . , 0n}
be a family of mutually compatible externalw-contours inV . Consider the event that
the contours{01, . . . , 0n} are the only external contours in the ensemble defined by
the contourτ -functionalϕw with parametera. That is, we consider the probability
distribution

νV,ϕw,a(θw) = νV,ϕw,a(01, . . . , 0n) =

∏n
1 ea|V (0i)|ϕw(0i)Z(Int(0i)|ϕw)

Z(V |ϕw, a)
. (3.30)

Introduce the random variableuV = uV (θw) = |ExtV (θw)|.
Then

νV,ϕw,a(uV ≥ N ) ≤ exp{−aN + C|∂V |}, (3.31)

whereC = C(τ, β).

Note . It is worth noting that our statementdoes nothold for an arbitrary contour model
with parameter, even for largeτ . The reason is that when one discusses general contour
models, one asks for the upper bound|ϕ(0)| ≤ e−τ ||0|| only, and so one does not rule out
the possibility thatϕ(0) is actually much smaller and even vanishes for some contours.
But in such a case the number of sites in the boxV which stay outside all external
contours is of the order of|V |, and the estimate (3.31) breaks down. However for the
situation at hand we have also the lower bound

ϕ(0) ≥ e−τ̄ ||0|| (3.32)

for some real ¯τ , and this is enough to prove the estimate (3.31).

Proof of Lemma 1.The idea of the proof of the upper bound is to replace the parti-
tion function in the denominator of (3.30) by a lower bound which has the form of
one of the factors of the numerator of (3.30). To do this we consider the collection
Θw(V ) = {01, . . . , 0k, k = k(V )} of mutually compatible externalw-contours inV
which minimizes the variableuV . It is clear thatuV (Θw(V )) = C|∂V | for someC.
Then

νV,ϕw,a(uV ≥ N ) =
∑

θw⊂V :uV (θw)≥N

νV,ϕw,a(θw) =

∑
θw⊂V :uV (θw)≥N

∏
0∈θw

ea|V (0)|ϕw(0)Z(Int(0)|ϕw)

Z(V |ϕw, a)
≤∑

θw⊂V :uV (θw)≥N

∏
0∈θw

ea|V (0)|ϕw(0)Z(Int(0)|ϕw)

ea(|V |−uV (Θw(V )))
∏

0∈Θw(V ) ϕw(0)Z(Int(0)|ϕw)
≤

≤ ea(uV (Θw(V ))−N ) 1∏
0∈Θw(V ) ϕw(0)

Z(V |ϕw)∏
0∈Θw(V ) Z(Int(0)|ϕw)

.
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We now claim that each of the last two factors admits an upper bound of the order
of exp{C|∂V |} for someC. For the last factor this follows from the expansion (3.17),
since the complementV \ ∪0∈Θw(V )Int(0) is contained in the neighborhood of∂V of
radius 2. For the first one we use (3.24) and (3.20) to express the contour functionalϕw

via partition functionsZ(∗|ϕw), Z(∗|ϕf ) of contour models (with no parameters). We
obtain that

ϕw(0w) = e−a|V (0w)|(eβ − 1)−|V (0w)|q|vI (V (0w))| Z(V (0w)|ϕf )
Z(Int(0w)|ϕw)

.

We then use the expansion (3.17) to write each partition function as an exponent of the
volume term and the boundary term and the relation (3.22) to observe that all volume
terms cancel out. (The fact that we are dealing not with just an abstract contour model,
but with a specific one which admits the lower bound (3.32) on the contour functional
is made explicit by our use of the relation (3.24), which implies in particular the strict
positivity of the contour functional.) �

3.4. Fingers of the boundary clusters and their surgeries.In what follows we are proving
the relation (3.29) for the case of the square box3(l). The relation (3.28) is easier and
can be proven by the same argument with simpler notation.

In the following statement we estimate the probability of the event that the boundary
cluster goes deep inside the box.

Lemma 2 (Estimate of the probability of a long finger). Let q be such that Theorem
A above holds. Fix a real number0 < p < 1 and consider the event

π(l, p, η) = {n ∈ B3(l,lp),η : K ∩ 3(l − lp/3, lp + lp/3) 6= ∅ for someK ∈ K(n)}.
(3.33)

Then
µ3(l,lp),η,T (π(l, p, η)) ≤ C exp{−bτ lp}, (3.34)

whereC = C(p, T ) > 0 andb > 0 is an absolute constant (e.g.1/6).

