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Abstract. The large-N limit of D-3-branes is expected to correspond to a superconformal field
theory living on the boundary of the anti-de Sitter space appearing in the near-horizon geometry.
Dualizing theD-3-brane to aD-instanton, we show that this limit is equivalent to a type IIB
S-duality. In both cases one effectively reaches the near-horizon geometry. This provides an
alternative approach to an earlier derivation of the same result that makes use of the properties
of a gravitational wave instead of theD-instanton.

PACS numbers: 1125, 0450, 0465

1. Introduction

Ten years ago a relation was suggested between branes, singletons and anti-de Sitter (adS)
spacetime in the context of the ‘brane living at the end of the universe’ programme [1–4].
In this approach a brane is considered in an adS background§ with the worldvolume of the
brane positioned at the boundary of the adS spacetime. The suggestion was made that the
degrees of freedom of this brane are the singleton representations of the adS group and
products thereof. These so-called singletons do not correspond to local degrees of freedom
in the bulk, but instead describe boundary degrees of freedom [5]. At the same time the anti-
de Sitter isometry group of the bulk manifests itself as a conformal group on the boundary
of the adS spacetime. It therefore seems that the physics of the brane is determined by a
conformal field theory defined on the adS boundary.

Recently, there has been renewed interest in these interconnections from different points
of view [6–14]. One of the observations is that the anti-de Sitter spacetime also occurs in
the (non-singular) near-horizon geometry of the 10-dimensionalD-3-brane and the 11-
dimensionalM-2-brane andM-5-brane [15]. Recently, it has been suggested that the
large-N limit of D-3-branes corresponds to a superconformal field theory living on the
boundary of this anti-de Sitter space [7]. Moreover, it was observed [9, 10] that via a series
of duality transformations theM-2-, D-3- andM-5-branes (with flat asymptotic geometry)
can be locally‖ transformed into a non-flat geometry of the typeAdS4 × S7, AdS5 × S5

andAdS7× S4, respectively. These geometries are exactly the (non-singular) near-horizon
geometries of the original brane. Notice that the duality transformations have changed the
asymptotic geometry. These results are another hint that the physics of these branes are

§ Such backgrounds are natural to consider since they occur in the spontaneous compactification of supergravity
theories [1, 2].
‖ The global validity of these duality transformations should be taken with caution [10], see also section 6.
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1802 E Bergshoeff and K Behrndt

described by supersingleton field theories [10]. It is the purpose of this paper to give an
alternative derivation of the duality symmetries relating branes to adS spaces.

The basic idea of [9, 10] is to start from a brane solution (withp spacelike isometries)
described by a harmonic function on the transverse space:

H = h+ Q

r7−p , r2 = x2
p+1+ · · · + x2

9. (1)

Here h is an integration constant andQ represents the charge of the brane. In order to
have asymptotic flat geometries we will restrict ourselves top-branes withp < 7. One first
relates the brane solution, viaU -duality, to a gravitational wave solution

ds2
10 = du dv +H du2+ dx2

i , i = 2, . . . ,9, (2)

where (u, v) are lightlike coordinates parametrizing a two-dimensional subspace, with
signature(1, 1), of the 10-dimensional spacetime andH is a harmonic function of the
eight-dimensional transverse space. One next makes a change of coordinates that amounts
to anSL(2,R) rotation in the(u, v) space given by(

v

u

)
→
(

1 −h
0 1

)(
v

u

)
. (3)

After this coordinate transformation one ends up with the same gravitational wave solution,
but with the constanth in the harmonic functionH set equal to zero. Finally, one dualizes
the wave back to the brane solution one started from. The net effect of this web of dualities
is that one obtains the same brane solution, but with the constant in the harmonic set equal
to zero. This new solution describes exactly the same geometry that one obtains upon
approaching the horizon of the original brane solution atr = 0 since in that limit one can
effectively ignore the constant part in the harmonic function.

