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Stochastic Symmetry-Breaking in a Gaussian Hopfield
Model

Anton Bovier,1 Aernout C. D. van Enter,2 and Beat Niederhauser3

Received July 8, 1998

We study a ``two-pattern'' Hopfield model with Gaussian disorder. We find that
there are infinitely many pure states at low temperatures in this model, and that
the metastate is supported on an infinity of symmetric pairs of pure states. The
origin of this phenomenon is the random breaking of a rotation symmetry of the
distribution of the disorder variables.

KEY WORDS: Hopfield model; Gaussian disorder; metastates; chaotic size
dependence; extrema of Gaussian processes.

1. INTRODUCTION: ISING SPINS WITH A ROTATION
SYMMETRY

In this paper we will illustrate the notions of chaotic size dependence,
metastates and their dispersal, and the chaotic pairs of states scenario,
introduced as a possible description of the low temperature spin glass
phase [N, NS2, NS3, NS4, NS6], on a simple model which is similar to
the two-state Hopfield model. The fact that the model has site disorder
makes it more tractable than the commonly considered bond-disorder spin
glass models. The main difference with the standard Hopfield model of
neural networks, is that instead of two i.i.d. Bernoulli random variables the
disorder is described by two i.i.d. Gaussian random variables at every site.
As a consequence, in the thermodynamic limit we obtain the existence, for
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a ``two-pattern'' model, of uncountably many (instead of two times two)
pure states for this model, due to the existence of a continuous (rotation)
symmetry of the distribution of the random variables describing the disor-
der. In any finite volume, however, this symmetry is necessarily randomly
broken in a given realization. Intuitively, this means that there are only
two pure ground states, and the low temperature Gibbs state is close to the
symmetric mixture of two, out of a possible continuum, of pure Gibbs
states, due to the fluctuations in the disorder.

The concepts we want to illustrate have their origin in the theory of
spin-glasses. However, the most often considered spin-glass models, which
have bond disorder, both in finite dimension (the Edwards�Anderson
models) and the equivalent neighbour (Sherrington�Kirkpatrick) model,
have turned out to be so complicated to analyze, that up till now it has not
been possible to check which of the possible scenarios for the spin-glass
phase applies to them.

We remind the reader that in the debate within the physics literature
on the extreme sides there are the proposals of Fisher and Huse, [FH1,
FH2, FH3, FH4] predicting the existence of only two pure states in any
dimension higher or equal than 3, versus the proposal of Parisi and
coworkers, in which an infinity of pure states is predicted [MPV, MPR].
This scenario has been claimed to apply down to the 3-dimensional
Edwards�Anderson model. Intermediate scenarios have been discussed by
[BF, NS1, NS2, NS3, NS4, NS5, NS6, N, vE].

Although of course lattice models with two pure states are common,
our experience with models having an infinite number of pure states is a
lot more limited. Therefore we hope that our discussion will be useful in
illustrating various concepts, mostly introduced and studied in a systematic
way by Newman and Stein (see in particular [N, NS2, NS3, NS4, NS6]),
which have been introduced either in an abstract setting or via (in)formal
arguments, by applying them to a concrete model.

The main idea in the approach of Newman and Stein is to classify the
possible scenarios on the basis of first principles, using only general ergodic
properties using the concept of ``metastates,'' i.e., probability distributions
on the space of Gibbs measures (first introduced apparently in [AW]; see
[N, NS2, NS3, Ku1, Ku2, BG3] for more details, as well as applications
of these concepts and extensions to equivalent neighbour or mean-field
type models-to which our model also belongs).

In this context, in one of their most recent papers [NS6], they conjec-
tured that in a disordered lattice system, in any approximate decomposi-
tion of a finite volume Gibbs states into ``pure states,'' the weights in this
decomposition should be mostly concentrated on a single subset of states
that are related by an exact symmetry of the system, while other states
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would appear with a weight that tends to zero as the volume tends to
infinity. The particular subset chosen could of course be random and could
depend strongly on the volume. Applied to the Ising spin glass situation,
this argument would predict the chaotic pairs picture (if there are infinitely
many pure states at all which is still an open and controversial issue in
itself ).

Although a similar situation has been shown to occur in the usual
Hopfield model with M=:N patterns if : is small in [BG3], we found it
worthwhile to construct a simple model showing these features in order to
see what is involved.

Let us state the definitions of our variant of the Hopfield model and
the main quantities of interest. Let SN=[&1, +1]N denote the set of
functions _: [1,..., N ] � [&1, +1], and the set S=[&1, +1]N. We call
_ a spin configuration and denote by _i the value of _ at i. Let (0, F, P)
be an abstract probability space and let !+

i [|], i # N, +=1, 2, denote a
family of i.i.d. standard Gaussian variables. We will write ! +[|] for the
N-dimensional vector whose ith component is given by !+

i [|]; such a vector
is called a pattern. On the other hand, we will write !i[|] for the two
dimensional vector with the same components. When we write ![|]
without indices, we consider it as a 2_N matrix (its transpose will be
denoted by !t).

Throughout the paper, ( } , } ) denotes the scalar product, without
indication of the space where its arguments lie.

We define random maps m+
N[|](_): SN � [&1, +1] (conventionally

called overlap parameters) through

m+
N[|](_)#

1
N

:
N

i=1

!+
i [|] _i (1.1)

The Hamiltonian is now defined as

HN[|](_)# &
N
2

:
+=1, 2

(m+
N[|](_))2

=&
N
2

&mN[|](_)&2
2 (1.2)

where & }&2 denotes the l2 -norm in R2.
Note that if we rewrite !$1

i =!:1
i =!1

i cos(:)+!2
i sin(:) and !$2

i =
!$:

i =!1
i sin(:)&!2

i cos(:) the Hamiltonian has the same form in the primed
variables. However, this transformation is a statistical symmetry, mapping
one disorder realization of the model to another one, drawn from the same
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distribution, as opposed to for example the spin-flip symmetry which is an
exact symmetry for any given realization of the disorder.

Through this Hamiltonian, finite volume Gibbs measures on SN are
defined by

+N, ;[|](_)#2&N e&;HN [|](_)

ZN, ;[|]
(1.3)

and the induced distribution of the overlap parameters

QN, ;[|]#+N, ;[|] b mN[|]&1 (1.4)

The normalizing factor in (1.3), called the partition function, is
explicitly given by

ZN, ;[|]#2&N :
_ # SN

e&;HN [|](_)#E_e&;HN [|](_) (1.5)

We are mainly interested in the concentration behaviour of QN, ; as N � �.
It will be convenient to do this by considering the auxiliary measure
Q� N, ;#QN, ; V N2(0, (1�;N ) 1) obtained by a convolution with a Gaussian
measure, its so-called Hubbard-Stratonovich transform. Since, for N large,
N2(0, (1�;N ) 1) converges rapidly to the Dirac measure at zero, the two
measures have asymptotically the same properties. For details see, e.g.,
[BGP]. Q� N, ; is absolutely continuous with respect to Lebesgue measure on
R2 and has the density

e&;N8N, ; [|](z)

ZN, ;[|]
(1.6)

where 8N, ; is given by

8N, ;[|](z)=
1
2

&z&2
2&

1
;N

:
N

i=1

ln cosh ;(! i[|], z) (1.7)

As usual in mean-field models, we construct the extremal Gibbs measures
by tilting the Hamiltonian (1.2) with an external magnetic field (for a
general discussion on the issue of limiting Gibbs states in mean field
models, see [BG1], Sect. 2.4 or [BG3], Sect. 2). That is, we define a more
general Hamiltonian

H h
n[|](_)#&

N
2

&mN[|](_)&2
2&N(h, mN[|](_)) (1.8)
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where h=(b cos(�), b sin(�)) # R2. The corresponding measures on the
spins and on R2 are denoted by +h

N, ;[|] and Qh
N, ;[|], respectively. We

then take the limits limb � 0 limN � � , for all values of � # [0, 2?). We dis-
tinguish the measures constructed from this Hamiltonian by an additional
superscript h.

