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Abstract: We investigate the complete analyticity (CA) of the two-dimensigrstiate
Potts model for large values qf We are able to prove it for every temperatdre>
T..(q), provided we restrict ourselves to nice subsets, their niceness depending on the
temperaturél’. Contrary to this restricted complete analyticity (RCA), the full CA is
known to fail for some values of the temperature abbyéq).

Our proof is based on Pirogov-Sinai theory and cluster expansions for the Fortuin-
Kasteleyn representation, which are available for the Potts model at all temperatures,
providedq is large enough.

1. Introduction

In this paper we are dealing with the two-dimensiopatate Potts model, which is the
statistical mechanics model @# with formal Hamiltonian

H(U) =- Z 5a(x),a(y); (11)
{z.y}

whereo(z) = 1, ..., gisthe spin variable at the sitec Z?, Oo(2),0(y) 1S LTOro(x) = o(y)
and is 0 otherwise, the summation is taken over nearest neighbotsatds an integer.
The casey = 2 is the well known Ising model.
It is known that the Potts model undergoes a first-order phase transition at a certain
transition temperaturg,,. = T.,.(¢), providedyq is large enough. Namely, the model has
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q different Gibbs states for temperatutEs< T.,., ¢ + 1 states ai’ = T, and one state

forT > T, (see, for example, [KS]). We are going to study the Potts model in this last
high temperature regime, and we want to investigate the problem of whether the unique
Gibbs state the model has in that regime is completely analytic.

The notion of “Complete Analyticity” (CA) of an interactioti was introduced in
[DS2] and [DS3] for lattice spin systems. It can be defined in many different equivalent
ways. According to one of them one has to consider an arbitrary finite stbsez,
and to compare the conditional Gibbs measurea idefined byU and two boundary
conditions which only differ at a single sitg Namely, one asks for the distance in
total variation between the restrictions of these Gibbs measures to an arbitrary subset
A’ C A to decay exponentially with the Euclidean distance frpta A’. In the papers
[DS2] and [DS3] complete analyticity was shown to be equivalent to several properties
of the conditional Gibbs measures corresponding to finite subsets of the lattice and
arbitrary boundary conditions. All these properties are in the form of some estimates
which are uniform, both in all the finite subsets of the lattice and in all the corresponding
boundary conditions. They include the analytic dependence of the logarithm of the
(conditional) partition function on the interaction parametérs {U4, A C Z4, |A| <
oo}, the representation of the logarithm of the partition function as a sum of a volume
term and a boundary term, the exponential decay of the truncated correlation functions,
etc. Later, Stroock and Zegarlinski showed in [SZ] that complete analyticity is also
equivalent to some statements about the various corresponding Glauber-type dynamics
(i.e., reversible spin flip dynamics) and their corresponding Dirichlet forms — including
logarithmic Sobolev inequalities, and exponential convergence to equilibrium. Again all
the statements were uniform over all boundary conditions and all finite subsets of the
lattice.

It is natural to ask in the case of concrete models, like the Ising model, for which
values of the parameters one has all these nice properties. It was realized that the notion
of complete analyticity as originally defined, uniform over all finite subsets of the lattice,
is actually too strong to hold in certain cases in which one still expects the system to
have a very decent behavior. In particular, it is violated for the Ising model at low
temperature and small nonzero field (for uncountably many curves in dimebsioa
and for an open region of th&'(h)-plane forD > 3, see [EFS], pp. 1010-15). Another
explicit two-dimensional counterexample, due to one of us, was described in [MO2]. In
this example the Hamiltonian considered is just slightly more complicated than the one
of the Ising model, but the analysis is much simpler. The idea behind these examples is
that if one considers arbitrary subset¥af then pathologies should not be unexpected,
simply because the subsets may have boundaries which are comparable in size to the sets
themselves. From the point of view of the physics involved in such problems, oneis ready
to compromise over such weird shapes and be satisfied with a condition of complete
analyticity restricted to “reasonable” subsets of the lattice, including sufficiently thick
rectangles, say. A project of this type was carried out by Martinelli and Olivieriin [MO2],
[MO3]andrelated results appeared also in [LY]. In these papers results similar to those of
Stroock and Zegarlinski were proven, in the form of equivalences between statements of
complete analyticity, properties of reversible spin-flip dynamics and logarithmic Sobolev
inequalities, uniformly only over certain subsets of the lattice, including all (sufficiently
large) cubes. This weaker property was called “strong mixing for cubes” in [MO2],
[MO3], [MOS] and “restricted complete analyticity” (RCA) in [SS].

As was remarked by Roland Dobrushin, the notion of restricted complete analyticity
for a given lattice model is equivalent to (full) complete analyticity of another model,
obtained from the initial one by partitioning the lattice into cubic blocks of a certain size
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and considering the spin configurations of the initial system in the blocks to be the spin
values of the new system. Therefore one can formulate the notion of restricted complete
analyticity in as many equivalent ways as it is possible for the usual complete analyticity.

The introduction of the notion of restricted complete analyticity turns out to be
meaningful once one is able to establish this property beyond the region where the
standard (full) complete analyticity is known to hold. The first such result was obtained in
[MO2], where it was proven that thedimensional Ising model is RCA for any nonzero
value of the magnetic fieltl, provided the temperatutg is low enoughI’ < T'(d, h).
This includes values where the standard CA property is violated ([EFS]). It was actually
this result which prompted the remark quoted in the preceding paragraph. Indeed, if one
considers the model obtained by partitioning the Ising model into cubic blocks df size
then there exists a scdl@) such that fof > (k) the block model satisfies the so-called
B(0) property, introduced in [DS1], which means that the finite volume ground state
configurations should not depend on the boundary conditions for any volume. From that
property the low-temperature RCA follows as a direct corollary of results in [DS2]. The
next result in this direction was obtained in [MOS], where the authors showed, among
other things, that RCA holds for the two-dimensional zero-field Ising model down to the
critical temperature. Later some of us extended these results in [SS] by proving that RCA
for 2D Ising model holds everywhere on tHg ()-plane except for the phase transition
segment ( = 0,h = 0), (T = T., h = 0)) and the critical point{ = T,.,h = 0). It
should be mentioned that it is not known to which extent CA holds in the above region.
As mentioned above, in [EFS] this property was shown to be violated at low temperatures
and small fields. It is not known whether or not CA holds at all temperatures dbove

In the present paper we study the same problem for the-2@te Potts model. Our
main result is that if the number of statgss large enough, then the model is RCA for
all temperatureg’ above the transition temperatufe = 7.(¢). The validity of the RCA
property for the Potts model turns out to be of more importance than for the zero-field
Ising model: while CA for the Ising model still might hold at all temperatures above the
critical one, it definitely fails for the Potts model for some supercritical temperatures,
as was shown in [EFK]. For an estimate of the temperatures where CA does hold, see
[L2,L2].