Another way of shifting away the constant part of the harmonic function has been
discussed in [16]. The basic idea here is to relate the brane to a Kaluza–Klein (KK)
monopole instead of a gravitational wave. One next considers the four-dimensional Taub-
NUT space of the KK monopole. AT ST duality transformation† removes the constant part
in the harmonic and one ends up with an Eguchi–Hanson instanton. Dualizing back to the
original brane leads to the same result as above.

In this paper we want to consider another intermediate solution which has the advantage
that it has a manifestSL(2,R) duality symmetry and that the process of shifting away
the constant part of the harmonic functions has a simple interpretation as performing a
specialSL(2,R) transformation. Since type IIB superstring theory has a manifestSL(2,R)
symmetry, it is natural to consider a IIB brane. In fact, the most natural one to consider is
the one with the highest-dimensional transverse space which is theD-instanton [17]. We
therefore propose to use theD-instanton as an intermediate solution.

As explained in [18] theD-instanton can be understood as a compactified 12-
dimensional wave. The metric of such a gravitational wave is given by‡

ds2
12 = du dv +H du2+ ds2

E, (4)

where (u, v) are lightlike coordinates parametrizing a two-dimensional torus with(1, 1)
signature and fixed volume. The functionH is a harmonic function of the Euclidean
10-dimensional space with metric ds2

E . As shown in [18] reducing the wave (4) over
(u, v) yields theD-instanton solution. From this 12-dimensional point of view the special
SL(2,R) transformation that transforms away the constant part of the harmonic function

† This duality transformation has the same effect as an Ehlers transformation [16].
‡ The metric is in an (12-dimensional) Einstein frame. Note that there is no dilaton in 12 dimensions.
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describing theD-instanton corresponds to anSL(2,R) rotation in the(u, v) space as given
by (3). The difference with the approach of [9, 10] is that in that case theSL(2,R) rotation is
performed on a two-dimensional subspace of the 10-dimensional spacetime. Here, however,
we rotate the two additional dimensions arising in a 12-dimensional interpretation of type IIB
superstring theory [19, 20]. This rotation can be interpreted as a specialSL(2,R) duality
transformation of the type IIB superstring theory.

In the next section we first review theD-instanton solution. In section 3 we describe
the web of dualities that makes use of theD-instanton. The supersymmetry of the different
configurations, before and after duality, is considered in section 4, while the extension to
intersecting configurations is discussed in section 5. A further discussion and interpretation
of our results can be found in the conclusions.

2. TheD-instanton

In this section we review the properties of theD-instanton solution [17] of IIB supergravity
[21]. Since all gauge fields vanish for this solution we only consider the Ramond/Ramond
(RR) pseudo-scalar̀, the dilatonφ and the metricgµν . Introducing the complex scalarS
via

S = `+ ie−φ, (5)

the Minkowskian IIB action in the Einstein frame is given by

S =
∫

d10x
√
|g|
[
R + 1

2

∂S∂S̄

(Im S)2

]
+ S∂M

=
∫

d10x
√
|g|[R + 1

2

(
e2φ(∂`)2+ (∂φ)2)]+ S∂M, (6)

where S∂M is a boundary contribution that will be discussed in the conclusions. After
performing a Wick rotation to Euclidean space the action reads

SE =
∫

d10x
√
|g|
[
−R + ∂S+∂S−

1
2(S+ − S−)2

]
+ S∂M

=
∫

d10x
√
|g|[−R + 1

2

(
e2φ(∂`)2− (∂φ)2)]+ S∂M, (7)

where the two real scalarsS± are defined as

S± = `± e−φ. (8)

Note, that the kinetic term of̀ has changed its sign, due to the fact that` is a pseudo-scalar,
which under a Wick rotation† transforms as̀ → i`.

