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Abstract. The larged limit of D-3-branes is expected to correspond to a superconformal field
theory living on the boundary of the anti-de Sitter space appearing in the near-horizon geometry.
Dualizing the D-3-brane to aD-instanton, we show that this limit is equivalent to a type 11B
S-duality. In both cases one effectively reaches the near-horizon geometry. This provides an
alternative approach to an earlier derivation of the same result that makes use of the properties
of a gravitational wave instead of th@-instanton.

PACS numbers: 1125, 0450, 0465

1. Introduction

Ten years ago a relation was suggested between branes, singletons and anti-de Sitter (adS)
spacetime in the context of the ‘brane living at the end of the universe’ programme [1-4].

In this approach a brane is considered in an adS backggowitl the worldvolume of the

brane positioned at the boundary of the adS spacetime. The suggestion was made that the
degrees of freedom of this brane are the singleton representations of the adS group and
products thereof. These so-called singletons do not correspond to local degrees of freedom
in the bulk, but instead describe boundary degrees of freedom [5]. At the same time the anti-
de Sitter isometry group of the bulk manifests itself as a conformal group on the boundary
of the adS spacetime. It therefore seems that the physics of the brane is determined by a
conformal field theory defined on the adS boundary.

Recently, there has been renewed interest in these interconnections from different points
of view [6-14]. One of the observations is that the anti-de Sitter spacetime also occurs in
the (non-singular) near-horizon geometry of the 10-dimensidnd-brane and the 11-
dimensional M-2-brane andM-5-brane [15]. Recently, it has been suggested that the
largeV limit of D-3-branes corresponds to a superconformal field theory living on the
boundary of this anti-de Sitter space [7]. Moreover, it was observed [9, 10] that via a series
of duality transformations tha7-2-, D-3- and M-5-branes (with flat asymptotic geometry)
can be locally transformed into a non-flat geometry of the typdsS,; x S7, AdSs x Ss
and Ad S; x Sy, respectively. These geometries are exactly the (non-singular) near-horizon
geometries of the original brane. Notice that the duality transformations have changed the
asymptotic geometry. These results are another hint that the physics of these branes are

§ Such backgrounds are natural to consider since they occur in the spontaneous compactification of supergravity

theories [1, 2].
|| The global validity of these duality transformations should be taken with caution [10], see also section 6.
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1802 E Bergshoeff and K Behrndt

described by supersingleton field theories [10]. It is the purpose of this paper to give an
alternative derivation of the duality symmetries relating branes to adS spaces.
The basic idea of [9, 10] is to start from a brane solution (witepacelike isometries)
described by a harmonic function on the transverse space:
0 2_ .2 2

H:h+l’7__1'” rt=Xx,0 4+t xg. D)
Here h is an integration constant and represents the charge of the brane. In order to
have asymptotic flat geometries we will restrict ourselveg4aranes withp < 7. One first
relates the brane solution, via-duality, to a gravitational wave solution

dsZo = du dv + H du® + dx?, i=2...,09, @)

where (u, v) are lightlike coordinates parametrizing a two-dimensional subspace, with
signature(1, 1), of the 10-dimensional spacetime attfl is a harmonic function of the
eight-dimensional transverse space. One next makes a change of coordinates that amounts
to anSL(2, R) rotation in the(u, v) space given by

()= (o 1)) ©

After this coordinate transformation one ends up with the same gravitational wave solution,
but with the constank in the harmonic functiorf set equal to zero. Finally, one dualizes

the wave back to the brane solution one started from. The net effect of this web of dualities
is that one obtains the same brane solution, but with the constant in the harmonic set equal
to zero. This new solution describes exactly the same geometry that one obtains upon
approaching the horizon of the original brane solutiom at O since in that limit one can
effectively ignore the constant part in the harmonic function.

Another way of shifting away the constant part of the harmonic function has been
discussed in [16]. The basic idea here is to relate the brane to a Kaluza—Klein (KK)
monopole instead of a gravitational wave. One next considers the four-dimensional Taub-
NUT space of the KK monopole. KST duality transformatiohremoves the constant part
in the harmonic and one ends up with an Eguchi-Hanson instanton. Dualizing back to the
original brane leads to the same result as above.