We are now able to give a precise formulation of our main results.

Theorem 1. Let h=(b cos �, b sin �). Then

lim
b � 0

lim
N � �

Qh
N, ;=$(r* cos �, r* sin �) (1.9)

where r* is the largest solution of the equation

r*=
1

- 2? | dx e&x 2�2x tanh(;xr*) (1.10)

From the form of (1.10), it is easy to see that r*=0 is always a solu-
tion. It is also straightforward to check that there exists a ;*, 0<;*<�,
such that the largest solution r* is non-zero whenever ;>;*.

Theorem 1 shows that there is an uncountable number of extremal
limiting induced measures, indexed by the circle. The following corollary
shows that to each of them corresponds a distinct limiting Gibbs measure
on the spins.

Corollary 2. For any finite set I/N, and P-almost all |,

+h
�, ;[|]([_I=sI ])# lim

b � 0
lim

N � �
+h

N, ;[|]([_I=sI ])

= `
i # I

e ;si (!i [|], m)

2 cosh(;(! i[|], m))
(1.11)

where m=(r* cos(�), r* sin(�)), and r* is as in (1.10).

In Theorem 1 and Corollary 2 convergence is almost sure due to the
presence of the tilting field. The situation changes if we set b=0 first and
take the infinite volume limit later.

Theorem 3. Let QN, ; be as in (1.4) and m=m(�)=(r* cos �,
r*sin �), where � # [0, ?) is a uniformly distributed random variable. Then

QN, ; w�D 1
2 $m(�)+

1
2 $&m(�)#Q�, ;[m] (1.12)

185Stochastic Symmetry-Breaking in a Gaussian Hopfield Model



Furthermore, the (induced) AW-metastate is the image of the uniform
distribution of � under the measure-valued map � [ Q�, ;[m(�)].

Corollary 4. Let I/N be finite. Then the following holds:

(i) Let [gi ] i # I be a family of i.i.d. random variables, distributed as
N(0, r*). Then

lim
N A �

+N, ;([_I=sI ]) w�D 1
2

`
i # I

e ;si gi

2 cosh ;gi
+

1
2

e&;si gi

2 cosh ;g i
(1.13)

(ii) The AW-metastate is the image of the uniform distribution on �
under the measure-valued map � [ +�, ;, m(�)[|] where

+�, ;, m[|]([_I=sI ])

=
1
2

`
i # I

e ;si (!i [|], m)

2 cosh ;(! i[|], m)
+

1
2

`
i # I

e&;si (!i [|], m)

2 cosh ;(! i[|], m)
(1.14)

Statement (ii) of Corollary 4 motivates the notion of metastates.
Whereas on the level of the induced measures QN, ; one cannot see any
influence by the conditioning, this is clearly the case on the level of the
Gibbs measures on the spins.

The remainder of this paper is mainly devoted to the proofs of the two
theorems (the corollaries are standard consequences (see, e.g., [BGP1] or
[BG3] for proofs of analogous statements in more complicated situation)
and will not be given) and is organized as follows. In Section 2 we prove
the necessary concentration estimates on the measures QN, ; . This will yield
immediately Theorem 1. In the case h=0 we will show that the measure
concentrates near the absolute minima of some random process, and in
Section 3 we will analyse the properties of these minima. In particular we
will prove that these converge in distribution to one-point sets. This will
allow us to prove Theorem 3. In Section 4 we discuss some further conse-
quences on the chaotic volume dependence, the empirical metastate and
the superstate.

Remark. We consider the case of two patterns here in order to keep
technicalities to a minimum. All our results can be extended without any
novel difficulties to the case of any fixed finite number, M, of Gaussian
patterns. In that case the set of extremal Gibbs measures will be indexed
by the sphere in RM and the metastate will be supported on pairs of mirror
images on this sphere, with the position being uniformly distributed. Thus
nothing really new will happen. The situation when the number of patterns
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grows with the volume may be more interesting and work in this direction
is in progress.

2. CONCENTRATION

In this section we show the concentration properties of the measures
Q� N for large ;. These imply the same concentration results for the measures
QN by standard arguments that have been developed in much more com-
plicated situations, see, e.g., [BG2]. The estimates presented here are
mostly similar, and often much simpler, to those that can be found, e.g., in
[BG2], but we decided to present some parts in detail where some care is
required.

We start with the more delicate case h=0 that will be relevant for the
proof of Theorem 3 (which will be given at the end of Section 3). We are
interested in the concentration behaviour of the measures Q� N, ; . The follow-
ing two lemmata each give a partial answer. The first one asserts that Q� N, ;

is concentrated exponentially about a circle around the origin, whereas the
second one tells us that even on this circle, only a small part really con-
tributes to the total mass.

Lemma 2.1. Let [!+
i ] i # N, +=1, 2 be i.i.d. standard Gaussian vari-

ables, and define 8N, ;(z) as

8N(z)#
1
2

&z&2
2&

1
;N

:
N

i=1

ln cosh ;(! i , z) (2.1)

Let furthermore $N=N &1�10. Then there ezist strictly positive con-
stants K, K$, l, l $ such that (r* is the largest solution in (1.10))

� |&z&&r*|�$N
e&;N8N (z) dz

� |&z&&r*|<$N
e&;N8N (z) dz

�Ke&KN l
(2.2)

on a set of P-measure at least 1&K$e&K$N l $
.

The second result needs an additional definition. Let

gN(�)#
1

- N
:
N

i=1

ln cosh(;r*`i cos(�&.i )) (2.3)

where (`i , .i ) are the polar coordinates of the two dimensional vector !i .
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Lemma 2.2. Assume the hypotheses of Lemma 2.1. Let aN=N &1�25.
Then there exist strictly positive constants K1 , K2 , C1 , C2 such that on a
set of P-measure at least

1&K1e&N 1�25
(2.4)

the following bound holds,

�A$N
e&;N8N (z) dz

�AN
e&;N8N (z) dz

�C1e&N 2�5
(2.5)

where

AN=[(r, �) # R+
0 _[0, 2?) | |r&r*|<$N , gN(�)&min

�
gN(�)<aN ]

(2.6)
A$N=[(r, �) # R+

0 _[0, 2?) | |r&r*|<$N , gN(�)&min
�

gN(�)�aN ]

Combining these two lemmata and using the Borel�Cantelli lemma,
we get immediately the following result.