The equations of motion corresponding to the Euclidean action (7) are given by

Rµν = e2φ∂µ`∂ν`− ∂µφ∂νφ,
0= ∂µ

(√|g|gµνe2φ∂ν`
)
,

0= e2φ(∂`)2+ 1√|g|∂µ
(√|g|gµν∂νφ). (9)

† Both the Wick rotation and the parity transformation can be viewed as special cases of a continuous phase
transformation, as has been discussed in [22]. From this point of view, the Wick rotation can be seen as the square
root of a parity transformation and therefore` transforms as̀ → i`.
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We now search for solutions to these equations of motion. Following [17] we assume
that the Einstein metric describing the 10-dimensional space transverse to theD-instanton
is flat, i.e.

ds2 = dr2+ r2 d�9, (10)

where we have used spherical coordinates†. Under this assumption the general solution to
the equations of motion (9) is given by

±`+ α = e−φ = 1

H
, (11)

whereα is constant andH is a general harmonic function over the 10-dimensional flat
Euclidean space, i.e.∂2H = 0. For the spherical symmetric case this harmonic function is
given by

H = h+ Q
r8
, (12)

whereh is an integration constant andQ is the Noether charge defined by [17]

Q = ± 1

8�9

∫
∂M

e2φ ∂`, (13)

where�9 = 2π5/2/24 is the volume of the 9-sphere. Therefore, in this case theD-instanton
solution is parametrized by the three constantsα, h andQ.

In the string frame theD-instanton solution (11) reads

±`+ α = e−φ = H−1,

ds2 =
√
H
[
dr2+ r2 d�9

] = (hr4+ Q
r4

)1/2[(dr

r

)2

+ d�9

]
.

(14)

Note that the solution is symmetric under the interchange

hr4↔ Q

r4
. (15)

It corresponds to a wormhole connecting two asymptotic flat regions (see figure 1). The
minimal diameterdmin of the wormhole throat equals

d8
min = 322hQ (16)

and it is positioned at a valuer = rmin given by

r8
min =

Q

h
. (17)

Under the ‘mirror’ symmetry (15) the asymptotically flat regions atr = 0 andr = ∞ are
mapped onto each other, while at the same timeQ andh get interchanged. Notice however
that, although the metric is symmetric under this ‘mirror’ symmetry, the dilaton is not. In
the r = ∞ vacuum the dilaton is finite, whereas it diverges forr → 0. The asymptotic
geometry atr = 0 is given by a flat spacetime with metric (in string frame)

ds2 =
√
Q

r4

[(
dr

r

)2

+ d�9

]
= dρ2+ ρ2 d�9, (18)

whereρ = Q1/4/r.

† The results of [13, 23] suggest that there exists a more general class ofD-instanton solutions which can be
obtained by replacing the metric d�9 of the 9-sphere in (10) by the metric ds2

comp describing the geometry of any
Einstein space that arises in the compactification of (Euclidean) IIB supergravity from 10 to 1 dimensions. The
one-dimensional space has anR+ topology and is parametrized by the radial coordinater. We will not consider
this possibility further in this work and restrict ourselves to the standardD-instanton with flat transverse space.
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r = 0 r = 8

r   min
8 = Q/h

(32  hQ)2 1/8

Figure 1. TheD-instanton geometry. TheD-instanton solution comprises two asymptotic flat
regions, one atr = ∞ and one atr = 0 which are connected by a throat with minimal diameter

dmin =
(
322hQ

)1/8
at positionrmin = (Q/h)1/8.

The equations of motion (9) are invariant under theSL(2,R) transformations

S± → aS± + b
cS± + d , ad − bc = 1, (19)

with the two generators

�1: S± → S± + 1, �2: S± → − 1

S±
. (20)

Using these transformations we can change the parametersα andh arbitrarily, characterizing
theD-instanton solution butnot Q. In particular, we can transform the constant parth of
the harmonic function (12) to zero. Taking the positive sign in (11) this is achieved by the
specialSL(2,R) transformation†(

a b

c d

)
= �−α1 �−1

2 (�1)
h/2�2�

α
1 =

(
1+ 1

2hα
1
2α

2h

− 1
2h 1− 1

2αh

)
, (21)

yielding the solution

`+ α = e−φ = r8

Q
. (22)

The specialSL(2,R) transformation (21) will play an important role in the next section.
Notice that the above solution can also be obtained by performing a special dimensional
reduction of the 12-dimensional wave, which is different from the one discussed in the
introduction [24].