More precisely, we are proving the following result. Lée an integer, and consider
a natural partition of the lattic&? by 2/ x 2! squares. Consider the collection of all
finite subsets\ C Z?, which can be represented as a finite union of these squares. Such
subsetsA will be calledi-regular. Then the following result holds:

Theorem 1. Restricted Complete Analyticity for the 2D Potts modelConsider the
two-dimensional-state Potts model witly large enough, at any temperatuie >
T.-(¢). Then each of the 12 equivalent properties of Complete Analyticity, formulated in
[DS3], is valid for everyi-regular box A, provided! > I(T"), wherel(T") is some finite
function.

The analysis of the result in [EFK] leads us to expect that the funé{ibhhas to
diverge asl’ | T.,(q) for such a theorem to hold.

We point out that our results hold for glfor which Theorem A below applies. While
in its original form this Theorem does not provide the expected rangg foesumably
Theorem A (or some version of it) will eventually be proven forgbr which there is
a first-order phase transition in the temperature.

The strategy of the proof of the main result is the following: we first note that
from the results of [MOS] it follows that for the two-dimensional systems the RCA
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property holds provided the system satisfies the weak mixing condition. The latter is
defined by saying that for an arbitrary finite subseof Z2, if we compare the Gibbs
measures with any two boundary conditions, then the distance in total variation between
the restrictions of the corresponding Gibbs measures to an arbitraty setA decays
exponentially with the Euclidean distance betwe€randdA. (We want to stress that

in higher dimensions it may happen that weak mixing holds while RCA is violated —
one example being the Czech models, studied in [Shl] — and that is the reason why
our results are necessarily restricted to the two-dimensional case.) To show the weak
mixing we use the Edwards-Sokal (ES) coupling betweenytbte Potts model and

the corresponding Fortuin-Kasteleyn random cluster model (or FK model). The latter is
described in detail below; for the bax it is a probability distribution on the set of all
partitions of A into connected components, which are called clusters. The conditional
distribution of the Potts model i, given the configuration of FK clusters, which is
defined by the ES coupling, is remarkably simple: for every cluster independently one
has to choose one of the values 1, g with equal probability%, and to put all spins

in that cluster to be equal to the value chosen. The exception comes from the clusters
attached to the boundary, where the (common) value for the spins in the cluster is defined
by the boundary conditions. So, roughly speaking, the conditional distributi®hdn A

under the condition that there are no clusters conneetingith the boundaryA does

not depend on boundary conditions. As a result, we have weak mixing, provided we
can show that the probability that there exists a cluster, conneafimgth A, decays
exponentially with the Euclidean distance betwegranddA.

The analogues of the last statement were obtained for different models by different
methods. One was proven by Martirosyan [Mar2] for the low temperature Ising model
with magnetic field (in arbitrary dimension). This result was strengthened (and the proof
simplified) by one of us in [Sch]. Another result of this kind was obtained by one of us
for the so called Czech models in [Shl]. Here we prove it by using the cluster expansion
and Pirogov-Sinai theory for the large=K model, obtained in [LMMRS]. The specific
feature of the large-FK model is that it admits a cluster expansion which converges
for all temperatures (and not only for low or high temperatures, like the Ising model).
That enables us to obtain the weak mixing for all temperatures above the critical one.

Once we know the weak mixing property, we can claim, by invoking the result
of [MOS], that theg-state Potts model has the following properties above the critical
temperaturd.,.(q):

(i) — Restricted complete analyticity, in the sense that thesétsthe definition that we
reviewed above are restricted tobeegular,! = I(T).

(ii) — Exponential convergence to equilibrium of the associated Glauber dynamics uni-
formly overi-regular subsets, uniformly over boundary conditions and over initial con-
ditions.

(iii) — Positive lower bound for the spectral gap of the generator of the associated Glauber
dynamics, uniform ovel-regular subsets with arbitrary boundary conditions.

(iv) — Finite upper bound for the logarithmic Sobolev constant of the generator of the
associated Glauber dynamics, uniform ol«eegular subsets with arbitrary boundary
conditions.

(v) — A constructive condition for uniqueness of the Gibbs measure in infinite volume
which was introduced by Dobrushin and one of us in [DS1] is satisfied.

In fact, these nice properties were stated in [MOS] to hold only for square subsets,
but they are valid for all-regular subsets of the lattice and also all rectangles. We refer
the reader to [MOS] for the precise statements and the various necessary definitions.
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Another consequence of RCA is ([MO1]) that a sufficiently often iterated decimation
transformation (how often depends on how close one is to the transition temperature)
acting on the infinite volume Gibbs measure results in a Gibbs measure, even though
applying the decimation transformation only a few times can result in a non-Gibbsian
measure [EFK]. Similarly, the restriction of the RCA Gibbs measure to the spins on a
line will be a Gibbs measure, compare [L1,L2].

It should be noted, that our restriction to the two-dimensional case comes only from
the fact that in the final step of the proof we apply the results of [MOS], which are
essentially two-dimensional. However, all the results of the present paper which do not
rely on [MOS] hold in any dimension.

In the next section we introduce the necessary notation and review some known
results. The proof of our main statement is given in Section 3.