In this paper we want to consider another intermediate solution which has the advantage
that it has a manifes§L(2, R) duality symmetry and that the process of shifting away
the constant part of the harmonic functions has a simple interpretation as performing a
specialSL(2, R) transformation. Since type IIB superstring theory has a manffe¢p, R)
symmetry, it is natural to consider a 1B brane. In fact, the most natural one to consider is
the one with the highest-dimensional transverse space which i®{imstanton [17]. We
therefore propose to use thig-instanton as an intermediate solution.

As explained in [18] theD-instanton can be understood as a compactified 12-
dimensional wave. The metric of such a gravitational wave is given by

ds2, = du dv + H du? 4 ds2, 4)

where (u, v) are lightlike coordinates parametrizing a two-dimensional torus \@tH)
signature and fixed volume. The functidié is a harmonic function of the Euclidean
10-dimensional space with metricZ As shown in [18] reducing the wave (4) over
(u, v) yields the D-instanton solution. From this 12-dimensional point of view the special
SL(2,R) transformation that transforms away the constant part of the harmonic function

1 This duality transformation has the same effect as an Ehlers transformation [16].
i The metric is in an (12-dimensional) Einstein frame. Note that there is no dilaton in 12 dimensions.
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describing theD-instanton corresponds to & (2, R) rotation in the(u, v) space as given

by (3). The difference with the approach of [9, 10] is that in that cas&§ Ih@, R) rotation is
performed on a two-dimensional subspace of the 10-dimensional spacetime. Here, however,
we rotate the two additional dimensions arising in a 12-dimensional interpretation of type 11B
superstring theory [19, 20]. This rotation can be interpreted as a spci{@l R) duality
transformation of the type 1B superstring theory.

In the next section we first review th@-instanton solution. In section 3 we describe
the web of dualities that makes use of theinstanton. The supersymmetry of the different
configurations, before and after duality, is considered in section 4, while the extension to
intersecting configurations is discussed in section 5. A further discussion and interpretation
of our results can be found in the conclusions.

2. The D-instanton

In this section we review the properties of theinstanton solution [17] of IIB supergravity
[21]. Since all gauge fields vanish for this solution we only consider the Ramond/Ramond
(RR) pseudo-scala, the dilatong and the metrigg,,. Introducing the complex scalar
via

S=10+ie7?, (5)

the Minkowskian IIB action in the Einstein frame is given by
1 953§
S f xx/lgl[ + 2(ImS)2} + Som
= [dlox VIgI[R + 3(€2(30)% + (3¢)%)] + Sou, (6)

where Sy), is a boundary contribution that will be discussed in the conclusions. After
performing a Wick rotation to Euclidean space the action reads

38,95
Sp = /dlox~/|g||:—R + *—} + Som

3(S4 —S)2
= / dx/IgI[- R + 3 (€7 (30> — (34)%)] + Sam. @)
where the two real scalars. are defined as
Se=t+e?. (8)

Note, that the kinetic term of has changed its sign, due to the fact th&d a pseudo-scalar,
which under a Wick rotationtransforms ag€ — i¢.
The equations of motion corresponding to the Euclidean action (7) are given by

R, = €8,00,6 —3,¢0,90,
0=123,(vglg""€?d,¢), ©)

1
0=¢e*00)%+ —d, "9, ).
(30) m;( glg""d,0)

1 Both the Wick rotation and the parity transformation can be viewed as special cases of a continuous phase
transformation, as has been discussed in [22]. From this point of view, the Wick rotation can be seen as the square
root of a parity transformation and therefatéransforms ag — i¢.
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We now search for solutions to these equations of motion. Following [17] we assume

that the Einstein metric describing the 10-dimensional space transverse Izittgtanton
is flat, i.e.

ds? = dr? + r2dQq, (20)
where we have used spherical coordingtddnder this assumption the general solution to
the equations of motion (9) is given by

1
Hta=€?=-, 11
+ o 7 (11)

where« is constant andd is a general harmonic function over the 10-dimensional flat
Euclidean space, i.€2H = 0. For the spherical symmetric case this harmonic function is
given by

H=h+ % (12)
r
where# is an integration constant ar@ is the Noether charge defined by [17]
1
O0=+-— | €?i¢, 13
8Q9 Jom 13)

whereQg = 27%2/24 is the volume of the 9-sphere. Therefore, in this casétestanton
solution is parametrized by the three constants and Q.
In the string frame thé-instanton solution (11) reads

