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Receiver operating characteristics of perceptrons: Influence of sample size and prevalence

Ansgar Freking,1 Michael Biehl,1 Christian Braun,2 Wolfgang Kinzel,1 and Malte Meesmann2

1Institut für Theoretische Physik, Universita¨t Würzburg, Würzburg, Germany
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In many practical classification problems it is important to distinguish false positive from false negative
results when evaluating the performance of the classifier. This is of particular importance for medical diag-
nostic tests. In this context, receiver operating characteristic~ROC! curves have become a standard tool. Here
we apply this concept to characterize the performance of a simple neural network. Investigating the binary
classification of a perceptron we calculate analytically the shape of the corresponding ROC curves. The
influence of the size of the training set and the prevalence of the quality considered are studied by means of a
statistical-mechanics analysis.@S1063-651X~99!06911-1#

PACS number~s!: 87.10.1e, 07.05.2t, 05.90.1m

I. INTRODUCTION

Classification problems in general and medical diagnostic
tests in particular are often well suited for the application of
neural networks@1–3#. The rule how to classify an item is
generally not available, but can be derived from examples,
e.g., patients with a known clinical status. The task for the
network is to learn from these examples, i.e., to extract the
implicit information in order to classify other items. We fo-
cus on medical diagnostic tests, where the aim is to discrimi-
nate between absence and presence of a certain disease or
risk, yet our analysis is not restricted to this domain.

To gain further insight into the applicability of the neural
network approach in a clinical setting we calculated the re-
quired size of the training set in relation to the prevalence of
the disease considered. For this purpose we provide analyti-
cal expressions for the influence of prevalence on the shape
of receiver operating characteristic curves.

II. DEFINITION OF DESCRIPTIVE MEASURES

For the evaluation of a diagnostic test, it is often impor-
tant to distinguish false positive from false negative results.
In this case the so-called generalization error as defined in
the context of learning theory is not sufficient to assess the
validity of the test.

A common way to summarize the results of a medical test
is to list the frequencies of positive and negative test results
in a 232 cross table where the columns correspond to the
clinical status of the patients~see Table I!. In the following
we use the convention that all frequencies are counted rela-
tively to the total number of patients, i.e.,a1b1c1d51.

From the cross table one defines the ratios

u15
a

a1c
, v15

a

a1b
,

~1!

u25
d

b1d
, v25

d

c1d
,

which are standard measures to describe the performance of
a medical diagnostic test. Thesensitivity u1 gives the per-

centage of correctly classified diseased persons. Thus, a sen-
sitivity of 100% means that any occurrence of the disease is
detected by the test. Thespecificity u2 gives the analog ratio
of the correctly classified persons without the disease.
Whereas sensitivity and specificity have a more global mean-
ing, physicians might be more interested in the ratios taken
with respect to the rows. If the test is positive, thepositive
predictive valuev1 gives the probability to have the disease.
The negative predictive valuev2 tells the reliability of a
negative test result. The fraction of diseased persons in the
sample is calledprevalence,

l5a1c. ~2!

Usually, diagnostic tests yield a continuous valued quan-
tity which is compared to a threshold value for binary clas-
sification. By varying this threshold, the test can be made
more or less stringent to meet given requirements with re-
spect to sensitivity or specificity.

A more stringent test gives high specificity, i.e., the frac-
tion of correctly classified healthy persons is high. On the
other hand, an increase in specificity usually results in a loss
of sensitivity, i.e., more persons with the disease are missed.

This trade-off between specificity and sensitivity is de-
scribed by the receiver operating characteristic~ROC!
curve. An ROC curve is the plot of a test’s true positive rate,
i.e., the fractionyROC5a/(a1c) of correctly classified per-
sons with the disease, as a function of its false positive rate,

TABLE I. Cross table containing the relative frequencies of
positive and negative test results subdivided with respect to the
clinical status~disease vs no disease or risk vs no risk!. a depicts
correctly classified diseased persons,d represents correctly classi-
fied normals.b1c gives the fraction of false classifications, which
is often referred to asgeneralization error.

Clinical status
With disease Without disease

positive a b
Test result negative c d
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the fraction xROC5b/(b1d) of misclassified healthy per-
sons. Using the definitions~1!, it is obvious thatyROC5u1

andxROC5(12u2).
Each point on the ROC curve corresponds to a certain

stringency level of the test. If a diagnostic test makes exclu-
sively positive classifications, the true positive rate is 1, but
the same applies to the false positive rate. The corresponding
point on the ROC curve is the upper right corner,yROC
5xROC51. In the opposite extreme, there are no positive
classifications and therefore one hasyROC5xROC50.