Given the expression (17) for the positionrmin of the wormhole we see that by changing
the value ofh we effectively move the positionrmin. In other words, due to theSL(2,R)
symmetry, the position left or right from the wormhole is not determined. Any point
positioned atrf ix with rf ix > rmin is SL(2,R) equivalent to a point positioned atrf ix with
rf ix < rmin and especially by transformingh away toh = 0 one effectively moves towards
the vacuum atr = 0 where one reaches the flat spacetime, see equation (18).

† A similar transformation exists for the negative sign in (11).
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3. T -duality

In the previous section we have shown that the constant parth of the harmonic function
H can be removed by a specialSL(2,R) transformation. This has important consequences
for the geometry described by the solution. Forh 6= 0, the solution represents a
wormhole geometry, see figure 1, whereas forh = 0 we obtain a flat spacetime. This
flat spacetime geometry can be parametrized by different coordinate systems (r versusρ),
see equation (18). We therefore have three (locally) equivalent representations of theD-
instanton:

(i) the originalD-instanton solution (14);
(ii) the flat spacetime geometry (18) in ther coordinate system;
(iii) the flat spacetime geometry (18) in theρ coordinate system.

In this section we will consider theT -dual versions of these three different representations.

Representation (i). We start with the ‘standard’ representation given in (14). Since there
is no worldvolume direction we can only apply aT -duality in the transverse space†. It is
well known that, after applyingT -duality in the different transverse directions, one obtains
theD-p-branes (06 p 6 6) with string-frame metric given by‡

ds2 = 1√
H

dx2
p+1−

√
H dx2

9−p, e−2φ = H(p−3)/2, F0...pI = ∂IH−1, (23)

where I = p + 1, . . . ,9 represents the 9− p transverse directions. The functionH is
harmonic only with respect to the transverse directions, i.e.

H = h+ Q

r7−p , r2 = x2
p+1+ · · · + x2

9. (24)

Representation (ii). Next, we consider theT -dual version of the second representation of
theD-instanton, i.e. the flat spacetime geometry in ther coordinate system, see (18). This
obviously leads to the sameD-brane configuration given above, but now with the constant
part h in the harmonic functionH being removed. On the other hand, approaching the
horizon of aD-p-brane solution atr = 0 one can effectively ignore the constant part in
the harmonic function. ThereforeT -dualizing (18) (in ther-basis) yields the near-horizon
geometry of theD-p-brane and therefore by theSL(2,R) transformation (21) we effectively
have approached the horizon. The solution in the string-frame is given by

ds2 =
√
r7−p

Q
dx2
p+1−

√
Q

r3−p

[(
dr

r

)2

+ d�8−p

]
,

e(−4/(p−3))φ = Q

r7−p , F0...pI = ∂I
(
r7−p

Q

)
.

(25)

Note, that for allp the spherical part of the above solutions is singular, except forp = 3,
where one obtains theAdS5 × S5 geometry. Thus, theD-3-brane interpolates between the
Minkowskian vacuum (r = ∞) and theAdS5 × S5 vacuum (r = 0) [15] in the same way
as theD-instanton interpolates between the two Minkowskian vacua atr = 0 andr = ∞
and both regions are interchanged by the mirror transformation (15).

