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For classical lattice systems with finite~Ising! spins, we show that the implementation of momentum-space
renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space
transformations: Renormalized Hamiltonians are ill-defined in certain regions of the phase diagram.
@S1063-651X~99!14505-7#

PACS number~s!: 64.60.Ak, 05.501q, 02.50.Cw

I. INTRODUCTION

Despite the great success of renormalization-group~RG!
ideas, both for computations and as a heuristic guide, many
aspects of the theory still lack rigorous mathematical justifi-
cation. The filling of this gap is more than just of academic
interest. It has been repeatedly pointed out~e.g. @@1#, p. 82#,
@@2#, footnote on p. 38#, @@3#, p. 268#! that the method is not a
black-box type of technique; its successful application re-
quires some understanding of the underlying physics or one
may be led to incorrect conclusions. Studies on the founda-
tions of real-space transformations@4–8# suggest that a simi-
lar remark applies to the underlying mathematics. Indeed,
these studies show that in various occasions renormalized
Hamiltonians are ill-defined. The finite-volume probabilities
of the renormalized system exhibit a long-range dependence
on boundary spins that is incompatible with the existence of
a Hamiltonian, at least one defined in the usual~summable!
sense. Such a ‘‘pathology’’ is usually referred to asnon-
Gibbsianness. This phenomenon, which appears after a
singleapplication of the transformation, was first detected in
the vicinity of first-order phase transitions, but was later dis-
coverd in other regions of phase diagrams, including at high
magnetic fields@8,9# and at high temperatures@9,10#. It fol-
lows that the design of the renormalization transformation is
crucial for the veryexistenceof a renormalization flow in a
suitable space.

Nevertheless, the lack of similar studies for momentum-
space transformations left open the possibility that they
could be free of this pathological behavior. That is, the ques-
tion remained as to whether such transformations, possibly
with a soft cutoff, would generally lead to an actual renor-
malized Hamiltonian@5,11#. In this paper we present a
simple example showing that this is in generalnot the case,
as already suspected by Griffiths@12#. There is no essential
difference between real-space and momentum-space trans-

formations, at least in the case in which the spins are
bounded. The same mechanism—the existence of a phase
transition in the system of original spins, constrained by a
particular block-spin configuration— causes similar prob-
lems with the definition of renormalized Hamiltonians. For
an earlier suggestion that momentum-space maps are not all
that different from real-space maps, see also@13#.

As we remark at the end of Sec. IV, these problems can
be interpreted as a manifestation of the well-known ‘‘large-
field problem.’’ It might be hoped that the considerable ex-
perience accumulated in the treatment of this type of prob-
lem could be of help to control the non-Gibbsianness
‘‘pathologies.’’

II. MOMENTUM TRANSFORMATIONS

We consider Ising spinssxW521,11 on a lattice,xWPZd.
For each finite periodic cubeV5@2N,N#d in Zd we define
the Fourier-transformed variables

ŝkW
V
ª(

xWPV

sxWe
2 ikW•xW, ~2.1!

where kW•xWªk1x11•••1kdxd , and eachki belongs to the
Brillouin zone: BN5$2p,2p@121/(2N11)#, . . . ,
p@121/(2N11)#,p%. The inverse of Eq.~2.1! is

sxW5
1

~2N11!d (
kWPB N

d
ŝkW

V
eikW•xW ~2.2!

for xWPV.
A momentum-space transformationis defined in two

steps.
~i! A cutoff is applied to the variablesŝkW

V :

ŝkW
8V
ª f̂ ~kW !ŝkW

V . ~2.3!

The volume-independentcutoff function f̂ is designed so as
to keep only momenta smaller than a certain thresholdk0.
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~ii ! Momenta are rescaled by the factork0 so as to return
to a Brillouin zone in@2p,p#d:

ŝkW8
8V
ª f̂ ~kW8k0 /p!ŝkW8k0 /p

V . ~2.4!

In addition, the renormalized variablesŝkW8
8V are usually res-

caled in applications. We will not do this, as we shall not
apply the transformation more than once.

In Wilson’s original approach@and references therein#

@14#, the cutoff functionf̂ (kW ) was chosen simply as the step
function

xk0
~kW !ªH 1 if uki u<k0 , i 51, . . . ,d

0 otherwise.
~2.5!