+H+a=€e?=H1

Y21 rdr\? (14)
ds? = VH[dr® + r?dQe] = <hr4+ %) |:<_r) +d§29:|.
r r
Note that the solution is symmetric under the interchange
hrt < % (15)
r

It corresponds to a wormhole connecting two asymptotic flat regions (see figure 1). The
minimal diametewd,,;, of the wormhole throat equals

dy;, =32hQ (16)
and it is positioned at a value= r,,;, given by
8 0
==, 17
rml}’l h ( )

Under the ‘mirror’ symmetry (15) the asymptotically flat regions-at 0 andr = oo are
mapped onto each other, while at the same t®nhand/ get interchanged. Notice however
that, although the metric is symmetric under this ‘mirror’ symmetry, the dilaton is not. In
the r = oo vacuum the dilaton is finite, whereas it diverges for> 0. The asymptotic
geometry at- = O is given by a flat spacetime with metric (in string frame)

2 |9 dr\® A2 2
ds=/=|(— | +dQ | = dp”+ p~dQy, (18)

rdf\ r
wherep = QY4/r.

T The results of [13, 23] suggest that there exists a more general claBsirsftanton solutions which can be
obtained by replacing the metricxd of the 9-sphere in (10) by the metricggmp describing the geometry of any
Einstein space that arises in the compactification of (Euclidean) IIB supergravity from 10 to 1 dimensions. The
one-dimensional space has &fi topology and is parametrized by the radial coordinat&Ve will not consider

this possibility further in this work and restrict ourselves to the standaidstanton with flat transverse space.
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Figure 1. The D-instanton geometry. Th®-instanton solution comprises two asymptotic flat
regions, one at = oo and one at = 0 which are connected by a throat with minimal diameter

dm[n = (322hQ)1/8 at pOSitionrmin = (Q/h)l/a

The equations of motion (9) are invariant under #1&(2, R) transformations

S b
o 2ot o ad — be = 1, (19)
cSy +d
with the two generators
1
Q. Sy —> Sy +1, Qo Sy — —S—. (20)
+

Using these transformations we can change the parameterdh arbitrarily, characterizing

the D-instanton solution buhot Q. In particular, we can transform the constant gadf

the harmonic function (12) to zero. Taking the positive sign in (11) this is achieved by the
specialSL (2, R) transformatiom

a b . \ u 14+ 3ha  L1a?h
( c d ) = Ql 921(91)}/2929 = ( —fh 12_ l(xh >7 (21)
2 2
yielding the solution
8
l+a=€%=—. (22)

Q

The specialSL(2, R) transformation (21) will play an important role in the next section.
Notice that the above solution can also be obtained by performing a special dimensional
reduction of the 12-dimensional wave, which is different from the one discussed in the
introduction [24].

Given the expression (17) for the positigp, of the wormhole we see that by changing
the value ofr we effectively move the position,;,. In other words, due to th8L(2, R)
symmetry, the position left or right from the wormhole is not determined. Any point
positioned aty;, with rs;x > r,;, is SL(2, R) equivalent to a point positioned af;, with
rrix < rmin @nd especially by transforming away toh = 0 one effectively moves towards
the vacuum at = 0 where one reaches the flat spacetime, see equation (18).

1 A similar transformation exists for the negative sign in (11).
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3. T-duality

In the previous section we have shown that the constant/paftthe harmonic function

H can be removed by a specigl (2, R) transformation. This has important consequences
for the geometry described by the solution. Hor= 0, the solution represents a
wormhole geometry, see figure 1, whereas fio= 0 we obtain a flat spacetime. This
flat spacetime geometry can be parametrized by different coordinate systemsisp),

see equation (18). We therefore have three (locally) equivalent representationsf the
instanton:

() the original D-instanton solution (14);
(ii) the flat spacetime geometry (18) in thecoordinate system;
(iii) the flat spacetime geometry (18) in thecoordinate system.

In this section we will consider th&-dual versions of these three different representations.