† Actually, following [14] one can also perform a so-called ‘HopfT -duality’. In order to perform this kind of
duality, one first parametrizes the 10-dimensional transverse space of theD-instanton in polar coordinates, see
(10). One next realizes the 9-sphereS9 as aU(1) bundle overCP 4 and performs aT -duality in theU(1) isometry
direction. One thus obtains aD-0-brane with a non-flat transverse space involving theCP 4 manifold.
‡ Note that after performing theT -duality we rotate the Euclidean space back to a Minkowskian spacetime.
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Representation (iii). Finally, we consider theT -dual version of the third representation of
theD-instanton, i.e. the same flat spacetime geometry as above but now in theρ basis, see
(18). More precisely, starting from theρ basis, we first introduce Cartesian coordinates and
next applyT -duality. Since we are dealing with a flat metric, the only changes are in the
gauge fields. We thus arrive at the following string-frame configuration (06 p 6 6):

ds2 = dx2
p+1− dx2

9−p, e(−4/(p−3))φ = Q(p−3)/4ρ7−p, F0...pI = Q(p−3)/4∂Iρ
7−p,

(26)

whereρ is the radial coordinate of the transverse part. These configurations differ from the
one given in (25). This was to be expected sinceT -duality and coordinate transformations
do not commute. It is straightforward to verify that the above configuration does indeed
solve the equations of motion: the(p + 1)-form gauge fields solve the free Maxwell-like
equations of motion and the expression for the dilaton is just the solution of a Laplacian
equation. Notice that the relative factors between the scalar and gauge field part of the
solution ensure that the energy–momentum tensor vanishes as it has to for a flat metric.

4. Supersymmetry

In this section we consider the supersymmetry of theD-instanton solution and itsT -dual
versions. Ignoring the gauge fields, the IIB supersymmetry rules of the gravitino and dilatino
(using the Einstein metric) in Minkowskian spacetime are given by†

δψµ =
(
∂µ − 1

4ω
ab
µ 0ab − 1

4ieφ∂µ`
)
ε,

δλ = 1
40

µε?
(
∂µφ + ieφ∂µ`

)
.

(27)

The supersymmetry of theD-instanton solution (11) has already been considered in
[17]. After a Wick rotation to a 10-dimensional Euclidean space the supersymmetry
transformations become (in Einstein frame) [17]

δψ(±)
µ =

(
∂µ − 1

4ω
ab
µ 0ab ∓ 1

4eφ∂µ`
)
ε(±),

δλ(±) = 1
40

µε(∓)
(
∂µφ ± eφ∂µ`

)
.

(28)

Inserting the solution (11) with the ‘+’ sign and taking into account that the Einstein metric
is flat, one obtains as a solution

ε(+) = 0, ε(−) = eφ/4ε(−)0 = H 1/4ε
(−)
0 (29)

for a constant spinorε(−)0 . For the negative sign in (11) one obtains a similar solution, where
ε(+) andε(−) are interchanged. Therefore, theD-instanton solution generically breaks1

2 of
the supersymmetry. The same is true for theSL(2,R) transformed solution (22) since the
supersymmetry rules (28) areSL(2,R)-covariant.

Next, we discuss the supersymmetry in the two asymptotic flat regions. First, in the
r = ∞ vacuum obviously all supersymmetry is restored (φ = ` = constant). Requiring
that the gravitino variation vanishes we find that the spinors in the limitr → 0 behave like
ε(±) ∼ r2ε

(±)
0 . Thus, both spinorsε(±) vanish liker2 and as a consequence both dilatino

variationsδλ(±) vanish identically. We conclude that,in both asymptotic regions of the
D-instanton solution (r = ∞ andr = 0) we have a restoration of unbroken supersymmetry.

† These supersymmetry rules, using anSU(1, 1)-basis, have been given in [21]. Here we use theSL(2,R)-
covariant form of these rules, as given in [25].
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Next, we consider the supersymmetry of theT -dual versions of theD-instanton. After
T -duality and rotating back to Minkowskian signature the relevant part of the supersymmetry
variations in the string frame becomes (06 p 6 6) [26]†

δψµ = ∂µε − 1

4
ωabµ 0abε +

(−)p
8(p + 2)!

eφ(F · 0)0µε′(p),

δλ = 1

4
0µ(∂µφ)ε

? + 3− p
16(p + 2)!

eφ(F · 0)ε′ ?(p),
(30)

where(F · 0) = Fµ1···µp+20
µ1···µp+2 and the parametersε′(p) are defined in table 1.