For a test without predictive power, the ratio between
positive classified persons with and without disease would be
the same as the corresponding ratio of the whole test popu-
lation; in this case one has

a

b
5

a1c

b1d

and the ROC curve follows the diagonalyROC5xROC. Any
meaningful test should yield an ROC curve above this diag-
onal. By changing the threshold value of the test, one obtains
a curve extending between the two cornersyROC5xROC50
andyROC5xROC51.

The given conditions in medical practice often require a
certain level of specificity for a test to be useful. If one thinks
of a risky or cost expensive treatment, it is clear that the
fraction of misclassified healthy persons should not exceed a
certain limit. On the other hand, a diagnostic test should
achieve some minimal value of sensitivity in order to be
effective. Since ROC curves display precisely this interplay,
they can be used to determine the threshold value for a cer-
tain diagnostic test. Additionally, ROC curves allow for
comparison of several tests at the same level of specificity.
For a detailed discussion of the use of ROC curves see, for
instance,@4# and references therein.

III. DATA MODEL

In our analysis, each patient is represented by an
N-dimensional feature vectorSPRN. Each component of
this vector can be thought of as a clinically relevant measure
which characterizes the patient~e.g., blood pressure, heart
rate!. The patient’s clinical status is coded by the binary
quantityS0, whereS0511 meanswith andS0521 means
without disease.

Let us now assume, that diseased constellations in feature
space can be separated from the healthy ones by a
(N21)-dimensional hyperplane. This means, that the actual
statusS0 of a patient with feature vectorS is given by

S05sgn~B•S2u!, ~3!

whereBPRN, B251, is a unit-vector perpendicular to the
hyperplane; for obvious reasonsB is called therule vector.u
is related to the prevalence, i.e., the fraction of actually dis-
eased individuals. The components ofS are taken to be
Gaussian distributed with zero mean and unit variance, there-
fore the overlapy5B•S of the feature vectors with the rule
is Gaussian distributed as well,

p~y!5
1

A2p
expS 2

1

2
y2D . ~4!

Note that in case of largeN, Eq. ~4! holds true under more
general conditions according to the central limit theorem.
Given the distribution~4! of y, the thresholdu is related to
the prevalence through

l5F~u!, with F~x!5
1

A2p
E

2`

x

dt expS 2
1

2
t2D .

~5!

IV. ROC CURVES OF A PERCEPTRON

In this section we consider a perceptron with fixed weight
vector JPRN, J251. As does the rule vector,J defines a
hyperplane in the feature space, and

s5sgn~J•S2g! ~6!

is the test result for the patientS. We use the overlapR
5J•B as the usual measure for the perceptron’s knowledge
about the rule. For a givenR, the projectionx5J•S of a
feature vector on the perceptron vectorJ and the projection
y5B•S on the rule vector are jointly Gaussian distributed
according to

p~x,y!5
1

2pA12R2
expS 2

1

2

x222Rxy1y2

12R2 D . ~7!

In order to plot the ROC curves for the perceptron classifi-
cation, we need to know the entries of the respective cross
table. If we want to calculate, sayb, which is the relative
frequency of@(S0521)`(s511)#, we have to perform
the average ofQ(2S0)Q(1s) over the distribution of fea-
ture vectorsS. SinceS enters only through the scalar prod-
uctsx andy, we arrive in an average over Eq.~7!,

b5E
g

`

dxE
2`

u

dy p~x,y!

5
1

A2p
E

g

`

dx expS 2
1

2
x2DFS u2Rx

A12R2D
5:C~g,u,R!. ~8!

All other entries of the cross table can be calculated in the
same way and hence can be expressed through the function
C defined in Eq.~8!,

a5C~g,2u,2R!, c5C~2g,2u,R!,
~9!

and d5C~2g,u,2R!.

This allows us to express the quantities in Eq.~1! in terms of
the perceptron thresholdg, the biasu which is related to the
prevalence~5!, and the overlapR,
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u15
C~g,2u,2R!

F~u!
, v15

C~g,2u,2R!

F~g!
,

~10!

u25
C~2g,u,2R!

F~2u!
, v25

C~2g,u,2R!

F~2g!
.