Representation (i). We start with the ‘standard’ representation given in (14). Since there
is no worldvolume direction we can only applyZaduality in the transverse spdcelt is

well known that, after applying -duality in the different transverse directions, one obtains
the D-p-branes (0< p < 6) with string-frame metric given ky

1 _ _ _
ds? = — iz dof ~VHdG ,,  e®=H"I2 Ry =0H (23)
wherel = p 4+ 1,...,9 represents the 9 p transverse directions. The functidd is
harmonic only with respect to the transverse directions, i.e.
0 2_ .2 2
—h+r7[, re=x,q+ 0 +xg. (24)

Representation (ii). Next, we consider th& -dual version of the second representation of
the D-instanton, i.e. the flat spacetime geometry in th@ordinate system, see (18). This
obviously leads to the san®-brane configuration given above, but now with the constant
part 2 in the harmonic functiond being removed. On the other hand, approaching the
horizon of aD-p-brane solution at = 0 one can effectively ignore the constant part in
the harmonic function. ThereforE-dualizing (18) (in ther-basis) yields the near-horizon
geometry of theD-p-brane and therefore by tt#d.(2, R) transformation (21) we effectively
have approached the horizon. The solution in the string-frame is given by

ds? _\/ drp g — V r3- pl:(dr> A% pi|’ (25)

7-p
e~/ (=3 _ Fo =" )
r7 P’ ot 0

Note, that for allp the spherical part of the above solutions is singular, excepp fer3,
where one obtains thadSs x S5 geometry. Thus, thé-3-brane interpolates between the
Minkowskian vacuum{ = oo) and theAdSs x S5 vacuum = 0) [15] in the same way
as theD-instanton interpolates between the two Minkowskian vacua-at0 andr = oo
and both regions are interchanged by the mirror transformation (15).

1 Actually, following [14] one can also perform a so-called ‘Hdpfduality’. In order to perform this kind of
duality, one first parametrizes the 10-dimensional transverse space @i-il&anton in polar coordinates, see
(10). One next realizes the 9-sphefeas aU (1) bundle overC P* and performs & -duality in theU (1) isometry
direction. One thus obtains B-0-brane with a non-flat transverse space involving@# manifold.

i Note that after performing th&-duality we rotate the Euclidean space back to a Minkowskian spacetime.
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Representation (iii). Finally, we consider th& -dual version of the third representation of
the D-instanton, i.e. the same flat spacetime geometry as above but now gnbiss, see
(18). More precisely, starting from thebasis, we first introduce Cartesian coordinates and
next apply7-duality. Since we are dealing with a flat metric, the only changes are in the
gauge fields. We thus arrive at the following string-frame configuratiog (< 6):

ds? = dx§+l _ dxé_,,, e~ (=3¢ _ Q("_S)/4p7_p, Fo.pr = Q([’—3)/431p7—[7’
(26)

wherep is the radial coordinate of the transverse part. These configurations differ from the
one given in (25). This was to be expected siftduality and coordinate transformations

do not commute. It is straightforward to verify that the above configuration does indeed
solve the equations of motion: thg + 1)-form gauge fields solve the free Maxwell-like
equations of motion and the expression for the dilaton is just the solution of a Laplacian
equation. Notice that the relative factors between the scalar and gauge field part of the
solution ensure that the energy—momentum tensor vanishes as it has to for a flat metric.

4. Supersymmetry

In this section we consider the supersymmetry of fhénstanton solution and itg-dual
versions. Ignoring the gauge fields, the 1B supersymmetry rules of the gravitino and dilatino
(using the Einstein metric) in Minkowskian spacetime are giveh by

8 = (0 — 703 Tap — 3i€70, )€,

. (27)
SA = FT%e* (0,0 +ie%3,0).

The supersymmetry of thé-instanton solution (11) has already been considered in
[17]. After a Wick rotation to a 10-dimensional Euclidean space the supersymmetry
transformations become (in Einstein frame) [17]

Syt = (9 — 308 Ty F 56°9,0)e™®,

28
SAE) — ‘—111"“6(;)(8“(15 ie¢’a,¢). (28)

Inserting the solution (11) with thet’ sigh and taking into account that the Einstein metric
is flat, one obtains as a solution

e€V=0 D= =H) (29)

for a constant spinOsré’). For the negative sign in (11) one obtains a similar solution, where
€™ ande™ are interchanged. Therefore, tlieinstanton solution generically breal%sof
the supersymmetry. The same is true for #1e(2, R) transformed solution (22) since the
supersymmetry rules (28) afd. (2, R)-covariant.