Table 1. Definition of spinorsε′(p). The table gives the definition of the spinor parametersε′(p)
occurring in the supersymmetry transformations (30) in terms of the supersymmetry parameter
ε.

p ε′(p) (IIA) p ε′(p) (IIB)

0 ε 1 iε?

2 γ11ε 3 iε
4 ε 5 iε?

6 γ11ε — —

Substituting theD-p-brane solutions (23) or the solutions (25) into the supersymmetry
rules (30) we find as a solution for the vanishing of these supersymmetry variations

ε + 00···pε′(p) = 0, ε = H−1/8ε0. (31)

This shows that the solutions (23) and (25) for allp have half of unbroken supersymmetry.
In addition, for special cases we have a restoration of unbroken supersymmetry [27]. For
theD-p-brane solutions (23) this is the case in the asymptotic vacuum (r = ∞) and for
the 3-brane case this also happens near the horizon (r = 0). For the solutions (25) we only
have unbroken supersymmetry forp = 3 in which case the solution has theAdS5 × S5

geometry.
Finally, we consider the supersymmetry of the solutions (26). Although it seems

to be natural to take this coordinate system, it has important consequences for the
supersymmetry. Considering the ‘worldvolume’ components (= isometry directions) of the
gravitino variation (30), we find that for 06 p 6 6 all supersymmetries are broken. The
technical reason for this is that in the worldvolume components of the gravitino variation
the ∂ε vanishes since the Killing spinor does not depend on the worldvolume directions
and furthermore without gravity we have thatωabµ vanishes as well. However, the field
strengthF is non-trivial and this leads to a complete breaking of the supersymmetry. This
result might be surprising since the original (p = −1) solution allowed1

2 of the unbroken
supersymmetry. However, this case is special since, although there is no gravity, neither
are there any ‘worldvolume’ components of the gravitino variation to consider.

5. Intersections

Turning on and off the constant parts in the harmonic functions also has important
consequences for intersections. Let us start by presenting a systematic method of
constructing intersections starting from theD-instanton. The idea is to solve the scalar

† Actually, for p = 3, due to the self-duality condition of the 5-form field strength, one should include an extra
factor of 1

2 in front of the0 · F term in the gravitino rule. We thank Kostas Sfetsos for pointing this out to us.
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field equations forφ and `, that determine the instanton, in the background of a further
brane. We are interested in threshold bound states (intersections) and therefore the gauge
fields are given by independent harmonic functions (or charges). For the instanton this
means that̀ has to be independent of the background brane and given the equation of
motion for ` one realizes that only the harmonic function of a 3-brane drops out†.

In the Einstein equations the instanton does not contribute to the energy–momentum
tensor (due to the ansatz (11)) and thus, they are solved by theD-3-brane metric, see
equation (23). Next, using the instanton ansatz (with harmonic functionH1) the two scalar
field equations in (11) become

0= ∂µ
(√|g|gµν∂νeφ), (32)

where we have to insert theD-3-brane metric (with harmonic functionH2) in the Einstein
frame. For this brane, however, the Einstein and string metric are the same and we find√|g|gµν = δµν . Hence we obtain a harmonic equation

e−φ = ±`+ α1 = 1

H1
. (33)

Notice thatonly for theD-3-brane (andD-7-brane) background do we get a flat Laplacian,
for all other branes the scalar fields are more complicated, indicating a violation of the
harmonic superposition rule [28]. By this procedure, one naturally obtains the two known
families of intersections of two branes, which have four (or eight) relative-transverse
coordinates. Only in the first class (corresponding to theD-3-brane case) do both harmonic
functions depend on the overall transverse coordinates.