Proposition 2.3. Assume the hypotheses of Lemma 2.1. Then
there exist strictly positive constants K, K$, l, such that

P _
�Ac

N
e&;N8N (z) dz

�AN
e&;N8N (z) dz

>Ke&K$N l
, i.o. in N &=0 (2.7)

where AN is as in Lemma 2.2.
To see why the preceding results should be expected, we must consider

the function 8N, ; . Note that the expectation of this function,

E8N(z)=
1
2

&z&2
2&

1
;

E ln cosh ;(!1 , z) (2.8)

depends only on the modulus of its argument. It is useful to observe that
if z=(r cos %, r sin %), we can represent E8N(z) as

E8N(z)=(1�2) r2&E.E` ln cosh(;r` cos(.)) (2.9)

where `, , are the representation of the polar decomposition of a two
dimensional normal vector, i.e., ` is distributed with density xe&x 2�2 on R+,
and . uniformly on the circle [0, 2?).

From (2.9), choosing %=0, it follows that E8N(z) takes its minimum
on the circle with radius r*(;), where r* is defined in Theorem 1. As
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remarked after the statement of Theorem 1, there is 0<;*<�, such that
r*(;)>0 if and only if ;>;*.

It is also straightforward to check that E8 is sufficiently smooth to
guarantee that it is bounded from above by a quadratic function (of &z&)
in some neighbourhood containing r*.

Proof of Lemma 2.1. We start with the numerator. We decompose
the domain of integration into an ``inner'' part I, and an ``outer'' part O:

[z # R2: |&z&&r*|�$]=[z # R2: &z&&r*�$] _ [z # R2: &z&&r*�&$]

=O _ I (2.10)

Consider the integral on O. We write it as

|
O

e&N8N (z) dz=|
O

e&;NE8N (z)e&;N(8N (z)&E8N (z)) dz (2.11)

and observe that E8N can also be bounded below by a quadratic function
C(&z&&r*)2. We are left with the task of estimating the term
8N(z)&E8N(z). This is accomplished by the following lemma.

Lemma 2.4. Let fN(z)=(1�;N ) �N
i=1 ln cosh ;(!i , z) and

O=[z # R2: &z&>r*+$] (2.12)

Then, for $ small enough, such that $2�16�$�2 - 2, there exist strictly
positive constants C1 , C2 , K1 , K2 such that

P _sup
z # O

| fN(z)&E fN(z)|�
C
2

(&z&&r*)2&
�K1e&K2N+C1 $&2e&C2 $4NN &1�2 (2.13)

Proof. Define f� N(z)= fN(z)&E fN(z). The left-hand side of (2.13) is
bounded from above by

�P _ sup
z$ # Wr & O

| f� N(z$)|�
C
4

(&z$&&r*)2&
+P _ sup

z$ # Wr & A
sup

z # Br (z$)

| f� N(z)& f� N(z$)|�
C
4

(&z$&&r*)2& (2.14)

where Wr is the grid with spacing r in R2, and z$ # Wr is chosen such that
0�&z&&&z$&<- 2 r.
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The argument of the second term can be uniformly bounded. Using,
e.g., Lemma 6.10 of [BG1], we get that

| fN(z)& fN(z$)|�&z&z$&2 &A&1�2 (2.15)

where A is the matrix (1�N ) !T!. Similarly,

|E fN(z)&EfN(z$)|�&z&z$&2 (E &A&)1�2 (2.16)

Now, a trivial computation shows that

E &A&�1+C�- N (2.17)

and using (for instance) the same argument as in Section 4 of [BG1], but
replacing Talagrand's concentration estimate for bounded r.v.'s by the
standard Gaussian concentration inequality (see, e.g., [LT], Chap. 1), one
shows easily that

P[ |&A&&1|�x]�Ce&Nx 2�C (2.18)

Therefore,

P _ sup
z$ # Wr & A

sup
z # Br(z$)

| f� N(z)& f� N(z$)|�
C
4

(&z$&&r*)2&
�P _r(&A&1�2+(E &A&)1�2)�

C
4

(&z$&&r*)2&
�P _(&A&1�2+2)�

C$2

4r & (2.19)

Choosing the grid parameter r such that r�C$2�16 the right-hand side of
(2.19) is bounded by P[&A&>4]�Ce&9N�C. This takes care of the second
term in (2.14). Let us now treat the first term. The probability that the
supremum over all lattice points of some function exceeds some given value
is transformed into a summable series of probabilities that at each lattice
point the function is greater than this value. More precisely, we have

P _ sup
z$ # Wr & O

| f� N(z$)|�
C
4

(&z$&&r*)2&
� :

z$ # Wr & O

P _ | f� N(z$)|�
C
4

(&z$&&r*)2&
� :

z$ # Wr & O

e&KC2(&z$&&r*)4 N (2.20)
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by Chebyshev's inequality. Then

:
z$ # Wr & O

e&KC 2(&z$&&r*)4 N

=r&2 :
z$ # Wr & O

r2e&KC2(&z$&&r*)4 N

�r&2 |
R2 "B0(r*+$&- 2 r)

e&KC 2(&z$&&r*)4 N dz

�r&2e&K(C 2�16) $4N |
R 2"B0(r*+$�2)

e&K(C2�16)(&z$&&r*)4 N dz

�r&22?e&K(C 2�16) $4NN &1�2 |
�

$�2
ze&K� z4 dz

�K$r&2e&K(C 2�2) $4NN &1�2 (2.21)

where K$ stands for an upper bound for the integral, which is independent
of N (assuming delta>2 - 2 r). Combining this and (2.19), and choosing
$ small enough such that C $2�16�$�(2 - 2) concludes the proof of
Lemma 2.4. K

Therefore, on a set of measure at least 1&C1 e&C2N$ 4
, the integral

(2.11) can be bounded by

|
O

e&;NE8N (z)e&;N(8N (z)&E8N (z)) dz�|
O

e&;N(C�2)(&z&&r*)2 dz

�2? |
�

r*+$
re&;NC(r&r*)2 dz

�2?e&;N(C�4) $2 |
�

0
re&;N(C�4) r 2 dr

=2?
2

;NC
e&;N(C�4) $2

(2.22)

We now turn to the integral on the ``inner'' part I. Again, we have to
control the term

8N(z)&E8N(z) (2.23)

Since I is compact, we can do this umtormly by using the following
lemma.
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Lemma 2. Let fN(z)=1�(;N ) �N
i=1 ln cosh ;(!i , z) and A/R2 a

bounded set. Then there exist strictly positive constants K1 , K2 , C1 , C2

such that

P _sup
z # A

| fN(z)&E fN(z)|>=&�K1e&K2N+C1=&2e&C2= 2N (2.24)

The proof is similar (if not simpler) to the proof of Lemma 2.4 and is left
to the reader. K

Lemma 2.5 implies that

|
I

e&;N8N (z) dz�e=Ne&;NE8(r*) |
I

e&;NE8N (z)&E8(r*) dz

�e=;Ne&$2C;N?r*2 (2.25)

using the fact that E8N(&z&)&E8(r*) can be bounded uniformly on I by
its value for &z&=r*&$.