Next, we discuss the supersymmetry in the two asymptotic flat regions. First, in the
r = oo vacuum obviously all supersymmetry is restor@d=t ¢ = constant). Requiring
that the gravitino variation vanishes we find that the spinors in the limit O behave like
&, Thus, both spinors® vanish liker? and as a consequence both dilatino
variationssA® vanish identically. We conclude thaip both asymptotic regions of the
D-instanton solutioni{ = oo andr = 0) we have a restoration of unbroken supersymmetry

e® ~ r2¢

1 These supersymmetry rules, using &0 (1, 1)-basis, have been given in [21]. Here we use #1g2, R)-
covariant form of these rules, as given in [25].
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Next, we consider the supersymmetry of thedual versions of thé-instanton. After
T-duality and rotating back to Minkowskian signature the relevant part of the supersymmetry
variations in the string frame becomes<{0p < 6) [26]}

S, =9 L jep " wF. e

Yy = 0u€ — Z“)u ab€ + m (F -T)Cpe,), 0)
1 4

L= -TH@O,p)e* + — = e (F -TM)el*

where(F - T') = Fy,..p,,,['*+#r+2 and the parameteks ) are defined in table 1.

Table 1. Definition of spinorsqp). The table gives the definition of the spinor parame@¢[;§
occurring in the supersymmetry transformations (30) in terms of the supersymmetry parameter
€.

€l (1A) ¢, (IB)

*

ie
13
ie

p

0 ¢

2 yue
4 € *
6

|U‘I(A)l—‘ S|

Yi11€

Substituting theD- p-brane solutions (23) or the solutions (25) into the supersymmetry
rules (30) we find as a solution for the vanishing of these supersymmetry variations

€ +To.p€(,) =0, e = H V8. (31)

This shows that the solutions (23) and (25) for mlhave half of unbroken supersymmetry.

In addition, for special cases we have a restoration of unbroken supersymmetry [27]. For
the D-p-brane solutions (23) this is the case in the asymptotic vacuugm o) and for

the 3-brane case this also happens near the horizen(). For the solutions (25) we only
have unbroken supersymmetry for= 3 in which case the solution has th&/Ss x Ss
geometry.

Finally, we consider the supersymmetry of the solutions (26). Although it seems
to be natural to take this coordinate system, it has important consequences for the
supersymmetry. Considering the ‘worldvolume’ componegstsspmetry directions) of the
gravitino variation (30), we find that for & p < 6 all supersymmetries are broken. The
technical reason for this is that in the worldvolume components of the gravitino variation
the de vanishes since the Killing spinor does not depend on the worldvolume directions
and furthermore without gravity we have th@;;” vanishes as well. However, the field
strengthF is non-trivial and this leads to a complete breaking of the supersymmetry. This
result might be surprising since the origina £ —1) solution allowed% of the unbroken
supersymmetry. However, this case is special since, although there is no gravity, neither
are there any ‘worldvolume’ components of the gravitino variation to consider.

5. Intersections

Turning on and off the constant parts in the harmonic functions also has important
consequences for intersections. Let us start by presenting a systematic method of
constructing intersections starting from tlieinstanton. The idea is to solve the scalar

1 Actually, for p = 3, due to the self-duality condition of the 5-form field strength, one should include an extra
factor of% in front of the" - F term in the gravitino rule. We thank Kostas Sfetsos for pointing this out to us.
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field equations forp and ¢, that determine the instanton, in the background of a further
brane. We are interested in threshold bound states (intersections) and therefore the gauge
fields are given by independent harmonic functions (or charges). For the instanton this
means that has to be independent of the background brane and given the equation of
motion for £ one realizes that only the harmonic function of a 3-brane dropgs out

In the Einstein equations the instanton does not contribute to the energy—momentum
tensor (due to the ansatz (11)) and thus, they are solved bytBebrane metric, see
equation (23). Next, using the instanton ansatz (with harmonic funéfigrthe two scalar
field equations in (11) become