2. Notation and terminology

The lattice: The cardinality of a set C Z2 will be denoted by|A|. The expression
A CC Z?will mean thatA is a finite subset df2. For eachr € Z?, we define the usual
norm||z|| = max{|x1|, |z2|}. The distance between two setsB € Z?2 will be denoted

by
dist(4, B) =inf{|lz —y|| : z € A,y € B}.

The (interior) boundary of a set C Z? will be denoted by

OA ={z € A tllz — y[| = 1 for somey & A}.
For lattice squares centered at the origin, we will use the notation

A(l) =Z2N[-1,1]%
We will consider also layers
L)y = A\ A( - 1). (2.1
The graph of bonds, i.e., (unordered) pairs of nearest neighbors is defined as
B ={{z,y}: 2,y € Z*and|z — y| = 1}.

Given a setA CC Z? we define also

Ba = {{z,y} rzory € Aand|z —y| =1},

OBa = {{z,y} :x € A,y & Aand|lz —y| = 1}.

A chain is a sequence of distinct sites, .. ., z,, with the property that for =
1,...,n—1, ||x; — zs+1]| = 1. The siteg; andz,, are called the end-points of the chain
x1,...,%n, andnisits length. A chain is said to connect two sets if it has one end-point
in each set.

The configurations, observables and measuf¢sach site irZ? there is a spin which
can take values,1. ., g, whereq is an integer. The spin configurations will therefore
be elements of the sél, .. ., q}ZZ = Q. Giveno € Q, we write o(z) for the spin at
the sitex € Z2. For A C Z? we denote by 4 the restriction obr to A. Likewise, this
restrictiono 4 can be viewed as a subset of the set of all configurations:



378 A.C.D. van Enter, R. Feamdez, R. H. Schonmann, S. B. Shlosman

UA:{UEQ:O'|A:0'A}. (22)

The single spinspacél, . . ., ¢} isendowed with the discrete topology a@ads endowed
with the corresponding product topology. The following definition will be important
when we introduce finite systems with boundary conditions later on; givenc Z?
and a configuration € €2, we introduce

Quy={0€Q:o(x)=n(z)forallz & A}.

Real-valued functions with domain$are called observables. Local observables are
those which depend only on the values of finitely many spins; more precfse{y,— R
is a local observable if there exists a $etcC Z? such thatf(c) = f(n) whenever
o(x) = n(x) for all z € S. The smallestS with this property is called the support of
f, denoted supg). The topology introduced above @, has the nice feature that it
makes the set of local observables dense in the set of all continuous observables.

We will also use bond variables. For every bdndy} € B we introduce the bond
variablen,,, taking values 0 and 1. The bond configuratienwill be the elements
of the setB = {0, 1}®. We call the bond z,y} open with respect to the configuration
n, if nyy = 1, and closed otherwise. Two bonds open with respegtuadll be called
connected by, if there is a chain of endpoints of bonds open with respegt joining
the endpoints of these bonds. A maximal connected component of open bonds will be
called a (open) cluster of. A single site, not connected to any other site, forms a cluster
by definition.

We introduce now the sets of bond configurations which are compatible with (site)
boundary conditions. Namely, for every CC Z? and every configuration € Q, we
introduce

Bay ={n € B:ng =0forall{z,y} ¢ Bj,

2.
n(u) = n(v) for all u,v ¢ A, connected by.}. 23)

We denote by3, the larger family of all bond configurations, which are indifferent
to the boundary conditions:

Br={neB:ng, =0forall{z,y} ¢ Ba}.

We endows? also with the Boreb-algebra corresponding to the topology introduced
above. In this fashion, each probability measu@n this space can be identified by the
corresponding expected valugg'dy of all the local observableg.

The Gibbs measuredVe will consider always the formal Hamiltonian (1.1). In order
to give precise definitions, we define, for each Aet C 72, each boundary condition
n € Q and eaclr € Q4 ,

HA,n(U) == Z 60(m),o‘(y)~ (24)
{z,y}€BA

GivenA cC 7Z?,n € Q,andE C Q, we write

ZRar(E)= ) expl-fH, (o)), (2.5)

UGQA)nmE

wheres = 1/T is the inverse temperature, and the supersétiptands for “Potts”. We
abbreviateZ} , = Z{ , ().
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The Gibbs (probability) measure it with boundary conditiom at temperaturg’
is now defined o2 as
exp(_ﬁpHA,n(o-)), |f o E QA)n7
pan (o) = Zy g (2.6)
0, otherwise.

The Fortuin-Kasteleyn modeFor every bond configuration € B, , we define the
total number of open bonds by
In| = Z Nay-

{z,y}€By

For every bond configuratiom € B, ,, we define the numbeét, (n) of inner clusters in
A to be the number of open clustersrgfwhich contain no points outsideg.
The FK (probability) measure in with boundary conditiom at temperaturéd” is
defined onB by
B _ 1)InloCaln)
DT e By,
fian,r(n) = LT 2.7)

0, otherwise,

where the FK partition function

ZNKp= > (e = 1)nlglatm, (2.8)

HGBAJ,

The Edwards-Sokal couplingtinally we remind the reader of the construction of the

ES coupling between the Potts model and the Fortuin-Kasteleyn random cluster model.
Consider the box\, and for any bondz, y} € B, let us introduce a new variable

Ny, taking values 0 and 1. Using now the identity €8p,,.,} = 1+ (¢ — 1)5,,,, we

can rewrite the expression for the Gibbs factor exp{{ s ,,(¢)) in the formula for the

Gibbs distribution (2.6). Namely, for evesyc Q, ,, we have

exp(-SHan(0)=exp(B DY Sowow}

{z,y}€BA

S I no* (€ =15, 1dDelta,, o] 29)

Ngy€EBA {z,y}EBA

o I WBnyot € =100, 100,.0,]-

”M/EBA,n {z,y} By

The second equality is straightforward, and the third one holds because the bond con-
figurations fromB3, \ B , are not contributing to the sum. So we can now introduce
the Edwards-Sokal probability distribution on the pairsi() € Q4 ,, x Ba,, by

H{z,y}G]BA [6nwy,0 + (66 - 1)6nwy,150w,0y]
Z/{’,'I],T
_ H{Ly}GBA [5nzy,0 + (eﬁ - 1)5nzy,1501,ay]

ES )
ZA,n,T

:U/A,n,T(O-7 ’II):

(2.10)




380 A.C.D. van Enter, R. Feamdez, R. H. Schonmann, S. B. Shlosman

where the Edwards-Sokal partition functimﬁfﬂ is defined by:

Zeer= Y, II 0o+ € =100, 100, 0,1= 28, (211)

nlyeBAsJeQA,n {‘Tay}e]EA

The statement that the formula (2.10) indeed introduces a probability measure as well
as the equality of the two partition functions follow immediately from the identity (2.9).