It was quickly realized, however, that such a sharp cutoff
leads to unwanted long-range terms in the renormalized
Hamiltonian~see, e.g.,@14#, p. 153#, @15#, Appendix 2#!. To
avoid such terms one usually takes smooth momentum cut-
offs, that is, functionsf̂ which go to zero in a sufficiently
differentiable fashion. Such functions are obtained, for in-
stance, via a convolution

f̂ ~kW !5 (
lW PB N

d
dD~kW2lW !xk0

~kW ! ~2.6!

with a smoothd-like functiondD peaked atk50 of width D.
Rigorously speaking, one is interested in the limitV

→Zd of this procedure. To make sense of this limit we return
to real space, where the prescription~2.4! translates into the
relation

sxW8
8V

5 (
yWPV

f V~LxW82yW !syW , xW8PV/L, ~2.7!

wheref V is theV-dependent~inverse! discrete Fourier trans-
form of f̂ and

Lª
p

k0
. ~2.8!

The volumeV is assumed to be a disjoint union of cubes of
side L ~i.e., N is a multiple ofL). As V→Zd, the function
f V(xW ) tends to

f ~xW !ª
1

~2p!dE
2p

p

f̂ ~kW !e2 ikW•xWdkW . ~2.9!

A sharp cutoff in momentum space gives rise to anonsum-

mable function f, i.e., (xWPZdu f (xW )u5`. @The inverse trans-
form of xk0

is proportional to the function

) i 51
d sin(k0xi)/(k0xi)]. Summability is restored iff̂ is smooth

enough~for example, once differentiable!. In such a case,
expression~2.7! remains valid in the thermodynamic limit:

sxW8
8 5 (

yWPZd
f ~LxW82yW !syW , ~2.10!

and the renormalized spins remainboundedin this limit.
They may take a large number of values, but within some
finite interval.

Expression ~2.10! shows that a cutoff in momentum
space, even a smooth one like Eq.~2.6!, leads tononlocal
averages in real space, i.e., to functionsf extending to infin-
ity. This is the distinctive feature with respect to the real-
space transformations analyzed, for instance, in@8#. Never-
theless, it is expected that ‘‘the physics behind integration
over fluctuations having wave numbers@ uki u.k0# is the
same as the physics behind the formation of blocks of spins
having volume@Ld# in real space’’@@16#, Section 4.2#. To
ensure this, the momentum-space cutoff should lead to an
almost localaverage in real space. That is, the functionf
should decay rapidly outside of a region of size not much
larger thanL. We see that iff has a Fourier transform of the
type ~2.6!, the contribution of spins outside the volume of
sizeL is of order ln(D/k0). We conclude that the cutoff func-
tion f̂ must approach zero in a ‘‘gradual’’ manner, that is,
with D of the order ofk0 in Eq. ~2.6!.

A soft momentum cutoffis a functionf̂ that is smooth and
gradual in the above sense.

III. THE PHENOMENON OF NON-GIBBSIANNESS

A state ~probability measure or distribution! is called
Gibbsian if it can be written in terms of Boltzmann-Gibbs
weights for an ‘‘acceptable Hamiltonian@which# . . . must
satisfy the additional requirement of locality . . .@that is,# a
quantity that is additive over distant lattice sites’’@@14#, p.
145#. In other words, Hamiltonians must be such that the
energy of disjoint volumes is additive except for boundary
terms whose contribution is small in comparison with the
volumes. For classical lattice systems, the appropriate re-
quirement is that the flipping of one spin lead to afinite
energy change whatever the configuration of the remaining
spins is. If the system involves spins forced to satisfy certain
conditions~local, like hard-core, or global, as in the example
below!, the finite-energy-change requirement must be ad-
justed appropriately because the overall constraint may pre-
vent the flipping of a single spin or of isolated groups of
spins. Let us be precise about this.

The Boltzmann-Gibbs weights are constructed via finite-
volume Hamiltonians which are, in general, sums of many-
body terms: For each finite volumeL in Zd ~for instance, a
cube!, they take the form

HL~s!5 (
B:BùLÞB

FB~sB!, ~3.1!

where eachFB is a (L-independent! function only of the
spins in the finite setB,Zd, i.e., of the variablessB
5$sxW%xWPB . For Ising spins, these functionsFB are usually
written in the formJB)xWPBsxW ; the general expression~3.1!
is more suitable for spins larger than 1/2, where one would
need powers ofsxW , and also for some particular spin-1/2
interactions @17#. Obviously certain summability require-
ments are needed to make sense of formula~3.1!, or, equiva-
lently, to ensure that the boundary terms —that is, the terms
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corresponding to setsB that intersect bothL and its
complement— have a small contribution compared with the
volume ofL.