0=9.(v1glg"" 9.€), (32)

where we have to insert thB-3-brane metric (with harmonic functioH>) in the Einstein
frame. For this brane, however, the Einstein and string metric are the same and we find
Jlglg™’ = §*'. Hence we obtain a harmonic equation

1
e? =4¢ =, 33
+aq A (33)

Notice thatonly for the D-3-brane (andD-7-brane) background do we get a flat Laplacian,
for all other branes the scalar fields are more complicated, indicating a violation of the
harmonic superposition rule [28]. By this procedure, one naturally obtains the two known
families of intersections of two branes, which have four (or eight) relative-transverse
coordinates. Only in the first class (corresponding tofihd-brane case) do both harmonic
functions depend on the overall transverse coordinates.

We thus obtain the intersectib—1) x 3, from which we can obtain all other intersecting
brane configurations b¥/ -duality. Approaching the horizon the 4D relative transverse space
factorizes, i.eMj;9 — Mg x E4. We therefore end up effectively with a 6D theory, with
branes coming from 10D intersections. Like in 10 dimensions also in six dimensions
we have just one non-singular object, the self-dual string. Only for this object does the
spacetime factorize further intdd S3x S3xE4. The 10D configurations giving this geometry
are 1x 5, 2x 4 and 3x 3.

Like for the single branes one can also reach the near-horizon geometrySay(2riR)
transformation. Applying the specidlL (2, R) transformation (21) to the fields given in
(33) one turns off the constant part #f. This SL(2, R) transformation does not effect the
other fields corresponding to the-3-brane since th@®-3-brane isSL(2, R) invariant. In a
second step, using-duality, we turn off the constant part of the second harmonic function
H,. By this procedure we obtain a 10D spacetime factorizing Mt@ = Mg x E4, where
E4 denotes the relative transverse part. If the branes intersect over a 0- or 2-brane the
M part does not factorize further, but if it intersects over a string the spacetime factorizes
further intoM1g = Ad S3 x S3 x Eg.

As an example, consider the case 3 which is given by

1 H H.
ds3 3 = m(dtz — dz?) — /Hy Hy (dx)? — ‘/i (e + dx2) — /Fi (dvg + dx2),
(34)

wherez denotes the direction of the common string, ..., xg are the relative transverse
coordinates and the harmonic functions are givenmdby= 1+ ¢;/r? (i = 1,2). Using

t A D-7-brane background is also possible, but in that case the harmonic functions of the two intersecting branes
depend on different (relative transverse) coordinates. We will not consider this possibility further here.

i After the submission of this work we learned that a configuration describing a locdlizedtanton solution

within a D-3-brane system has been obtained in [29].
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the U-duality chain described in section 3, locally for any radiushis configuration is
equivalent to

72

dr\? q1 q2
dz—dZ—A/_(—)— dQs — | = (Ey) — | = (E 35
qlqz(t 2%) 9192\ — q1q2 dQ23 qz( 2) th( 2) (35)

which is AdS3 x S3 x Eg4.

It is not difficult to add further branes to the intersecting configuration. We will start
with four intersecting branes and afterwards, by truncation, we will consider the triple
intersections as a special subclass. The simplest way is to start withxtBec8nfiguration
(34), is to add a wave¥ along the common string direction and to insert a KK-
monopole K K with its Taub-NUT part in the four-dimensional overall transverse space.
This intersection id/-dual to(—1) x 3 x W x K K and because the 3-brane as well as the
wave and KK monopole ar§L(2, R) invariant, we can again use thd.(2, R) rotation
(21) to turn off the constant part of the harmonic function describing(th®-brane and
subsequently we can do the same for all other branes as well. For the triple intersections
we have to turn off either the wave, obtaining the 5D string, or the KK monopole yielding
the 5D black hole.

In complete analogy to the double intersections discussed before, the geometry
factorizes. Keeping at least three overall transverse dimensions the triple intersections
factorize intoMg = AdSs x S, x [Es for the 5D string,Mip = AdS, x S3 x Es for the
5D black hole and finally the quadruple intersection corresponding to the 4D black hole
factorizes intaMl;g = Ad S, x S» x Eg. This leads exactly to the non-singular near-horizon
geometries considered in [10, 27].