For given external conditions, i.e.,u andR fixed, the perfor-
mance measures in Eqs.~10! can only be tuned relative to
each other by the choice of the perceptron thresholdg. A
higher value ofg gives less positive classifications@cf. Eq.
~6!# and therefore an increase ofu2 with a concomitant de-
crease ofu1 .

The plot ofu1 , i.e., the fraction of positive classifications
among the diseased persons, versus (12u2), the fraction of
positive classifications in the healthy subgroup, gives the
ROC curve.

As g→1` there are no positive test results and the re-
spective point on the ROC curve is the lower left corner,g
→2` equivalently corresponds to the upper right corner.
For finiteg the value ofR determines the path in between the
corners. The higher the value ofR, the higher the sensitivity
at a certain specificity and the larger the area under the curve.

Figure 1 presents ROC curves for two different preva-
lences~1% and 50%! and several values ofR. In comparing
the two plots, we find that a perceptron with a certain overlap
R reaches higher sensitivities for all specificities when there
are less patients with disease than without disease. The ROC
curves for the casel51% are steeper than the ones forl
550%. On the other hand, it should be harder for the per-
ceptron to achieve a certain knowledge about the rule, if
there are less examples of one group at a fixed total amount
of training examples.

V. LEARNING FROM A TRAINING SET

Up to now, we have considered a perceptron with fixed
weightsJ and a certain overlapR with the rule. The aim of
this section is to include a learning process into the analysis.
The perceptron gains knowledge about the rule by learning
from examples provided in the training set. Consequently,
we shall analyze the influence of the size of the training set

and the prevalence of the quality considered to the perfor-
mance of the perceptron. This means we have to calculate
the quantityR as a function of the total numberP of training
examples and the relative frequency of the labelS0511.
Finally, this gives us access to the desired accuracy measures
defined in the previous sections.

We apply the standard statistical mechanics approach and
consider the components of the perceptron weight vectorJ as
the N degrees of freedom of a physical system with energy

H~J!5 (
m51

P

Q~2smS0
m!5 (

m51

P

Q@2~J•Sm2g!~B•Sm2u!#,

~11!

where the sum extends over all feature vectorsSm in the
training set. The thresholdg is considered to be fixed during
the training process.

In an ensemble of perceptrons at formal temperature 1/b,
a configurationJ occurs with the corresponding Gibbs-
Boltzmann density, hence the termGibbs learninghas been
coined for this scenario@5#. The quenched average over the
randomness contained in the training data is performed using
the replica method assuming replica symmetry. A sketch of
the calculation is given in the appendix.

The limit b→` forces the system into its ground state.
For g5u the energy of the ground state isH50, indepen-
dent of a5P/N. This corresponds to an error-free classifi-
cation of a training set of any size. In the limitN→` with
finite normalized sample sizea5P/N, u can be determined
exactly from the prevalence andg5u is a valid choice for
the perceptron threshold during training. Since we expect
that this choice already gives the largest achievable overlap
within the framework of Gibbs learning, we proceed without
an explicit optimization of the learning strategy with respect
to g for given u, and useg5u instead. Note that this par-
ticular choice ofg is only used to describe a specific training
process and does not affect the role of the threshold as de-
scribed in the preceding sections.

The overlapR defined in Sec. IV now plays the role of an
order parameter. Together with the quantityq, which repre-
sents the typical overlap of two error free perceptron vectors

FIG. 1. ROC curves of perceptrons with overlapsR50.1,0.2, . . . ,0.9 ~both panels!; higher values ofR give larger areas under the curves.
For the left-hand panel the prevalence was set tol550%, in the right-hand panel tol51%. For a prevalence of 50%, the curves are
symmetric with respect to the line (0,1)2(1,0), which reflects the symmetry betweendiseasedandhealthyin this case.
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~A2!, it is sufficient to describe the properties of the system
in the thermodynamic limitN→`.

In analogy to the caseg5u50, which was studied in@6#,
one can argue that the unknown vectorB coincides with
equal probability with any error freeJ. As a consequence the
relation q5R holds true, which would be violated in more
general settings withgÞu.

The remaining saddle point conditiondG/dR50 @cf. Eq.
~A4!# yields the so-called learning curve, i.e.,R in depen-
dence ofa. Figure 2 displays such learning curves for dif-
ferent values ofu. As intuitively clear, the more examples
are provided, the better the rule is captured by the percep-
tron. This works best if there are equal numbers of examples
of both classification types. In case of very few examples for
one of the classes, i.e., for prevalences far away from the
balancel550%, it takes a huge total amount to gain knowl-
edge about the rule. Nevertheless, for ratios from aboutl
510% up tol590% there is a remarkably weak depen-
dence ofa on the prevalence.