A straightforward check shows that the marginal distribution ofitheriables under

the measure (2.10) is nothing else than the FK measure (2.10), and therefore the three
partition functions are equal:

P — 7ES _ 7FK
ZA,7],T_ AnT — “AnT-" (212)

3. The Proof of Theorem 1

3.1. The general strategyAs we already said in the introduction, the RCA property
will be established once we check the weak mixing property for the Potts model. This
property is the following estimate on the variation distance:

VaT(MA,nl,T|A7 :U/A,nz,TlA) <C Z eXp{—C d|St(ZL‘, y)}a (31)
€A, YEA

which should hold for everyd, A, such thatd ¢ V cc Z?, and whereua , a4 is
a restriftiozn of the measure, whifg ¢ are positive constants, which do not depend on
ANt

Actually, the proof of the implicatiofgweak mixingg =RCA, given in [MOS], does
not use the full strength of the weak-mixing property (3.1). It is enough to know (3.1)
only for some speciall-s andA-s. Namely, let somé be fixed, and consider the subsets
A, which can be obtained by taking unions, intersections and complements of & most
lattice rectangles of sizes not greater thgior some real. Let 0 < p < 1 be some real
number, and letd = A(A,l,p) = {z € A : dist(z, A°) > [P}. In that case (3.1) boils
down to

Va/r(uA,nl,T|Aa ,U/A,nz,TlA) < exp{_CZP}? (32)

(with smallerc). To use [MOS] one needs to know (3.2) for abufficiently big and
k < 2.In order to check (3.2) it is enough to prove for all such4 the estimate

‘ H’A,nl,T(O—A) .

1| < exp{—cl? 3.3
/’LA,'r]Z,T(UA) ‘ o p{ } ( )

for every configuration 4, uniformly in n*,»?, which clearly implies (3.2). We will
give the proof only for the case of the square bof); for the reader who will read it,
the generalization will be obvious.
Without loss of generality we can suppose that)? € o4, (see (2.2)) as is evident
from the definitions (2.4), (2.6). In this case the ratio in (3.3) can be rewritten as
ZII\D\A,nl,TZIIXD,nZ,T
— (3.4)
Z zZP
AT A\AM2,T
Let us explain why one should expect the last ratio to be close to one in the regime
T > T,.,.. The Potts model has one Gibbs state in that regime, which is called the chaotic
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state. Therefore the typical configuration of the system in thetbarder the boundary
condition is the following: near the boundary it is dictated by the boundary condition

1, whereas somewhere close to the boundixythere is a long contour, separating

the boundary layer from the rest of the box, where the system behaves chaotically. So
the partition function can be written as a sum over such contours,

Zzl\:,,n,T = Z Z[{—),n,T(F)'
r
Within the precision we need, we can rewrite it as

"
ZII\DJJ»T ~ Z Zf,n,T(F)7 (3.5)
r

where the summation is restricted to thdsehich are close to the boundaby. The
partition functionZ f\ A7 CaN be written in the same way. However, the boundary of

the boxA \ A is not connected, so the analogue of (3.5) is the following:

0 -
ZII\)\AJhT ~ Z ZII\D\AJ],T(Fa F)a (36)
r,r

where again the summation is restrictedttying close to the boundar§ A and tol’"
lying close to the boundar§ A. We have, therefore, approximate equalities:

()
2Ry Zh (i), (3.7)
r

) -

b ~ P

ZA\Aynin ~ s ZA\A,ni7T(Fi7 F) (38)
r;,r

So it is enough to estimate the ratio

Zamr(C1DZY 2 (C2)

ZII\D,nl,T(Fl)ZII:\A,nz,T(Fz’ F)

for every triple 1, I, 1:) of contours, which are close to the corresponding parts of the
boundaries of our subsets. To see the desired cancellation we observe that the logarithm
of the partition functioan\A , +(',T) can be represented as a volume term plus a

boundary term, and if the two boundariéa, 0A are well separated, this boundary
term is nearly a sum of two terms corresponding to the contburs(again with the
same precision). This is the strategy we are going to follow.

There are different options to study these partition functions. One way is to use the
variant of the Pirogov-Sinai theory for the Potts model, developed in [Marl]. Technically
however it is easier to pass first to the FK representation, introduced above, and then use
the Pirogov-Sinai theory for it, developed in [LMMRS]. To implement this program we
rewrite (3.4) with the help of the identity (2.12) as

P P FK FK
ZA\AW]'-,TZAWZ-,T — ZA\Aq"IlyTZAWzyT (3 9)
7P 7P - ZFK  7FK :

AL T ANAD2T A TS A\NA?T



382 A.C.D. van Enter, R. Feamdez, R. H. Schonmann, S. B. Shlosman

We want to express the above partition functions in terms of more familiar FK
partition functions with free and wired boundary conditions. We then want to use the
corresponding contour models to treat the latter. In order to proceed we need some more
notation, notions and results which we borrow from [LMMRS].