We thus obtain the intersection‡ (−1)×3, from which we can obtain all other intersecting
brane configurations byU -duality. Approaching the horizon the 4D relative transverse space
factorizes, i.e.M10 → M6 × E4. We therefore end up effectively with a 6D theory, with
branes coming from 10D intersections. Like in 10 dimensions also in six dimensions
we have just one non-singular object, the self-dual string. Only for this object does the
spacetime factorize further intoAdS3×S3×E4. The 10D configurations giving this geometry
are 1× 5, 2× 4 and 3× 3.

Like for the single branes one can also reach the near-horizon geometry by anSL(2,R)
transformation. Applying the specialSL(2,R) transformation (21) to the fields given in
(33) one turns off the constant part ofH1. ThisSL(2,R) transformation does not effect the
other fields corresponding to theD-3-brane since theD-3-brane isSL(2,R) invariant. In a
second step, usingU -duality, we turn off the constant part of the second harmonic function
H2. By this procedure we obtain a 10D spacetime factorizing intoM10 =M6× E4, where
E4 denotes the relative transverse part. If the branes intersect over a 0- or 2-brane the
M6 part does not factorize further, but if it intersects over a string the spacetime factorizes
further intoM10 = AdS3× S3× E4.

As an example, consider the case 3× 3 which is given by

ds2
3×3 =

1√
H1H2

(
dt2− dz2

)−√H1H2 (dxm)
2−

√
H1

H2

(
dx2

6 + dx2
7

)−√H2

H1

(
dx2

8 + dx2
9

)
,

(34)

wherez denotes the direction of the common string,x6, . . . , x9 are the relative transverse
coordinates and the harmonic functions are given byHi = 1+ qi/r2 (i = 1, 2). Using

† A D-7-brane background is also possible, but in that case the harmonic functions of the two intersecting branes
depend on different (relative transverse) coordinates. We will not consider this possibility further here.
‡ After the submission of this work we learned that a configuration describing a localizedD-instanton solution
within aD-3-brane system has been obtained in [29].
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the U -duality chain described in section 3, locally for any radiusr this configuration is
equivalent to

ds2
3×3 =

r2

√
q1q2

(
dt2− dz2

)−√q1q2

(
dr

r

)2

−√q1q2 d�3−
√
q1

q2
(E2)−

√
q2

q1
(E2) (35)

which isAdS3× S3× E4.
It is not difficult to add further branes to the intersecting configuration. We will start

with four intersecting branes and afterwards, by truncation, we will consider the triple
intersections as a special subclass. The simplest way is to start with the 3×3 configuration
(34), is to add a waveW along the common string directionz and to insert a KK-
monopoleKK with its Taub-NUT part in the four-dimensional overall transverse space.
This intersection isU -dual to(−1)× 3×W ×KK and because the 3-brane as well as the
wave and KK monopole areSL(2,R) invariant, we can again use theSL(2,R) rotation
(21) to turn off the constant part of the harmonic function describing the(−1)-brane and
subsequently we can do the same for all other branes as well. For the triple intersections
we have to turn off either the wave, obtaining the 5D string, or the KK monopole yielding
the 5D black hole.

In complete analogy to the double intersections discussed before, the geometry
factorizes. Keeping at least three overall transverse dimensions the triple intersections
factorize intoM10 = AdS3 × S2 × E5 for the 5D string,M10 = AdS2 × S3 × E5 for the
5D black hole and finally the quadruple intersection corresponding to the 4D black hole
factorizes intoM10 = AdS2× S2×E6. This leads exactly to the non-singular near-horizon
geometries considered in [10, 27].