A rough but widely used approximation for the depen-
dence of the required sample size on the prevalence is given
by the statement, that the smaller subgroup determines the
actual sample size. This implies the dependenceã}1/l for
l,0.50, since the normalized number of examples of the
smaller group is given by (al), in this case. Equivalently
the dependence should beã}1/(12l) in the casel
.0.50. The right-hand graph of Fig. 2 shows the value ofa
necessary to obtain a certain overlap (R50.8) as a function
of l; for comparison,ã is plotted as well. As expected the
approximationã overestimates the actually needed sample
size for any value ofl.

VI. HOW MUCH TRAINING DATA IS NECESSARY?

The relation betweenR, u, anda as derived in the pre-
ceding section allows for a quantitative description of the
influence of sample size and disease prevalence on the per-
formance of a perceptron. As discussed in Sec. II, a quantity
of interest might be the sensitivity of a test at a given speci-

ficity, i.e., the ordinate of the ROC curve at fixed abscissa
(12u2).

Proceeding on a given prevalence the overlapR can be
calculated for any value ofa ~cf. Sec. V!. From this, the
perceptron thresholdg, which yields the desired specificity
can be determined by using the ROC equations~10!. Finally,
by using Eq.~10! again, one obtains the sensitivity as a func-
tion of the normalized sizea5P/N of the training set. This
dependence is shown in Fig. 3. The corresponding positive
predictive values, which are also presented in Fig. 3, can be
obtained the same way.

From graphs like the ones in Fig. 3 one can easily read the
required size of the training set for a desired test perfor-
mance. Additionally, such graphs may indicate regions,
where further collection of training examples gives only ne-
glectable improvements to the test performance. The latter
applies especially with respect to the positive predictive val-
ues.

VII. DISCUSSION

We applied the concept of ROC curves to describe the
performance of a perceptron that realizes a threshold classi-
fication. For this, we revisited the thoroughly studied sce-
nario where the perceptron learns from examples classified
by a rule, which is of the same architecture as the perceptron
itself ~see, for instance,@1,5–8# and references therein!.

Investigating the shape of ROC curves of a perceptron
with fixed overlapR, we observed a pronounced dependence
of sensitivity and specificity on the prevalence of the quality
considered~cf. Fig. 1!. This seems to contradict the fre-
quently encountered statement that these quantities should be
prevalence independent measures of validity, which is based
on their definition by means of the cross table. It is important
to realize that this predication refers to ROC curves obtained
from differently composed validation sets for exactly the
same classification problem. But even in this sense, the state-
ment does not necessarily apply to realistic situations as dis-
cussed in@9#.

By introducing the biasu in the rule, we extended the

FIG. 2. On the left-hand panel, the overlapR of the perceptron vectorJ with the rule vectorB is plotted as a function of the ratioa
5P/N. The individual curves correspond to the prevalencesl50.01, 0.05, 0.10, 0.25, and 0.50 from bottom to top. Before having seen any
example, i.e., ata50, J is perpendicular toB and the curves start atR50 in any case. With increasinga, R increases and approaches
asymptotically the value 1 asa→`. For a fixeda the largest value ofR is achieved when both classes have equal weights, i.e.,l
50.50. Nevertheless, only very asymmetric class weights cause pronounced reducements. This can also be seen from the right-hand part of
the figure. Here the value ofa required for a fixed overlap (R50.8) is plotted against the prevalence~solid line!. Whereas the curve is rather
flat in the center region, it grows dramatically asl→0 or l→1. For comparison, the dotted line shows the value ofa required to obtain the
same number of examples in the smaller of the subgroups as there are forl50.50.
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analysis in@6# to situations where items of the two subgroups
occur with different frequencies. Combining the results of
this statistical-mechanics approach with standard measures
of validity as defined in the context of biomedical statistics,
we described analytically the influence of sample size and
disease prevalence on the performance of a diagnostic test. It
is hoped that this theoretical knowledge allows for more ef-
fective planning of clinical studies.