3.2. Pirogov-Sinai theory of the FK model and cluster expansitescall aplaquettep
any four-tuple of bonds i, which form an elementary cell. We call two bonds adjacent,
if they share a vertex, and we call them coadjacent if they belong to the same plaquette.
These definitions lead to natural notions of connectedness and coconnectedness of a
subset of. Let X C B be a subgraph with no isolated sites. We denote(d§) c 72
the set of its vertices, and by | the number of its bonds. The subsefX) C v(X) of
inner vertices consists of all vertices which belong to four bond& oThe bond € X
belongs to the bounda®@X < X iff b € p, wherep is a plaquette such thatZ X.
The bondh ¢ X belongs to the coboundadyX C X € iff v(b) N v(X) # 0. We denote
by C(X) the number of connected components of the gr&ph

Let nowV C B be a finite subgraph without isolated vertices. We introduce the
partition functions with free and wired boundary conditions by

Zf(V) = Z (65 _ 1)|X\qC(X)+\vz(V)\v(X)|,
XCV,XN§Ve=()

zeW)y= Y (€ — )XW,
XCV,0vVCX
The following limits exist and are equal:

Jim (1/IV)In 27 (V) = lim (1/|V])In 2(V) = f(3).

Acoconnected subsEtC Bis called acontour, if itis a coboundary of som& C B.
If T is finite, then eithetX or X ¢ is finite. The unique infinite component Bf\ T is
called the exterior of and is denoted by EXf). We also introduc& (I") = B \ Ext("),
and IntC) = V(') \ . Forb € 6X we introduced(b) as the number of endpoints &f
which belong taX, and we define the length of the contduby

1T = de).

ber

If X is finite, thenl" is called acontour of the free clas&and if X ¢ is finite, thenl" is
called acontour of the wired clas®ote, that some of the contours belong to both classes.
For each of the classes one introduces in the standard way the notions of compatible
contours and external contours.
For a familyg = {I'1,...,T",,} of mutually compatible external contours ihwe
introduceV (9) = U; V(T;), Int(@) =V () \ 0, Ext(®) =B \ V(0), Exty (0) =V \ V(0).
With these definitions we obtain the following relations between the partition func-
tions:
ZHW) = Z q\vI(V\mt(@f))lZw(mt(gf))’ (3.10)
GfCV
where the sum is over the familiég of mutually compatible externgl-contours inV/,
and
7o) = 3 (¢ - 1B e Z5 (1 (9,)), (3.11)
0,CV
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where the sum runs over the familiés of mutually compatible externat-contours in
V', which do not intersect with the boundayy’.

A contour models specified by assigning weight$I") to contours. The correspond-
ing partition function is defined by

ZWlp)=>_ [ w0, (3.12)

oCcVvVreo

where the sum is over admissible familigsf contours inl/. We are going to consider
contour models both fof- andw-contours; in the first case admissibility means that
contourd" ¢ are compatible and are In, while in the second case it means that contours
I, are compatible, are il and moreover,, N 9V = ().

For every familyo of admissible contours we introduce the sult§é) C 0 as the
collection of all external contours it. Evidently,

Z(V]e) =D [ eMZntD)]y), (3.13)

oCV Ireo

where the summation is over all familiéof external contours.

We are going to consider the probability distributiopn, on the ensemble of the
admissible contours i, corresponding to the contour functiogalNamely, we define
the probability to observe the famity by

Hrea o(I)
Z(V]p)

By applying the Peierls transformation one gets immediately from this definition, that
the probability of a given contodr to appear irl/ satisfies the Peierls estimate:

vy,p(0) = (3.14)

vv,e{0 T € 0} < (I). (3.15)
The contour model with a parameter> 0 is defined by the following partition
function:
Z(V]g,a)= Y [ eVl Z(ntn)|e), (3.16)
6CV TIreo

where the sum runs over all familiéof external contours.

We introduce also the probability distributiofy, , ,(0) for the contours of the con-
tour model with parameter by modifying the definition (3.14) in an obvious way. The
important difference is that onee > 0, then the estimate (3.15) is no longer valid in
general.

A contour model with parameter is in fact associated to an “unstable phase” or
“wrong” boundary condition. The presence of a parameter 0 favors the formation
of a “large” contour representing a flip into a “stable phase”, taking place very close to
the boundary (Lemma 1 below).

The advantage of contour models lies in the fact that they can be treated by means of
the cluster expansion technique. However, that is possible only for those contour models,
whose contour functional satisfies the estimate

(D) < e IImI

with 7 reasonably big. In that case the functional is callegtfanctional, following
[PS1], [PS2], [Sin]. This ensures the existence of the free energy per bond:
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1) = lim @/|V])In Z(V]p).

Actually, it implies much more. Namely, one has the following formula for the partition
function:

nZ(Vig)= > ®(B).

BCV
where the sum runs over all connected subseis,a&nd® is ap-dependent function,
which satisfies the bound

®(B) < e 2%B),
whered(B) is the number of bonds in the smallest connected set which contains all

boundary bonds oB.
In particular, one has the following formula for the logarithm of the partition function:

InZ(V]g) = [VIf(e) + > 900, V), (3.17)
beoV

where the functiory, (b, V) is defined for every pair consisting of a boh@nd a box
V', such that € 9V, and has the following regularity properties:

l9,(b, V)| < Ce™ %, (3.18)

190(b, V1) — g, (b, V)| < Ce~ 7dISVIAY:) (3.19)

for b € 9Vy N 9V, where V1AV, stands for the symmetric difference. (The above
statements are standard from the point of view of the theory of cluster expansions and
can be found, for example, in [DKS], sect. 3.11.)