Finally, the denominator in (2.2) can be bounded from below, using
the second order Taylor expansion with remainder of E8N(&z&)

|
|&z&&r*|<$

e&;N8N (z) dz

�e&;NE8(r*) |
|&z&&r*|<$

e&NC(&z&&r*)2&NC$(&z~ &&r*)3&N= dz

�2?
1

;NC
e&=;Ne&;NC$$ 3e&;NE8(r*)(1&$e&;NC$2

) (2.26)

on a set of measure at least 1&Ke&KN&C=&2e&CN=2
(this error term can

be estimated by Lemma 2.5). Collecting (2.22), (2.25) and (2.26), we get
that on a set of measure exponentially close to one,

� |&z&&r*|�$ e&;N8N (z) dz

� |&z&&r*|<$ e&;N8N (z) dz
�e=;Ne ;NC$$ 3

(2?)&1 ;NC(1&$e&;NC$ 2
)&1

_{e=;Ne&;NC$2?r*2+2?e&;N(C�4) $2 2
;NC=

=ke&;N(C$2&2=&C$$ 3);N(1&$e&NC$ 2
)&1

+K$e&;N((C�4) $2&=&C$$3)N(1&$e&;NC$2
)&1

(2.27)
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Now let us choose $N=N &1�10, =N=N &1�4; then (2.27) gives

� |&z&&r*|�$N
e&;N8N (z) dz

� |&z&&r*|<$N
e&;N8N (z) dz

�K� Ne&;N 4�5(C&2N&1�20&C$N&1�10)+K� Ne&N 4�5((C�4)&N&1�20&C$N&1�10)

(2.28)

on a set which is exponentially close (in N ) to 1. This concludes the proof
of Lemma 2.1. K

We now turn to the proof of Lemma 2.2 which is a little more delicate
than the previous one.

Proof of Lemma 2.2. Let us write I(B) for the integral
�B e&;N8N (z) dz. We will prove the concentration behaviour by a strategy
similar to the one used in Lemma 2.1. Namely we replace the function 8N

by its expectation E8N and control the error.
Write the fluctuation term 8N&E8N as

8N(z)&E8N(z)=
1

;N
:
N

i=1

[ln cosh ;(! i , z)&E ln cosh ;(!i , z)]

=
1

;N
:
N

i=1

[ln cosh ;(!i , z)&ln cosh ;(!i , z$)

&E ln cosh ;(!i , z)+E ln cosh ;(!i , z$)]

+
1

;N
:
N

i=1

[ln cosh ;(!i , z$)&E ln cosh ;(!i , z$)] (2.29)

Now choose z$ such that z$=z$(z)=*z, *>0, and &z$&=r* (i.e., z$ is the
projection of z onto S 1(r*)). Define the two functions

hN(z)#
1

- N
:
N

i=1

[ln cosh ;(!i , z)&ln cosh ;(!i , z$)

&E ln cosh ;(!i , z)+E ln cosh ;(!i , z$)] (2.30)

with z$ defined as above, and

gN(z)#
1

- N
:
N

i=1

[ln cosh ;(!i , z)&E ln cosh ;(!i , z)] (2.31)
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Then the fluctuation term takes the form

N(8N(z)&E8N(z))=
- N

;
(hN(z)& gN(z$)) (2.32)

It is the term GN that determines the concentration behaviour of the
measure. To see this we first bound the term hN uniformly on the ``annulus
of concentration'' AN _ A$N . We have the following result.

Lemma 2.6. Let [!i ]i # N be i.i.d. Gaussian variables With mean
zero and variance one. Let hN be as in (2.30), and AN , A$N as in (2.6). Then
for any =>0,

P _ sup
z # AN _ A$N

|hN(z)|�=&�KN 2e&N 1�10(=&KN&1�10) (2.33)

Proof. Let us write

fi (z)#ln cosh ;(!i , z) (2.34)

and

f� i#ln cosh ;(!i , z)&E ln cosh ;(!i , z) (2.35)

We also keep the notation z$=z$(z) defined above. Introduce a polar grid
WN in R2, i.e., a discrete set of points xi, j whose polar coordinates are given
by (\i , :j ) # R+_[0, 2?), such that 2N :# |:i&:j |=KN &1�2 and 2N\#
|\i&\j |=KN &1�2, for some appropriate constant K. Note that for any
point z in a bounded domain A/R2, the distance to the closest grid point
is less than K$N &1�2.

For any z # R2, define x=x(z) # WN to be the grid point closest to z,
and y= y(z) # WN the grid point closest to z$=z$(z). One can easily con-
vince oneself, that x$= y$, i.e., the two points x and y lie on the same ray
starting at the origin. Then we can decompose the function hN(z) as

hN(z)=
1

- N
:
N

i=1

[ f� i (z)& f� i (z$)]

=
1

- N
:
N

i=1

[ f� i (z)& f� i (x)]+
1

- N
:
N

i=1

[ f� i (x)& f� i ( y)]

+
1

- N
:
N

i=1

[ f� i ( y)& f� i (z$)] (2.36)
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Denote by I1(z, x), I2(x, y), I3( y, z$) respectively the first, second, and third
sum on the right-hand side of (2.36). We can then write (let AN=AN _ A$N ,
the ``annulus of concentration'')

P _ sup
z # AN

|hN(z)|�=&=P _ sup
z # AN

|I1(z, x)+I2(x, y)+I3( y, z$)|�=&
�P _ sup

x # WN & AN

sup
z # BKN &1�2 (x)

|I1(z, x)|�
=
3&

+P _ sup
x # WN & AN

sup
y # WN & AN ,

y$=x$

|I2(x, y)|�
=
3 &

+P _ sup
y # WN & AN

sup
z$ # BKN &1�2( y)

|I3( y, z$)|�
=
3& (2.37)

The first and the third term (they are equal) can be uniformly bounded by
an estimate analogous to the proof of Lemma 2.2. In fact, for any u, v we
have

} 1

- N
:
N

i=1

[ f� i (u)& f� i (v)] }�- N ;(&A&1�2+(E &A&)1�2) &u&v&2 (2.38)

Now, if &u&v&2�4=$N &1�2�;, we have the following exponential bound.

P _} 1

- N
:
N

i=1

[ f� i (u)& f� i (v)]}�=$&�P _&A&1�2+(E &A&)1�2�
=$N &1�2

; &u&v&2 &
�P[&A&�4]�Ke&KN (2.39)

Thus we get for the first term in (2.37),

P _ sup
x # WN & AN

sup
z # BKN &1�2(x)

|I1(z, x)|�
=
3&

� :
x # WN & AN

P _ sup
z # BKN &1�2(x)

|I1(z, x)|�
=
3&

� :
x # WN & AN

P[&A&�4]�KN 1�10N &1e&KN (2.40)
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since we know that &x&z&=K$N &1�2, by the remark preceding (2.36), and
the number of grid points in AN is bounded by N 1$&1

N times some con-
stant. The same estimate is valid for the term containing I3 (since they are
equal).

Let us now consider the term containing I2 . We know that
&x& y&�2$N , since those two points are supposed to lie on the same
``ray.'' Again, we can turn the supremum into a sum,

P _ sup
x # WN & AN

sup
y # WN & AN ,

y$=x$

|I3(x, y)|�
=
3&

� :
x, y

P _ |I3( y, z$)|�
=
3 & (2.41)

where x, y on the right-hand side satisfy the same conditions as on the left-
hand side. By Chebyshev's inequality, we get that for any u, v

P _ :
N

i=1

[ f� i (u)& f� i (v)]�- N =$&� inf
s>0

e&s=$ - N E[es �N
i=1 [ f� i (u)& f� i (v)]]

= inf
s>0

e&s=$ - N `
N

i=1

Ees[ f� i (u)& f� i (v)] (2.42)

Now we use the series expansion of the exponential function, the fact that
the exponent in the right-hand side of (2.42) is a centered random variable,
and some obvious inequalities for each term of the expansion, to get

Ees[ f� i (u)& f� i (v)]�{1+
s2

2
E[( f� i (u)& f� i (v))2 es | f� i (u)& f� i (v)|]= (2.43)

To evaluate the expectation term, we use the inequality

| f i (u)& fi (v)|�; |(!i , u&v)| (2.44)