Proof of Lemma 2.The idea of the proof is to study “fingers”, which are protruding parts
of the boundary clusters. The finger can be either attached to the exterior boundary of
3(l, lp) or it joins the exterior and the interior boundaries of3(l, lp). If the finger is
“thin” somewhere – which means that its length is of higher order than its thickness –
then one can cut across it, obtaining an exterior contour of the length of the orderlp,
which implies the estimate needed. If the finger is “fat” everywhere, that implies that
the number of open bonds inside it is much larger than the perimeter, so one can hope
to control the situation by using the estimate (3.31).

To implement this program we start by defining fingers and their parameters.
For a boundary clusterK and fixed numbers 0< k, h < lp/6, we define the set

Fk,h ⊂ K – the (k, h)-finger – and the sets of bondsBk, Bh ⊂ K – thebasesof the
finger – by the following properties:

i) Fk,h ∩
[
L

(
l − (lp/3)

) ∪ L
(
lp + lp/3

)] 6= ∅ [see (2.1)],

ii) Bk ⊂ L(lp + k) ∩ K, Bh ⊂ L(l − h) ∩ K.

iii) Fk,h is a connected component ofK \ (
Bk ∪ Bh

)
,

iv) there is no path inFk,h, connectingL
(
l − (lp/3)

) ∪ L
(
lp + lp/3

)
to the boundary

∂3(l, lp),
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v) Bk ∪ Bh is the smallest set of bonds, satisfying ii), iii) and iv). (EitherBk or Bh

can be empty.)

The proof is based on the following three ingredients:

1) Surgery of a finger. This is a map that to each configurationn exhibiting a finger
Fk,h with basesBk, Bh, associates the configurationn′ = n′(n) which is obtained from
n by declaring all bonds inBk, Bh to be closed. This configurationn′ is characterized
by an exterior contourκk,h (of the wired class) delimiting the fingerFk,h. The map is
many-to-one, with the multivaluedness coming from the number of ways to choose the
|Bk| + |Bh| bonds in a proper place in layersL(lp + k), L(l − h). For our purposes it is
enough to take the rough bound

(2l2)|Bk|+|Bh| (3.35)

for the number of preimages. On the other hand, the relation between the probabilities
µ3(l,lp),η,T (n) andµ3(l,lp),η,T (n′) is the following:

µ3(l,lp),η,T (n)
µ3(l,lp),η,T (n′)

=
(eβ − 1)|Bk|+|Bh|

q
. (3.36)

The numerator comes from the number of connections severed by the surgery, and the
denominatorq arises from the one extra cluster,Fk,h, obtained after the surgery. As a
consequence, the probability of an eventE(Fk,h, Bk, Bh) that the given finger appears,
satisfies the inequality

µ3(l,lp),η,T

(
E(Fk,h, Bk, Bh)

)
≤ (2l2)|Bk|+|Bh| (eβ − 1)|Bk|+|Bh|

q
µ3(l,lp),η,T

(
E(Fk,h, κk,h)

)
,

(3.37)

whereE(Fk,h, κk,h) – the event to observe the contourκk,h delimiting the clusterFk,h

– is obtained fromE(Fk,h, Bk, Bh) through surgery.

2) Thin-finger estimation. A fingerFk,h will be called (ls, γ)-thin, for somes > 0
and 0≤ γ < 1, if for somec > 0,

|κk,h| ≥ cls and |Bk| + |Bh| ≤ 2lγs.

(Here and in the following we will be interested in situations whenc is fixed, whilel is
large.) Theµ3(l,lp),η,T -probability of the union of all configurationsn′, which have the
contourκk,h among their external contours, is at most exp{−τ ||κk,h||}. Hence we can
use (3.37) plus a Peierls estimate (3.15) to obtain the following bound:

µ3(l,lp),η,T {n ∈ π(l, p, η) : someK in K(n) contains a (ls, γ)-thin finger}

≤ (2l2)2lγs (eβ − 1)2lγs

q

[ ∑
j≥cls

(2l)242j exp{−τj}
]

≤ exp{−cτ

2
ls} ,

(3.38)

providedl is large enough. Here the combinatorial factor (2l)242j estimates the number
of contours of lengthj that can be drawn inside our box.
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3) Fat-finger estimation. A fingerFk,h will be called (ls, γ)-fat, for somes > 0 and
0 ≤ γ < 1, if for somec > 0

|κk,h| ≤ lγs and|Fk,h| ≥ cls.

If we apply the estimate (3.31) withV to be the interior ofκ, we obtain, via inequality
(3.37) and the fact that|Bk| + |Bh| ≤ |κk,h|, the bound

µ3(l,lp),η,T {n ∈ π(l, p, η) : someK in K(n) contains a (ls, γ)-fat finger}

≤ (2l2)2lγs (eβ − 1)l
γs

q
νInt(κk,h),ϕw,a(uInt(κk,h) ≥ cls)

≤ (2l2)2lγs (eβ − 1)l
γs

q
exp{−acls + Clγs}

≤ exp{−ac

2
ls} ,

(3.39)

for l large.