In [LMMRS] the contour functionals, which describe the FK model (in a sense which
will be explained later) were constructed. We will need the following result, which is
part of the main result of LMMRS]:

Theorem A. Consider the two-dimensional FK model for thestate Potts modely
being large enough, in the regime whén< f.-(¢). Then there exist-functionals
©f,pw and a real parametes, = a(5) > 0 such that

Z5 Wy = ¢V Z(Vpy), (3.20)

Z0(V) = (€° — )V Z(V|pw, a). (3.21)

The following relations hold:

atIne® 1)+ f(gu) = 3 Ina + f(er) = F(5), (322)
(T PZ(NKT Piy) = ¢~ 1INz iny(r ), (3.23)
Puw(Tw) 2N w) = e~ VTl (e? — 1)~V 27 (v(T,)). (3.24)

The parameter can be chosen arbitrarily large, providedis sufficiently large.
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The relation between the contour models and the initial FK model comes from com-
paring the formulas (3.10), (3.11) with (3.12), (3.16), (3.20) and (3.21): the distribution
of the external contours of the FK model in the Béxvith free b.c. coincides with the
distribution of the external contours i defined by the contour model with contour
functionaly ¢, while that of the FK model with wired b.c. coincides with the distribution
of the contour model with the functional, and parameter. Indeed, in both cases the
partition function is written as a sum of products of terms, corresponding to compatible
external contours. Since the formulas (3.10), (3.11), (3.12), (3.16), (3.20) and (3.21) are
valid for all volumes, it implies that the factors corresponding to external contours are
actually the same.

3.3. The boundary clusterdVe are ready now to rewrite the ratio (3.9) with the help of
the patrtition functions introduced above. We will consider first the case whisrthe
square box\ (1). Letn € By, and consider all open clusteiSof », which have sites

in A(l). Such clusters will be callebdoundary clustersBy K = K(n) we denote the
collection of all boundary clusters of n. The set of all possible collections of boundary
clustersiC of configurations ir3,,,, will be denoted bys,,. Denote byO = O(K) the
complement

O =Ba@ \ Ukex K.

It is immediate to see that

ZES e = S 21 O00)E? — 1)2arer K, (3.25)
Kes,

Let us introduce the shorthand notatia(i, i?) for the annulug\ (1) \ A(I — 7). Then
for every configuratiom € Bu,i»),, We can introduce the set of its boundary clusters
in the same manner as it was done above. This set splits into two families: the family
of boundary clusters which are attached to the exterior boundary of the antjju®)
and the family/C of boundary clusters which are attached to the interior boundary of
A(l,IP) and are disjoint from the exterior one. The set of all such p&iti) will be

denoted bysS,,. In the obvious notation one has the following analogue of the formula
(3.25):

Zf(flv),n,T = Z ZH(OK UK))(e? — 1)er;cuf KT, (3.26)
(K.K)eS,

Letus introduce the subsgf C S, formed by all familiesC, such thateverf’ € K
has aheight

he(K, dA()):= max{dist(u, OA(Q)) : ue K}
<1/3.

In the same way we define the subggtc 5,, as the collection of all pairs{, K) with
heights hek’, 0A (1)) < 1?/3 and hef, A (I — IP)) < IP/3. If we denote bﬁ; the set
of all families K of boundary cluster& satisfying the last restriction, then clearly

S =8,xS,. (3.27)

Suppose now for a moment that we are able to show that
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Z\ T = [ S 200N’ — 1)2nex K'] (1+Ce ™), (3.28)

Kes),

and that

ZN e =Y Zf(O(/cwc))(eﬂ—1)Zf<ewc"‘}(1+0'e—?”), (3.29)
(K.K)es,,

where the constants = C(l, p, ), C' = C'(l, p,n) are uniformly bounded inh andn,

and7 = 7(7) > 0 is independent af and»n. We claim that in such a case the relation
(3.3) follows from the expansion (3.17) and the relation (3.19). Indeed, let us insert the
expansions (3.28) and (3.29) into (3.9), with= A(l), A = A(I?). Using (3.27), we
have
ZII\:‘(f(lP) nl, T

FK
ZA(l) 7]1,TZA(l 1?),n2,T

FK
ZA(l) n2, T _

S kaes), wacs;, 20001 URN(eA —1p2=rersw X 27 (0 )) (e - 1)2ners ]
KeS,/(=5,)

S kaes), waes;, ZHOUKD) 8 —1p=ress 2801, U R (e? —1y2reraw ]
KeS,/(=5,)

x(1+C"e).

Consider the ratio of the corresponding terms:

Z1(O(K1 UK))(e? - 1)ermw Kl 21 (0(C) (ef — 1)2=rxers &
Z1(O(K1))(e? —~ 1)2“’% 2101, L)) (ef — 1)Exe)<zuz X1

Note that the total sets of the boundary clustkrsappearing in the numerator or in
the denominator, are the same, and each is equé& to X, U K. Hence all the factors

(e — 1)2»« cancel out. Now, the se@(K,. U K), O(K,) are in general not connected,

so the corresponding partition functions splitinto products, and the factors which appear
both in the numerator and in the denominator also cancel. A moment’s thought leads to
the conclusion that what is left equals the ratio

Z1(O(K1 U K))Z! (O(K2))
ZI(O(K1)) 2 (O, UK))

whereO(K, UK), O(K.,) are those connected components of the@éts, UK), O(K,),
which contain the whole “middle level”, i.e. the seA (I — %l”). The application of the
expansion (3.17) and the relation (3.19) implies immediately, that the last ratio is equal
to 1 +Ce ™" with C = C(K1, K2, K, 1, p) uniformly bounded inky, K2, K, 1, which
proves our statement (3.3).

The above argument shows, that the only things that remain to be proven are the
relations (3.28), (3.29). We will do this in the next subsection.

The reason why our project is bound to succeed is that above the critical temperature
B1(q) the FK model (as well as the Potts model) has a unique state — the chaotic one —
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which is characterized by the appearance of a large amount of small connected clusters.
So the boundary conditions, fixed around some bgxare unable to influence the
behavior of the system in the bulk. More precisely, no matter which boundary conditions
we choose, there will be a contour in the vicinity of the bounda¥y, separating the
boundary influenced behavior outside it from the chaotic one inside. We start the rigorous
proof of this picture by considering the wired b.c. In that case the formula (3.21) tells
us that the corresponding distribution of the external contours coincides with the one
for the contour model with parameter. In light of that the appearance of the following
statement is natural:

Lemma 1 (Estimate on the volume of the unstable phase)let,, = {I'1,...,T}

be a family of mutually compatible externatcontours inl/. Consider the event that
the contours{I'y,..., [, } are the only external contours in the ensemble defined by
the contourr-functional p,, with parametera. That is, we consider the probability
distribution

- 1_[?[I ea\V(l"i)| Pw (Fz)Z(I nt(ri) | Spw)

I/V,me’a(ew) = VV,gaw,a(FL ceey Fn) Z(V|(p CL) (330)
Introduce the random variabley, = uy (0.,) = |Exty (0.,)]-
Then
WW,pw,a(uy > N) < exp{—alN + C|0V|}, (3.31)

whereC = C(1, 3).