Then the expectation term in (2.42) is bounded by

E[( f� i (u)& f� i (v))2 es | f� i (u)& f� i (v)|]

�(E[( f� i (u)& f� i (v))4])1�2 (Ee2s | f� i (u)& f� i (v)|)1�2

�4(E[( fi (u)& fi (v))4])1�2 (Ee2s | fi (u)& fi (v)|)1�2 esE | fi (u)& fi (v)| (2.45)
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where the first inequality follows by Cauchy�Schwarz, and the second one
is a consequence of the inequality (a+b)2<2(a2+b2) (applied twice to the
first factor), respectively the trivial fact that |a&b|�|a|+|b|. All quan-
tities in (2.45) can be bounded easily using (2.44). One gets (by calculating
explicit Gaussian integrals)

E[( fi (u)& fi (v))4]=3 &u&v&4
2 (2.46)

Ee2s | fi (u)& fi (v)|�2e2s2 &u&v&2
2 (2.47)

esE | fi (u)& fi (v)|�es - 2�? &u&v&2 (2.48)

Inserting (2.46)�(2.48) into (2.45), gives

s2

2
E[( f� i (u)& f� i (v))2 es | f� i (u)& f� i (v)|]

�2 - 6 s2 &u&v&2
2 e2s2 &u&v&2

2+s - 2�? &u&v&2 (2.49)

We use the above bound (2.49) in (2.42), together with the inequality
1+x�ex, and the fact that &x& y&2�$N=KN &1�10. We thus get the
following estimate

P _ :
N

i=1

[ f� i (u)& f� i (v)]�- N =$&� inf
s>0

e&s=$ - N +Ks2N 4�5e 2s 2 N&1�5+- 2�? N&1�10

(2.50)

Choosing s=N &2�5, this gives

P _ :
N

i=1

[ f� i (u)& f� i (v)]�- N =$&�K� e&N 1�10(=$&KN&1�10) (2.51)

The same bound applies to

P _ :
N

i=1

[ f� i (u)& f� i (v)]�&- N =$& (2.52)

Inserting (2.51) and (2.52) into the left-hand side of (2.41) gives

P _ sup
x # WN & AN

sup
y # WN & AN ,

y$=x$

|I2(x, y)|�=$&�KN 1�2N 1�10e&N 1�10(=$&K $N&1�10)

(2.53)
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since the number of terms in the sum does not exceed a constant times N 1�2

(the number of allowed x) times N 1�10 (the number of allowed y). Using
(2.40) and (2.53), (2.37) gives

P _ sup
z # AN

|hN(z)|�=&�KN 2e&K $N 1�10= (2.54)

This concludes the proof of Lemma 2.6. K

Note that we can choose = as a function of N, and still get an exponen-
tial bound. For example, choose ===N#(ln N )2 N &1�20. Lemma 2.6 then
reads

Lemma 2.7. Let [!i ]i # N be i.i.d. Gaussian variables with mean
zero and variance one. Let hN be as in (2.30), and AN , A$N as in (2.6). Then,

P _ sup
z # AN _ A$N

|hN(z)|�N &1�20(ln N )2&�KN 2e&N 1�20((ln N )2&K $N&1�20) (2.55)

Furthermore,

P _ sup
z # AN _ A$N

|hN(z)|�N &1�20(ln N )2, i.o. in N &=0 (2.56)

Proof. The first statement (equation (2.55)) is a straightforward
consequence of Lemma 2.6. Equation (2.56) then follows by the first Borel�
Cantelli Lemma. K

Let us now estimate the integral I(A$N ). We get explicitly, using the
bound on hN from Lemma 2.6,

|
A$N

e&;N8N (z) dz

=|
A$N

e&;NE8N (z)e&- N hN (z)e&- N hN (z)e&- N gN (z$(z)) dz

�|
|r&r*|<$N

re&;NE8N (r*)e- N = dr |
gN (�)&min gN>aN

e&- N gN (�) d�

=2e&;NE8N (r*)e- N = |
|r&r*|<$N

r dr |
gN (�)&min gN>aN

e&- N gN (�) d�

�4e&;NE8N (r*)e- N = r* $N 2?e&- N aN e&- N min gN (2.57)
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Thus,

|
A$N

e&;N8N (z) dz�Ke&;NE8N (r*)e- N = $Nr*e&- N aN (2.58)

We now turn to the integral I(AN ). Using standard estimates for Gaussian
integrals, a quadratic upper bound of gN about its minima, and the fact
that E8(&z&) can be bounded from above by a quadratic function in some
neighbourhood containing r*, we get

|
AN

e&;N8N (z) dz�e&;NE8N (r*)e&- N = |
|r&r*|<$N

re&;NC$(r&r*)2 dr

_|
gN (�)&min gN�aN

e&- N gN (�) d�

�Ke&;NE8N (r*)e&- N =(r*&$N ) \ ?
NC$+

1�2

_(1&e&NC$ $N) \ ?

K - N +
1�2

(1&e&- N K $aN ) (2.59)

We get finally for the ratio I(A$N )�I(AN )

I(A$N )
I(AN )

�K
r*

r*&$N
N 3�4e&- N (aN&2=) (2.60)

Lemma 2.7 allows us to choose ===(N )=N &1�20(ln N )2. Inserting this
choice, together with aN=N &1�25, into (2.60), gives

I(A$N )
I(AN )

�KN 3�4e&N 23�50(1&K $(ln N )2 N&1�100) (2.61)

This statement is true for all | # 0, for which Lemma 2.6 respectively 2.7
holds, that is on a set of P-measure at least KN 2e&N 1�20((ln N )2&K $N&1�20). This
proves Lemma 2.2. K

Let us now turn to the proof of Theorem 1. We again state first a
result about the concentration of the induced measure Q� h

N, ; .

Proposition 2.8. Let [!+
i ] i # N, +=1, 2 be i.i.d. standard Gaussian

variables, and define

8h
N, ;(z)#

1
2

&z&2
2&

1
;N

:
N

i=1

ln cosh ;(!i , z+h) (2.62)
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Let furthermore $N=N &1�5. Then there exist strictly positive constants
K, K $, l such that

P {
�&z&r~ h&�$N

e&;N8h
N, ;(z) dz

�&z&r~ h&<$N
e&;N8h

N, ;(z) dz
�Ke&K $N l

, i.o. in N ==0 (2.63)

where r~ h is the unique minimum of the function

E8h
N, ;(z)=

1
2

&z&2
2&

1
;

E ln cosh ;(!1 , z+h) (2.64)

Proof. Let us decompose 8h
N, ; in the usual way

8h
N, ;(z)=E8h

N, ;(z)+8h
N, ;(z)&E8h

N, ;(z) (2.65)

We first treat the denominator appearing in (2.63). E8h
N, ; can be bounded

from below by some quadratic function C &z&r~ h&2
2 on the set &z&r~ h&�

$N>0. The fluctuation term can be controlled by the following analogue of
Lemma 2.4.