Our work is based on simple, yet rather general assump-
tions on the underlying data distribution and the classifica-
tion scheme. Naturally, real world problems are more com-
plicated in many respects. They are usually not completely
learnable since the architecture of the rule is not known. In
addition, classification tasks in practice will be affected by
noise, i.e., the feature vectors can contain inaccurately mea-
sured values or the example classifications might be wrong
themselves. The considered ideal training situation provides
first insights and we expect the results to hold qualitatively in
a wider range of settings. In particular, earlier studies of the
perceptron have shown that the presence of noise does not
prohibit the success (R→1) of appropriate training schemes,
in principle @6,10,11#. Nevertheless, further research should
incorporate such more realistic situations, including noniso-
tropic data distributions and more complicated classification
schemes which require, for instance, the use of multilayer
networks.
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APPENDIX

The partition function corresponding to Eq.~11! reads

Z5S )
j 51

N E dJj D dS (
j 51

N

Jj
221D expF2b(

m
Q~2Em!G ,

~A1!

where

Em5~J•Sm2g!sgnFm, with Fm5~B•Sm2u!.

The quenched free energy21/b^ ln Z& can be performed us-
ing the identity

^ ln Z&5 lim
n→0

]

]n
^Zn&.

For integern, Zn is the partition function of ann-fold rep-
licated system. Its average can be calculated by means of a
saddle point integration and involves the order parameters

Ra5Ja
•B and qab5Ja

•Jb for aÞb. ~A2!

Herea,b51, . . . ,n denote the replica indices.
In analogy to@6# we assume replica symmetry, i.e.,Ra

5R for all a andqab5q for all aÞb. Within this simplify-
ing scheme it is straightforward to identify the solution in the
limit n→0. We obtain, forb→`, the quenched free energy

G5
]

]n U
n50

^Zn&
N

5
q2R2

2~12q!
1

1

2
ln~12q!

1aE
2`

` dx

A2p
expS 2

x2

2 D E
2`

` dF

A2p

3expF2
~F1u!2

2 G
3 ln FFxAq2R21uFuR2~g2uR!sgnF

A12q
G . ~A3!

Further, we restrict the analysis to the caseg5u. As dis-
cussed in the text, the relationq5R is satisfied in this case
and one obtains the simplified free energy

FIG. 3. Variation of the perceptron performance with increasing size of the training set. As in the left-hand panel of Fig. 2 the individual
curves of both plots correspond tol50.01, 0.05, 0.10, 0.25, and 0.50 from bottom to top. The graph on the left shows the sensitivity at fixed
specificity (u250.95). The sensitivity ata50 is common to all curves. This is due to the fact that the ROC curve for a test without
predictive power is given by the line of identity; the value 5% just reflects the considered specificity level of 95%. Thea dependence of the
sensitivity looks very similar to the shape of the learning curves shown in Fig. 2. The corresponding positive predictive values are displayed
in the right-hand panel; the values ata50 coincide with the respective values of the prevalence. The increase inv1 becomes astonishingly
slow, yet all curves tend to 1 asa→`.
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G5
1

2
@R1 ln~12R!#1aA12R

R E
2`

` dt

A2p
FexpS t2

Q

AR
D 1expS t1

Q

AR
D GFS tA R

12RD lnFS tA R

12RD . ~A4!

@1# J. A. Hertz, A. Krogh, and R. G. Palmer,Introduction to the
Theory of Neural Computation~Addison-Wesley, Redwood
City, CA, 1991!.

@2# C. M. Bishop,Neural Networks for Pattern Recognition~Ox-
ford University Press, Oxford, 1995!.

@3# M. Akay, Biol. Cybern.67, 361 ~1992!.
@4# L. E. Moses, D. Shapiro, and B. Littenberg, Stat. Med.12,

1293 ~1993!.
@5# T. L. H. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phys.65,

499 ~1993!.
@6# G. Györgyi and N. Tishby,Neural Networks and Spin Glasses

~World Scientific, Singapore, 1990!, p. 3.
@7# M. Opper and W. Kinzel,Physics of Neural Networks

~Springer, Berlin, 1991!, p. 149.
@8# H. S. Seung, H. Sompolinsky, and N. Tishby, Phys. Rev. A45,

6056 ~1992!.
@9# H. Brenner and O. Gefeller, Stat. Med.16, 981 ~1997!.

@10# M. Biehl, P. Riegler, and M. Stechert, Phys. Rev. E52, R4624
~1995!.

@11# M. Opper and D. Haussler,Proceedings of the 4th Annual
Workshop on Computational Learning Theory~Morgan Kauf-
man, Santa Cruz, 1991!, p. 75.

PRE 60 5931RECEIVER OPERATING CHARACTERISTICS OF . . .