2 _
ds3ys =

6. Conclusions

In this paper we have employed, via theinstanton, theSL(2, R) duality symmetry of the
type 1B superstring theory to turn off the constant part in the harmonic function describing
brane solutions. This is in analogy to the lalyelimit of the D-3-brane [7], in both cases
the constant part is effectively neglected. This process has important consequences for the
geometry of the solution. ThB-instanton geometry is a wormhole that interpolates between
two asymptotic flat space vacua and there is a mirror map (15) that transforms both vacua
into each other. As one can see in figure 1 if the constant/paftthe harmonic function
vanishes, the throat shrinks and the minimum moves towards infinity, i.e. the vacua at
infinity disappear and the throat closes. One ends up with a flat spacetime, both in Einstein
as well as in the string frame metric. Of course, the same also happens in the mirrgr base
defined below (18). Notice, this situation (i.e. vanishijgs reached simply by employing
a symmetry of the theory, namely the type I]B.(2, R) duality transformation (21). We
discussed three topologically different representations of DHestanton (one wormhole
and two flat-space descriptions), which &B(2, R)-dual to each other.

By applying a standard’-duality one can convert th®-instanton into all othemD-
branes. Starting with the case of non-vanishingne obtains the standard branes, but if
h = 0 we had to distinguish between the two mirror bases. In one case one gets the near-
horizon geometry of thé-branes, but in the other case one obtains flat spacetime with non-
trivial gauge fields and dilaton. Investigating the supersymmetry we found that in the first
case% of supersymmetries are broken and for the 3-brane all supersymmetries are restored,
but for the latter case (flat spacetime) all supersymmetries are broken. The supersymmetry
breaking in the latter case can be understood due to the coordinate transformation (mirror
map).
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It is straightforward to apply the same procedure discussed above to intersecting branes
and we discussed a procedure to construct intersecting branes ‘out @i-th&tanton’.

Thus, we could turn off all constant parts Bydualizing theD-instanton part. For all brane
configurations with a non-singular horizon this has the consequence that the spacetime
factorizes into the structurgds, x S, x E,. At this point we should stress, that in order

to keep a well defined low-energy limit we should keep all charges sufficiently large and a
certain hierarchy to keep all higher derivative corrections under control.

Summarizing, we are facing an intriguing situation. In this work we have shown that by
applyingT- and S-duality one can move effectively towards the horizon, where for the non-
singular cases the supersymmetry is enhanced. In addition, in the case fitiseanton
we changed the topology, simply by duality. But, as stressed at many places, all discussions
are valid only locally. We do not yet have a complete picture about what happens globally,
but there are some interesting points to mention. A first hint comes from the action. The
¢ field is the gauge field for th@-instanton and we see, that if one turns off the constant
part of the harmonic function the gauge coupling (which is thefactor in front of the
¢ kinetic term, see (7)) vanishes at infinity, indicating a phase transition. Geometrically,
in this phase transition one asymptotic flat region of thvnstanton disappears or for the
non-singularD-brane configurations the spacetime factorizes. This change on the boundary
is also visible in theD-instanton action, which appears by integrating out the boundary
terms in (7) (see [17]), and is given by

Som = QL £ e7?)_Qo. (36)

Because(e*‘i’)Oo = 1/h and if h — 0, this term becomes infinite. This was expected,
because instantons describe tunnelling processes between the two asymptotic vacua and
they are exponentially suppressed in the weak coupling limit, which is giveh by

(e“’)oo =g— 0.

The procedure discussed in this paper supports the idea of the holographic principle
[30]. Taking any non-singular brane configuration, we were arguing that any (finite) point
in spacetime id/-dual to the geometryd S, x S, x E,. This space can be reduced to the
anti-de Sitter space, which is fixed by a (conformal) field theory living on the boundary
[7, 11]. This means that the physics at any (finite) point is determined by the boundary and
not by local degrees of freedom.

Finally, in this work we used the ‘standard-instanton solution which has a flat
transverse space. As suggested in [13, 23] there exists a more general class of brane
solutions, where the spherical pay(in our case) is replaced by a general Einstein space,
see the footnote below (10). By doing this, in general, one breaks more supersymmetry
and the spherical parametrization we used in this work is maximal supersymmetric. The
orbifold construction discussed in [12] is one example of this construction. It would be of
interest to extend the results of this work to these more gerigiiaktanton solutions.
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