Lemma 2.9. Let fN=(1�;N ) �N
i=1 ln cosh ;(!i , z+h). Then for $

small enough, such that C$2�80<$�2, there exist strictly positive constants
C1 , C2 , K1 , K2 such that

pN#P _ sup
z: &z&r~ h&2�$

| fN(z)&E fN(z)|�
C
2

&z&r~ h&2
2&

�K1e&K2N+C1 N 1�2 $&2e&C2N (2.66)

Proof. The proof is completely analogous to the proof of Lemma 2.4,
and is left to the reader. K

Therefore, with probability greater than 1&PN , sup(8h
N, ;&E8h

N, ;(z))
does not exceed one half of the lower bound of the deterministic part,
which implies that

|
&z&r~ h&�$N

e&;N8h
N, ;(z) dz�e&;NE8h

N, ;(r~ h) |
&z&r~ h&�$N

e&;N(C�2) &z&r~ h&2
2 dz

�e&;NE8h
N, ;(r~ h)e&;N(C�4) $2

N K (2.67)
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We now turn to the denominator in (2.63). The probability that the fluc-
tuation term exceeds an =>0 is bounded by Lemma 2.5:

qN#P _ sup
&z&r~ h&<$N

| fN(z)&E fN(z)|�=&
�K1e&K2N+C1 =&2e&C2 =2N (2.68)

Using the Taylor expansion of E8h
N, ;(z) about r~ h up to order 2, with an

error term of order 3, we get that with probability higher than 1&qN ,

|
&z&r~ h&<$N

e&;N8h
N, ;(z) dz

�e&;N(8h
N, ;(r~ h+C"$ 3

N+=)) |
&z&r~ h&<$N

e&;NC$ &z&r~ h&2
2 dz

�e&;N(8h
N, ;(r~ h+C"$ 3

N+=))KN &1�2(1&e&;N(C$�2) $2
N ) (2.69)

Combining (2.67) and (2.69) gives

�&z&r~ h&�$N
e&;N8h

N, ;(z) dz

�&z&r~ h&<$N
e&;N8h

N, ;(z) dz
�K� e&;N((C�2) $2

N&=&C"$3
N ) (2.70)

with probability greater than 1&(qN+ pN ). Choosing $N=N &1�5, ==
N &1�5, implies that �N ( pN+qN )<�. Applying the Borel�Cantelli lemma
then gives the statement of Proposition 2.8. K

Theorem 1 is now obvious:

Proof of Theorem 1. Let f be a bounded continuous function. Then

Qh
N, ;( f )= f (r~ hQh

N, ;(1[&z&r~ h&�$N ])+Qh
N, ;(( f (r~ h& f ) 1[&z&r~ h&�$N ])

+Qn
N, ;( f 1[&z&r~ h&>$N ]) (2.71)

Taking the limit N A �, we can replace Qh
N, ; by Q� h

N, ; and use Proposition 2.8.
Since f is bounded, the third term on the right-hand side of (2.71) con-
verges to zero, and since it is continuous, the second term also vanishes
too. These statements are true P-a.s. Finally we let b=&h&2 � 0. Again by
continuity of f, f (r~ h) � f (r*(cos �, sin �)). This proves the theorem. K
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3. UNIQUENESS OF EXTREMA OF CERTAIN GAUSSIAN
PROCESSES

In the previous chapter we have seen that the measures Q� N, ; concen-
trate on a circle of radius r* at the places where the random function gN(�)
takes its minimum. In this section we will show that these sets degenerate
to a single point, a.s. in the limit N A �. To do so we first prove a unique-
ness theorem for the absolute minimum of a certain class of strongly
correlated Gaussian processes. Then we show convergence in distribution
of gN(�) to such a process and finally we show that this implies also the
desired convergence in distribution of our measures. We begin with the
following general result.

Proposition 3.1. Suppose /(t) is a real stationary Gaussian
process which is periodic with period T. Suppose furthermore that its
covariance function r(s, t)=r(s&t) is even, # C�[0, T], and r({) is less
than r(0) for all { # (0, T ). Then there exists an equivalent process '(t)
having almost surely infinitely differentiable sample paths. Moreover, the
probability that there exist two or more extrema with equal height in
[0, T ) is zero.

Proof. Without restricting the generality, we can assume that
E[/(t)]=0 and }=E[/(t)2]=1.

By its continuity properties, r({) can be expanded about the origin as

r({)=1&
*2

2!
{2+O({4) (3.1)

The first assertion then follows from the following result due to Crame� r
and Leadbetter (see [CL]), Chap. 9.2).

Lemma 3.2. Suppose that for some a>3,

r({)=1&
*2

2
{2+O \ {2

|ln |{| | a+ (3.2)

where *2 is a constant. Then there ezists a process '(t) equivalent to /(t)
and possessing, with probability one, a continuous derivative '$(t).

Proof. See Crame� r�Leadbetter [CL].
It is easily checked that by (3.1), r({) satisfies the condition (3.2) in

Lemma 3.2, which proves the statements about continuity and existence of
a continuous derivative.
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Consider now the process /$(t). Its covariance function r~ ({) is given by
r~ ({)=&r"({) (see for example Leadbetter et al. [LLR], p. 161, Chap. 7.6).
Thep it can be expanded about the origin

r~ ({)=*2&
*4

2
{2+O({4) (3.3)

Then r~ ({) also verifies condition (3.2) in Lemma 3.2. Repeating this argu-
ment implies, together with the Borel�Cantelli Lemma, that there exists an
equivalent process '(t) having, with probability one, infinitely differentiable
sample paths.

From now on, we assume that /(t) itself has the above continuity
properties. We want to find the probability that there are not two extrema
with equal height in [0, T ), i.e.,

P[_s, t # T_T : |s&t|{kT, |/(t)&/(s)|=0, |/$(t)|=|/$(s)|=0]=0

(3.4)

We first show that for any �>0,

P[_s, t # T_T : |kT&|s&t| |��, |/(t)&/(s)|=0, |/$(t)|=|/$(s)|=0]=0

(3.5)

Let us choose a collection of grid points ti # T, separated by some distance
=>0. By the continuity properties, / and /$ are Lipschitz-continuous with
as-finite constants C0 , C1 . Consider the set 0� C/0 such that C0 and C1

are bounded by some number C>0. Then, by Lipschitz-continuity,
/$(t)=0, t # [ti , ti+1) implies that (for some # [t i , t])

|/$(ti )|�C= (3.6)

Similarly, |/(t)&/(s)|=0 implies

|/(ti )&/(tj )|�2C= (3.7)

where t&ti<=, s&t j<=. Then we can estimate the probability of the event
in (3.5) (on 0� ) by

P[_s, t # T_T : |kT&|s&t| |��, |/(t)&/(s)|=0, |/$(t)|=|/$(s)|=0]

�P[_ti , tj : |kT&|s&t| |��, |/(ti )&/(tj )|�2C=, |/$(ti )|�C=, |/$(tj )|�C=]

+P[0� c] (3.8)
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Let us denote the event appearing on the left-hand side of (3.8) by A� , and
the event appearing on the right-hand side by B�, = . The probability
P[B�, =] can be estimated by the standard bound

P[B�, =]� :
|kT&|ti&tj | | ��

P[|/(ti )&/(tj )|�2C=, |/$(ti )|�C=, |/$(t j )|�C=]

(3.9)

Now, for any fixed i, j,

(/(ti )&/(tj ), /$(ti ), /$(t j )) (3.10)

is a Gaussian vector, and due to the condition on |ti&tj | and the assump-
tion concerning r({), its distribution is non-degenerate. Therefore, each
term in the sum on the right-hand side of (3.9) can be bounded by

P[ |/(ti )&/(tj )|�2C=, |/$(tj )|�C=]�K=3C 3(2?_i, j)
&1 (3.11)

where _i, j is the determinant of the non-degenerate covariance matrix of
the random vector (3.10). Since the ti , tj are chosen in a compact set, this
quantity can be bounded uniformly in i, j. We thus get

P[|/(ti )&/(tj )|�2C=, |/$(t i )|�C=, |/$(t j )|�C=]�K(�) =3C3 (3.12)

Finally, the number of allowed pairs (i, j) in the sum in equation (3.9) does
not exceed T 2=&2, which implies that

P[A�]�P[B�, =]+P[0� c
C]�K(�) T 2=&2=3+P[0� c

C] (3.13)

keeping track of the set 0� c
C on which the above estimates are not valid.