6. Conclusions

In this paper we have employed, via theD-instanton, theSL(2,R) duality symmetry of the
type IIB superstring theory to turn off the constant part in the harmonic function describing
brane solutions. This is in analogy to the large-N limit of the D-3-brane [7], in both cases
the constant part is effectively neglected. This process has important consequences for the
geometry of the solution. TheD-instanton geometry is a wormhole that interpolates between
two asymptotic flat space vacua and there is a mirror map (15) that transforms both vacua
into each other. As one can see in figure 1 if the constant parth of the harmonic function
vanishes, the throat shrinks and the minimum moves towards infinity, i.e. the vacua at
infinity disappear and the throat closes. One ends up with a flat spacetime, both in Einstein
as well as in the string frame metric. Of course, the same also happens in the mirror baseρ

defined below (18). Notice, this situation (i.e. vanishingh) is reached simply by employing
a symmetry of the theory, namely the type IIBSL(2,R) duality transformation (21). We
discussed three topologically different representations of theD-instanton (one wormhole
and two flat-space descriptions), which areSL(2,R)-dual to each other.

By applying a standardT -duality one can convert theD-instanton into all otherD-
branes. Starting with the case of non-vanishingh one obtains the standard branes, but if
h = 0 we had to distinguish between the two mirror bases. In one case one gets the near-
horizon geometry of theD-branes, but in the other case one obtains flat spacetime with non-
trivial gauge fields and dilaton. Investigating the supersymmetry we found that in the first
case1

2 of supersymmetries are broken and for the 3-brane all supersymmetries are restored,
but for the latter case (flat spacetime) all supersymmetries are broken. The supersymmetry
breaking in the latter case can be understood due to the coordinate transformation (mirror
map).
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It is straightforward to apply the same procedure discussed above to intersecting branes
and we discussed a procedure to construct intersecting branes ‘out of theD-instanton’.
Thus, we could turn off all constant parts byS-dualizing theD-instanton part. For all brane
configurations with a non-singular horizon this has the consequence that the spacetime
factorizes into the structureAdSp × Sq × Er . At this point we should stress, that in order
to keep a well defined low-energy limit we should keep all charges sufficiently large and a
certain hierarchy to keep all higher derivative corrections under control.

Summarizing, we are facing an intriguing situation. In this work we have shown that by
applyingT - andS-duality one can move effectively towards the horizon, where for the non-
singular cases the supersymmetry is enhanced. In addition, in the case of theD-instanton
we changed the topology, simply by duality. But, as stressed at many places, all discussions
are valid only locally. We do not yet have a complete picture about what happens globally,
but there are some interesting points to mention. A first hint comes from the action. The
` field is the gauge field for theD-instanton and we see, that if one turns off the constant
part of the harmonic function the gauge coupling (which is the e2φ factor in front of the
` kinetic term, see (7)) vanishes at infinity, indicating a phase transition. Geometrically,
in this phase transition one asymptotic flat region of theD-instanton disappears or for the
non-singularD-brane configurations the spacetime factorizes. This change on the boundary
is also visible in theD-instanton action, which appears by integrating out the boundary
terms in (7) (see [17]), and is given by

S∂M = Q
(
`± e−φ

)
∞�9. (36)

Because
(
e−φ

)
∞ = 1/h and if h → 0, this term becomes infinite. This was expected,

because instantons describe tunnelling processes between the two asymptotic vacua and
they are exponentially suppressed in the weak coupling limit, which is given byh =(
eφ
)
∞ = g→ 0.
The procedure discussed in this paper supports the idea of the holographic principle

[30]. Taking any non-singular brane configuration, we were arguing that any (finite) point
in spacetime isU -dual to the geometryAdSq × Sp × Er . This space can be reduced to the
anti-de Sitter space, which is fixed by a (conformal) field theory living on the boundary
[7, 11]. This means that the physics at any (finite) point is determined by the boundary and
not by local degrees of freedom.

Finally, in this work we used the ‘standard’D-instanton solution which has a flat
transverse space. As suggested in [13, 23] there exists a more general class of brane
solutions, where the spherical part (S9 in our case) is replaced by a general Einstein space,
see the footnote below (10). By doing this, in general, one breaks more supersymmetry
and the spherical parametrization we used in this work is maximal supersymmetric. The
orbifold construction discussed in [12] is one example of this construction. It would be of
interest to extend the results of this work to these more generalD-instanton solutions.
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