Note . Itis worth noting that our statemedoes nohold for an arbitrary contour model
with parameter, even for large The reason is that when one discusses general contour
models, one asks for the upper bolp()| < e~7!I'll only, and so one does not rule out
the possibility thatp(I") is actually much smaller and even vanishes for some contours.
But in such a case the number of sites in the Boxvhich stay outside all external
contours is of the order d¥|, and the estimate (3.31) breaks down. However for the
situation at hand we have also the lower bound

p(I) > e~ TIITl (3.32)
for some reatlr, and this is enough to prove the estimate (3.31).

Proof of Lemma 1The idea of the proof of the upper bound is to replace the parti-
tion function in the denominator of (3.30) by a lower bound which has the form of
one of the factors of the numerator of (3.30). To do this we consider the collection
O,(V) = {I1,...,Tk, k = E(V)} of mutually compatible external-contours inV’
which minimizes the variabley . It is clear thatuy (©,,(V)) = C|0V| for someC.

Then

VV,gow,a(uV 2 N) = Z VV,<pw,a(0w) =
0., CViuy (0y)>N

Zech:uV(Qw)ZN Hreew ealV(F)\@w(r)g(mt(r)‘@w) <
Z(Vlpw,a) -
Zau,cv:uv(ew)zz\r Hreew ealV(F)\gpw([‘)g(mt(r)‘(pw)
etWVImuv @M T g 1y o (D) Z(NHT) [ 00)

< ealuv (©u(V)=N) 1 Z(Vlew) .
[Ireo., ) Pu@) Ireo, 1) Z(NUT)|0w)
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We now claim that each of the last two factors admits an upper bound of the order
of exp{C|0V'|} for someC. For the last factor this follows from the expansion (3.17),
since the complemenf \ Urco, () INt(T") is contained in the neighborhood @ of
radius 2. For the first one we use (3.24) and (3.20) to express the contour fungtional
via partition functionsZ(x|¢.,), Z(x|¢y) of contour models (with no parameters). We
obtain that

VDI (B _ 1y IV lor (V) Z((V((Fw);l@f)),
Z(Int(T"y)|w

We then use the expansion (3.17) to write each partition function as an exponent of the
volume term and the boundary term and the relation (3.22) to observe that all volume
terms cancel out. (The fact that we are dealing not with just an abstract contour model,
but with a specific one which admits the lower bound (3.32) on the contour functional
is made explicit by our use of the relation (3.24), which implies in particular the strict
positivity of the contour functional.) O

ou(lw) =€

3.4. Fingers of the boundary clusters and their surgerlasvhat follows we are proving
the relation (3.29) for the case of the square BdX. The relation (3.28) is easier and
can be proven by the same argument with simpler notation.

In the following statement we estimate the probability of the event that the boundary
cluster goes deep inside the box.

Lemma 2 (Estimate of the probability of a long finger). Let ¢ be such that Theorem
A above holds. Fix a real numb8&r< p < 1 and consider the event

7(l,p,n) = {n € Bagwyn : KN A(I—17/3,1P +17/3) # () for someK € K(n)}.
(3.33)
Then
paq, iy, r(mlp,m) < C exp{—bri}, (3.34)

whereC = C(p,T) > 0andb > Ois an absolute constant (e.fy/6).

Proof of Lemma 2T he idea of the proof is to study “fingers”, which are protruding parts
of the boundary clusters. The finger can be either attached to the exterior boundary of
A(L,P) or it joins the exterior and the interior boundaries/ofl, IP). If the finger is
“thin” somewhere — which means that its length is of higher order than its thickness —
then one can cut across it, obtaining an exterior contour of the length of theldrder
which implies the estimate needed. If the finger is “fat” everywhere, that implies that
the number of open bonds inside it is much larger than the perimeter, so one can hope
to control the situation by using the estimate (3.31).

To implement this program we start by defining fingers and their parameters.

For a boundary clustek and fixed numbers & k,h < [7/6, we define the set
Fyn C K —the §, h)-finger— and the sets of bonds,, B;, C K — thebasesof the
finger — by the following properties:

) N [L(z —(P/3) UL(IP + zp/s)} Z( [see (2.1)],
i) BycLI?P+k)NK,ByCL(-hNK.
iii) Fp, is a connected component &t \ (B, U By),

iv) there is no path if 5, connectingL (I — (17/3)) U L(I? + 17 /3) to the boundary
AN, IP),
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V) Bi U By is the smallest set of bonds, satisfying ii), iii) and iv). (Eitt&y or By,
can be empty.)

The proof is based on the following three ingredients:

1) Surgery of a fingerThis is a map that to each configuratieexhibiting a finger
Fy, 5, with basesBy,, By, associates the configuratioh= n’(n) which is obtained from
n by declaring all bonds iy, B;, to be closed. This configuratiorf is characterized
by an exterior contouky, ;, (of the wired class) delimiting the fingé; 5. The map is
many-to-one, with the multivaluedness coming from the number of ways to choose the
| Br| +|Br| bonds in a proper place in layetgl? + k), L(l — h). For our purposes it is
enough to take the rough bound

(ZZZ)IBkl‘f\Bh\ (3.35)

for the number of preimages. On the other hand, the relation between the probabilities
K@ ipy,n,r(n) andpag,iry,,, 7(n') is the following:

pag.ey.n (M) _

(e — 1)IBrl*Bnl
LA(,ip),,, (1) q .