Now choose C=C(=)=o(=&1�3), and observe that due to the continuity
properties

lim
= � 0

P[0� c
C(=)]=0 (3.14)

Finally, letting = tend to zero in (3.13) gives that the probability (3.6) is
zero.

This shows that local extrema are separated with probablity one. In
particular, there are no constant pieces and no accumulation points of
extrema. This concludes the proof. K
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Corollary 3.3. Suppose /(t) satisfies the conditions in Proposition 3.1.
Then /(t) has a.s. only one global minimum in any interval [s, s+t], t<T.

To see that Proposition 3.1 is relevant for our problem, we will next
show that the process gN(�) converges to a process of the type covered by
this proposition. In fact we have

Proposition 3.4. Let g: R � R+, g # C� be an aperiodic even
function. Suppose also that /i (�), � # [0, 2?] is the stochastic process given
by

/i (�)= g(r`i cos(�&,i )) (3.15)

where r is a positive constant, [`i ] i # N , [,i ]i # N are two mutually inde-
pendent families of i.i.d. random variables, distributed as cxe&x 2

(`i ), and
uniformly (,i ). Then the process 'N given by

'N(�)#
1

- N
:
N

i=1

[/i (�)&E/i (�)] (3.16)

converges in distribution to a strictly stationary Gaussian process '(�)
having a.s. continuously differentiable sample paths. Furthermore, '(�) has
a.s. only one global minimum on any interval [s, s+t], t<?.

Remark. We will use this proposition of course with g( } )=
ln cosh(;). Then the proposition implies that the process gN(�)&EgN(�)
converges to a Gaussian process with the above properties.

Proof. As !i (�) are i.i.d. stationary processes on the circle which are
infinitely differentiable, the convergence of the process to a stationary
Gaussian process on the circle is a simple application of the central limit
theorem in Banach spaces (see, e.g., [LT]). A computation shows that the
covariance of the limiting process is given by

f (s, t)=E[(/1(s)&E/1(s))(/1(t)&E/1(t))]

=E[ g(r`1 cos(.1)) g(r`1 cos(t&s&.1))]&(E[ g(r`1 cos(.1))])2

(3.17)

We see that this function is even, and is in C� as a function of {=t&s.
Moreover, it is easily checked that the covariance function f ({) is strictly
smaller than f (0), whenever {{k?. Proposition 3.1 and Corollary 3.3 then
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imply the assertions about continuity and non-existence of more than one
global minimum. This concludes the proof of Proposition 3.4. K

We now check some intuitive properties of the position of the mini-
mum of the Gaussian process from Proposition 3.1 (for those | such that
the minimum exists and is unique).

Proposition 3.5. Suppose that the conditions of Proposition 3.1
are satisfied. Define (0$, F$, P$) to be the restriction of (0, F, P) to all |
such that the conclusions of Proposition 3.1 are true. Then the position of
the minimum

�*[|]#arg min
� # [0, ?)

/[|](�) (3.18)

of the sample path /[|] is a random variable with uniform distribution on
[0, ?).

Proof. To prove that �*[|] is a random variable, it is enough to
show that for all intervals U=(a, b)�[0, ?), the set �*&1(U) is in F$. We
note that by the continuity of / on [0, ?) for all | # 0$,

�*&1(U)#[| # 0: /[|]( } ) assumes its minimum in U]

=[| # 0$: _t # U & Q such that \s # Uc & Q, /(t)</(s)] (3.19)

The second line can be written as

.
t # U & Q

,
s # Uc & Q

[| # 0$: /(t)</(s)] (3.20)

which clearly is in F$.
Equation (3.20), together with the strict stationarity (since it is a real

stationary process) of the process /, implies the uniformity of the distribu-
tion. This proves Proposition 3.5. K

Finally, to get some information about the convergence of functions of
the position of the minimum, we use the following two results.

Lemma 3.6. Let P([0, ?)) be the space of ?-periodic, continuous
functions, having only one minimum, together with the supremum norm.
Suppose we have a sequence of ?-periodic, continous functions ( fn) con-
verging uniformly to f # P([0, ?)). Then the positions of the global minima
of fN converge to the position of the global minimum of f.
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Proof. Suppose that there exists a sequence ( fn) of periodic, con-
tinuous functions, converging uniformly to f # P([0, ?)), but such that
infinitely many of the fn have global minima whose positions do not con-
verge to the position of the unique global minimum �* of f. Then we can
choose a subsequence ( fnk

) with global minima �*nk
such that |�*nk

&�*|>
$>0, \k.

Since by assumption, �*nk
is a global minimum of fnk

, we have that

fnk
(�*nk

)& fnk
(�*)�0 (3.21)

On the other hand, for any =>0,

fnk
(�*nk

)& fnk
(�*)= fnk

(�*nk
)& f (�*nk

)+ f (�*nk
)& f (�*)+ f (�*)& fnk

(�*)

�&=+ f (�*nk
)& f (�*)&= (3.22)

for all k large enough, since fnk
is assumed to converge uniformly to f.

Choosing = small enough, the right hand side of (3.22) can be made
positive if indeed |%*&%*nk

|>$>0, contradicting (3.21). This implies the
lemma. K

The following result is crucial to link the weak convergence of the
process gN(�) to the weak convergence of the measures QN, ; .

Proposition 3.7. Define the random sets

LN[|]=[� # [0, ?): 'N[|(�)&min
�$

'N[|](�$)�=] (3.23)

with =N some sequence converging to zero. Then

LN w�D �* (3.24)

Proof. The random processes 'n , ' lie a.s. in the space of ?-periodic
C� functions. This space, together with the sup-norm topology, is
separable due to Weierstrass' approximation theorem. In this situation the
method of a single probability space (see [Shi], Chapter 3, Section 8,
Theorem 1) ensures the existence of a probability space (0*, F*, P*) and
random processes '*N , '*, such that

'*N � '*, P*-a.s. (3.25)
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and

'* =
D ', '*N =

D 'N (3.26)

Now introduce the random level sets

L*N[|*]=[� # [0, ?): '*N[|*](�)&min
�$

'*N[|*](�$)�=N]

Then LN and L*N have the same distribution. But since '*N[|] converges
almost surely to '*[|] # P([0, ?)), one sees that due to Lemma 3.6,
L*N[|] converges P*-a.s. to the position of the unique absolute minimum
of '*[|*]. But this minimum has the same distribution as that of ', which
is the uniform distribution by Proposition 3.5. Therefore, LN converges in
distribution to a uniformly distributed point on [0, ?). K

We have finally all tools available to prove Theorem 3.