With these ingredients, the proof of (3.34) proceeds as follows. We fix a positive real
number 0< α < 1, such that 1− α is sufficiently small to guarantee that

α

1 − α
p > 1 , (3.40)

and perform the following finite sequence of steps:

Step 1. We consider first the configurationsn ∈ π(l, p, η) which for somek1, h1 <
lp/(3 · 2) have a fingerFk1,h1 with both bases having less thanlαp bonds:

max
(
|Bk1|, |Bh1|

)
≤ lαp . (3.41)

The length of the contourκk1,h1 is at leastlp/3, because it penetrates at least a distance
lp/3 inside3(l, lp), while the bases are at most at a distancelp/6 from the bound-
ary ∂3(l, lp). Hence, such a finger is (lp, α)-thin and the bound (3.38) shows that the
configurations considered in this step have a probability of occurrence not exceeding

exp{−τ

6
lp} . (3.42)

Step 2. For the remaining configurations the condition (3.41) is violated for all
k, h < lp/(3·2). We consider the following part of them: those configurations for which
for somek2, h2 ≤ lp/(3 · 22) both bases have less thanlα(αp+p) bonds. That is, either

|Bk| > lαp for all 0 ≤ k ≤ lp/(3 · 2) (3.43)

or
|Bh| > lαp for all 0 ≤ h ≤ lp/(3 · 2) (3.44)

and also

max
(
|Bk2|, |Bh2|

)
≤ lα(αp+p) for some 0≤ k2, h2 ≤ lp/(3 · 22) . (3.45)
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To bound their contribution we consider two cases:

Case 2.1. If the length of the contourκk2,h2 is of an order larger than the size of the
bases:

|κk2,h2| ≥ ls2 with s2 = (αp + p)(1 +α)/2 ,

then the finger in question is (ls2, α̃)-thin, with α̃ = 2α
1+α . The thin-finger bound (3.38)

tells us that the probability of these configurations is bounded above by

exp{−τ

2
ls2} .

Case 2.2. In the opposite case we have

|κk2,h2| ≤ ls2 ,

which implies that the finger is (lαp+p, ˜̃α)-fat, with ˜̃α = 1+α
2 . Indeed, given that either

(3.43) or (3.44) is satisfied, the finger contains at leastlαp × lp/(3 · 22) bonds. Applying
(3.39) we conclude that we are dealing with configurations whose probability is at most

exp{− a

3 · 23
lαp+p} .

We proceed by induction and we arrive to

Stepm. Introduce the quantity

rm =
m−1∑
i=1

αip .

During themth step we treat the portion of configurations not treated before – namely,
those which have fingers such that for all 0≤ h, k ≤ lp/(3 · 2m−1) all corresponding
base-widths satisfy

max
(
|Bk|, |Bh|

)
> lrm ,

while for somekm, hm ≤ lp/(3 · 2m)

max
(
|Bkm |, |Bhm |

)
≤ lα(rm+p) (≡ lrm+1) .

The first inequality implies that either|Bk| > lrm for all 0 ≤ k ≤ lp/(3 · 2m−1), or
|Bh| > lrm for all 0 ≤ h ≤ lp/(3 · 2m−1) (or both). We have two cases:

Casem.1. If the order of the length of the contourκk,h exceeds that of the size of the
bases:

|κk,h| ≥ lsm with sm = (rm + p)(1 +α)/2 ,

then the finger is (lsm , α̃)-thin. From (3.38) the probability of the corresponding config-
urations is bounded by

exp{−τ

2
lsm} . (3.46)

Casem.2. In the opposite case, when

|κk,h| ≤ lsm ,



392 A.C.D. van Enter, R. Fernández, R. H. Schonmann, S. B. Shlosman

we use the fact that the finger contains at leastlrm × lp/(3 ·2m) bonds. Hence the finger
is (lrm+p, ˜̃α)-fat and (3.39) implies that the event formed by these configurations has a
probability bounded by

exp{− a

3 · 2m+1
lrm+p} . (3.47)

One might think that we are in trouble here, since the exponent in (3.47) goes to 0
asm → ∞. Happily, our procedure terminates after a finite number of steps, because
condition (3.40) ensures that there exists am0 – independent ofl – such that for alll

we havel
∑m0

i=1
αip exceeds 4l, which is the maximum possible size for|Bk| and|Bh|.

The sum of the (finitely many) estimates (3.46)–(3.47) proves the bound (3.34). We see
that the leading contribution comes at the first step, which was taken care of in (3.42).
�

As was mentioned above, the result of Lemma 2 implies the relations (3.28), (3.29),
which in turn imply Theorem 1.
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