(3.36)

The numerator comes from the number of connections severed by the surgery, and the
denominatoy arises from the one extra clustéi, j, obtained after the surgery. As a
consequence, the probability of an eveéitfF;, 5, By, By) that the given finger appears,
satisfies the inequality

KA@QIP) 0, T (E(Fk,h, By, Bh)>
| (ef — 1) Bel+IBl (3.37)

< (21%)!Bkl*Bn HA(LIP),,,T (E(Fk,h7"€k,h)> ;

whereE(Fy, 1, £1,5) — the event to observe the contowy;, delimiting the cluster;; 5,
— is obtained fronE/(Fy, 1, By, By) through surgery.

2) Thin-finger estimatianA finger Fy, ;, will be called {°, v)-thin, for somes > 0
and 0< v < 1, if for somec > 0,

|”€k,h| >cl® and |Bk| + |B}L| < 2078,

(Here and in the following we will be interested in situations whénfixed, whilel is
large.) Theua,i»),,, 7-probability of the union of all configurations, which have the
contoursy, 5, among their external contours, is at most £xp||xx »||}. Hence we can
use (3.37) plus a Peierls estimate (3.15) to obtain the following bound:

paq,ir)n,rin € m(l,p,n) : somekK in K(n) contains alf, v)-thin finger

L (eB — 127 .
(212" % [2(21)2423 exp{—7j} (3.38)

j=cl®

IN

< exp{f%ls} )

provided! is large enough. Here the combinatorial factd)32% estimates the number
of contours of length that can be drawn inside our box.



390 A.C.D. van Enter, R. Feamdez, R. H. Schonmann, S. B. Shlosman

3) Fat-finger estimationA finger F}, ;, will be called ¢*, v)-fat, for somes > 0 and
0<~<1,ifforsomec >0

el <17° and|Fyp| > cl®.

If we apply the estimate (3.31) with to be the interior of;, we obtain, via inequality
(3.37) and the fact thaBy| + |By,| < |k x|, the bound

L@, wyn,rin € ©(l,p,n) : somekK in K(n) contains alf, v)-fat finger

IN

(P — 1)

o (e ) s

@ At 3 it 1y Z 1)

)lw (3.39)
exp{—acl® + C1"*}

IN

(le)zl% (e

< exp{_?l }7
for [ large.

With these ingredients, the proof of (3.34) proceeds as follows. We fix a positive real
number 0< « < 1, such that 1- « is sufficiently small to guarantee that

= SP> 1, (3.40)

and perform the following finite sequence of steps:
Step 1 We consider first the configurationse = (I, p, n) which for someky, h; <
7 /(3- 2) have a fingeFy, », with both bases having less th&r® bonds:
max(|Bk1|, |B,,,1|) < [or, (3.41)

The length of the contouty, 5, is at least? /3, because it penetrates at least a distance
? /3 inside A(l,1?), while the bases are at most at a distait# from the bound-
ary 9A(l, 7). Hence, such a finger i$7( «)-thin and the bound (3.38) shows that the
configurations considered in this step have a probability of occurrence not exceeding

exp{—%lp} . (3.42)

Step 2 For the remaining configurations the condition (3.41) is violated for all
k,h < 1?/(3-2). We consider the following part of them: those configurations for which
for somek,, h, < IP/(3- 2?) both bases have less thi*?*?) bonds. That is, either

|By| > 1“Pforall0 < k <1P/(3-2) (343)

or
|Bp| > 1*Pforall0 < h <17/(3-2) (3.44)

and also

max(|Bk2|, |B,,,2|) < 12P*P) for some 0< ky, hp < IP/(3- 2) . (3.45)
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To bound their contribution we consider two cases:

Case 2.11If the length of the contouks, », is of an order larger than the size of the
bases:
|Hk2,h2| 2 1°2 with S2 = (ap +p)(1 +a)/2 )

then the finger in question i$°(, a)-thin, with @ = 12—‘1 The thin-finger bound (3.38)

ot

tells us that the probability of these configurations is bounded above by

exp{—%lsz} .

Case 2.2In the opposite case we have

|’€k2,hz‘ <= )

which implies that the finger isl[(P+P75)—fat, with @ = “T“ Indeed, given that either
(3.43) or (3.44) is satisfied, the finger contains at l&dsk [ /(3 - 2%) bonds. Applying
(3.39) we conclude that we are dealing with configurations whose probability is at most

a «
exp{fs.zsl L

We proceed by induction and we arrive to

Stepm. Introduce the quantity

During them!™ step we treat the portion of configurations not treated before — namely,
those which have fingers such that for alkOh, k < 17 /(3 - 2™~1) all corresponding
base-widths satisfy

max(\Bk|,|Bh\) > ["'m
while for somek,,,, by, <1P/(3-2™)

max(\Bkm I, |By.. |) < D) (= [rme)

The first inequality implies that eitheéB,,| > ("= forall 0 < k < I?/(3-2™~1), or
|Bp,| > " forall0 < h < IP/(3-2™~1) (or both). We have two cases:

Casem.1. If the order of the length of the contouy, ;, exceeds that of the size of the
bases:
|Kkn| > 15 with s, = (r +p)(1+0)/2,

then the finger isi¢~, &)-thin. From (3.38) the probability of the corresponding config-
urations is bounded by

exp{—%ls’"} . (3.46)

Casem.2. In the opposite case, when

|Kk,n| < 15
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we use the fact that the finger contains at I¢&stx [” /(3 - 2™) bonds. Hence the finger

is (("m*P, 5)—fat and (3.39) implies that the event formed by these configurations has a
probability bounded by

_ a rm+p
exp{ 3. 2m+1l }. (3.47)

One might think that we are in trouble here, since the exponent in (3.47) goes to 0
asm — oo. Happily, our procedure terminates after a finite number of steps, because
condition (3.40) ensures that there existsig@— independent of — such that for all

we havel2=i1 *'? exceeds A which is the maximum possible size flg8; | and|By|.

The sum of the (finitely many) estimates (3.46)—(3.47) proves the bound (3.34). We see
that the leading contribution comes at the first step, which was taken care of in (3.42).
O

As was mentioned above, the result of Lemma 2 implies the relations (3.28), (3.29),
which in turn imply Theorem 1.
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