Proof of Theorem 3. We have to check convergence on the following
type of functions F: M(R2) � R

F(+)=F� (+( f1),..., +( fk)) (3.27)

where F� is a polynomial function, and f1 ,..., fk are bounded continuous
functions from R2 � R. Convergence in law then means that

lim
N A �

E[F(QN, ;[|])]

=
1
? |

?

0
F \1

2
$(m* cos �, m* sin �)+

1
2

$m* cos �+?, m* sin �+?)+ d� (3.28)

The left-hand side of (3.28) is explicitly written as

lim
N A �

E[F� (QN, ;[|]( f1),..., QN, ;[|]( fk))] (3.29)

We now treat the individual arguments of F� in (3.29). Let AN[|] (the level
sets in the previous lemmata) be decomposed into its 2l $ connected com-
ponents AN, jN

[|]. As a consequence of Lemma 3.7, there exists N[|]
which is finite a.s. such that for all N�N(|), l=1, and the two corre-
sponding connected components are symmetric with respect to the origin.
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Now choose arbitrary points xN, jN
[|] # AN, jN

[|]. Then we can decompose

Q� N, ;[|]( fi )=:
jN

fi (xN, jN
) Q� N, ;[|](1AN, jN

)

+:
jN

Q� N, ;(1AN, jN
( fi (xN, jN

)& fi ))+Q� N, ;(1Ac
N

f i ) (3.30)

Expanding F� using the decomposition (3.30), we get a sum consisting of
two different types of terms: (i), summands that are products of the first
sum on the right-hand side of (3.30) only, and (ii), summands where at
least one of the second and third term from the right-hand side of (3.30)
enter. Proposition 2.3 and Proposition 3.7, and the continuity and boun-
dedness of the f i 's imply that the terms of type (ii) vanish P-a.s., as N A �.
In the limit, the only terms left are of type (i), which together sum up to

F� \:
jN

f1(xN, jN
) Q� N, ;[|](1AN, jN

),..., :
jN

fk(xN, jN
) Q� N, ;[|](1AN, jN

)+ (3.31)

All arguments of F� in (3.31) converge in distribution to

(1�2) fi ((m* cos �, m* sin �))

+(1�2) f i ((m* cos �+?, m* sin �+?)), \i=1,..., k (3.32)

where � is a uniformly distributed r.v. on [0, ?), by Proposition 3.7. But
convergence in distribution means by definition that

lim
N A �

E _F� \:
jN

f1(xN, jN
) Q� N, ;[|](AN, jN

),..., :
jN

f2(xN, jN
) Q� N, ;[|](AN, jN

)+&
=

1
? |

?

0
F� \1

2
fi ((m* cos �, m* sin �))+

1
2

fi ((m* cos �+?, m* sin �+?))+ d�

(3.33)

which in turn is by definition equal to

1
? |

?

0
F \1

2
$(m* cos �, m* sin �)+

1
2

$(m* cos �+?, m* sin �+?)+ d� (3.34)

This proves the convergence in law (1.13) in Theorem 3. To obtain the
identification of the metastate, just rote that the process 'N(�)[|] actually
converges to the same Gaussian process under any of the conditional laws
P[ } | Fn], where Fn is the sigma-algebra generated by the random variables
!i , i�n. K
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4. VOLUME DEPENDENCE, EMPIRICAL METASTATES,
SUPERSTATES

We conclude this paper with the discussion of some more sophisti-
cated concepts that have been proposed by Newman and Stein [NS2] and
Bovier and Gayrard [BG3] and that should capture in more detail the
actual asymptotic volume dependence of the Gibbs measures. In fact, the
first question one may ask is whether for a fixed realization as the volume
grows the finite volume Gibbs states really explore all the possibilities in
the support of the metastate. One way of stating that this is the case is the
following

Theorem 4.1. There exist (deterministic) sequences Nk A � such
that the empirical metastate

1
k

:
k

l=1

$QNk
, ; (4.1)

converges almost surely to the law of Q�, ; .

Proof. We have seen that the measure QNk , ; is sharply concentrated
on the circle of radius r* and at the angle where the process gNk

(�) (defined
in (2.3) takes its absolute minimum. The idea is to choose Nk in such a way
that these angles will be virtually independent for different k. Now note
that we can write

gNk(�)= g~ k(�)+Rk(�) (4.2)

where

g~ k(�)=
1

Nk
:
Nk

i=Nk&1+1

ln cosh(;(r*`i cos(�&.i ))) (4.3)

are independent for different k by construction and

Rk(�)=
1

Nk
:

Nk&1

i=1

ln cosh(;(r*`i cos(�&.i ))) (4.4)

Now by standard estimates identical to those presented in Section 3, one
shows easily that there is a constant C<� such that

P _ sup
� # [0, ?)

|Rk&ERk(�)|�x
Nk&1

Nk &�C exp(&x2�C ) (4.5)
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Thus we can always choose Nk growing sufficiently rapidly (e.g., Nk=k!)
such that Rk is totally negligible compared to g~ k for large k, and the posi-
tion of the absolute minimum of gNk

(�) is asymptotically equal to that of
g~ k(�). This allows us to approximate for large k the random measures
$QNk , ; by independent measures and from this the asserted result follows
from the law of large numbers. K

Remark. Theorem 4.1 says that that the empirical metastate con-
structed with sparse subsequences converges to the Aizenman�Wehr
metastate, a.s. This is a special example of a general theorem due to
Newman and Stein [NS2] (where however they require possibly sub-
sequences li in the definition (4.1)).

Rather than considering the empirical metastate with sparse sub-
sequences one may be interested in the volume dependence as the volume
grows at its natural space. To capture this, the idea put forward in [BG3]
is to construct a measure valued stochastic process

+t
;# lim

N A �
+;, [tN] (4.6)

with t # (0, 1] and to consider either the (conditional) probability distribu-
tion of this process (the ``superstate'' [BG3]) or the (conditional) empirical
distribution of the process (the ``empirical metastate'' [NS2]). Let us see
what this entails in our context. The reader who has been following the
exposition of the last two chapters will easily be convinced that this
problem amounts to study the quantity

�(t)#arg min
% # [0, ?)

(/t(%)) (4.7)

where /t(%) is the distributional limit of the process

/t
N(�)#g[tN](�)&Eg[tN](�) (4.8)

where gN(%) is defined in (2.3). By completely standard arguments one
shows that the following invariance principle holds:

Lemma 4.2. The process / t
N(�) converges in distribution, as N A �

to the Gaussian process /t(�), t # (0, 1], � # [0, ?) with mean zero and
covariance

C(�, �$, t, t$)#
t 7 t$

- tt$
f (�, �$) (4.9)
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where

f (�, �$)=E[ln cosh(;r`1 cos(�)) ln cosh(;r`1 cos(.&(�&�$)))] (4.10)

/t(%) is a rather curious Gaussian process: as a function of t, to fixed � it
is (normalized) Brownian motion, while for fixed t as a function of � it is
the C� process discussed in the previous section. The question is then what
can be said about the process �t , defined by (4.7)?

Some facts follow easily. For instance, the process is almost surely
single valued for all t # (0, 1] except possibly on some Cantor set of zero
Lebesgue measure. On the other hand, it seems natural that such an excep-
tional set will exist and that a typical realization will have continuous
pieces and ``jumps.'' Also, for t going to zero, the process ``circles'' around
rapidly since /t and /s become uncorrelated as s a 0. But otherwise we do
not see any immediate more specific characterization of the process or its
path-properties.
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