Let us first consider systems of spins not subjected to any
local or global conditioning~we are reserving the word
‘‘constraint’’ for the ‘‘constrained spin system’’ to be intro-
duced below!. When the interaction is of finite range there is
nothing to impose: For each finiteL, there are only a finite
number of contributing boundary terms, all of which have
diameter smaller than the range. For more general systems,
involving terms with arbitrarily long range, the default re-
quirement is

supxW (
B{xW

iFBi,`, ~3.2!

where iFBiªsupsuFB(sB)u. From the physical point of
view, this is the condition, mentioned above, that a single flip
produce a finite energy change. From the mathematical point
of view, besides ensuring the summability of Eq.~3.1! for
everys, this condition leads to a natural property amounting
to ‘‘independence from infinity’’ of the Hamiltonians. In-
deed, while for non-finite-range systems the dependence of
the Hamiltonian~3.1! on boundary spins—that is, onsx with
x¹L— may extend to the whole of the complement ofL,
condition~3.2! implies that this dependence must decay with
the distance to the regionL. This property, which is called
quasilocality, was central to the arguments presented in
@6,7#. Let us state it precisely. We take a sequence of cubes
U.L with larger and larger radius andfix the configuration
s inside U, in particular in the intermediate, ‘‘buffer,’’ re-
gion U\L ~see Fig. 1!. It is not hard to see that the summa-
bility condition implies~in fact, it is equivalent to! the fol-
lowing fact. Let us denotesUh the configuration

~sUh!xW5H sxW if xWPU

hxW if xWPZd\U.
~3.3!

Then,

sup
hĥ

uHL~sUh!2HL~sUĥ !u →
U→Zd

0 ~3.4!

for all configurationss and all finite regionsL. That is,
asymptotically the Hamiltonian becomes independent of
what happens outsideU.

The Boltzmann-Gibbs weights

rL~s!ª
exp@2bHL~s!#

ZL~s!
~3.5!

@ZL(s) is the obvious normalization factor#, constructed
with the Hamiltonians~3.1!, inherit the quasilocality prop-
erty ~3.4!:

sup
hĥ

urL~sUh!2rL~sUĥ !u →
U→Zd

0 ~3.6!

for all cubesL and configurationss. We remark that this
‘‘independence from infinity’’ of the finite-volume probabil-
ity distributions is there regardless of whether the~infinite-
volume! system exhibits long-range order or not. For in-
stance, for the Ising model, the left-hand side of Eq.~3.6! is
exactlyzero for all temperatures onceU contains the neigh-
bors ofL, while the long-range-order properties depend on
the temperature. From a probabilistic point of view, Eq.~3.6!
is saying that theconditionalfinite-volume probabilities are
‘‘insensitive’’ to what happens at infinity. The fully infinite-
volume distribution need not be so.

In @6,8–10# it is shown that for a number of real-space
renormalization transformations in different regions of the
phase diagram of Ising and Potts models, this quasilocality
property isviolated for the renormalized weights for some
L8 ~usually very small, formed by one or two sites!, and
some configurations8. By the above chain of implications,
this shows that in these instances the renormalized weights
cannot be written as Boltzmann-Gibbs weights for an
acceptable—in Wilson’s and Kogut’s sense—renormalized
Hamiltonian. That is, while the renormalized Boltzmann-
Gibbs weights

rL8
8 ~s8!5

1

ZL8~s8!
‘ ‘ (

s→s8
’ ’exp@2bHL~s!# ~3.7!

are always well defined, it isnot true that the family of
identities

exp@2b8HL8
8 ~s8!#ª ‘ ‘ (

s→s8
’ ’exp@2bHL~s!# ~3.8!

give rise to HamiltoniansH8 that can be written in the form
~3.1! for a suitable interaction thatsatisfies the summability
condition~3.2!. This is the phenomenon of non-Gibbsianness
referred to in the title of this section.

The symbol ‘‘( ’’ in Eqs. ~3.7! and~3.8! is a reminder that
the operation involved may not be a standard sum because
there may be uncountably many original configurationss
leading to the same renormalized configurations8. In these
cases, the operation is rather a sum combined with a suitable
limit procedure, or, in mathematical terms, an integral with
respect to the product measure)xWPZd@(1/2)(hxW

#. @The reader
interested in the rigorous construction of Eq.~3.7! is referred
to the discussion in@@8#, pp. 987–990#. On the other hand,
the notations→s8 represents the space oforiginal spins
constrainedto produce the indicated renormalized spins8.
In this paper we reserve the nameconstrained systemfor
such a system of original spins.

The preceding discussion has to be slightly adapted for
the case of the momentum transformations~2.10!, because
they lead to spin configurations subjected to the global con-
dition of being images of Eq.~2.10!. For the sake of brevity,

FIG. 1. Test for quasilocality. AsU tends toZd while keeping
fixed the configuration insideU, the energy insideL should asymp-

totically become independent of the configurationh or ĥ outsideU.
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let us callprofilesthese image —or renormalized— configu-
rations. They have spin values

2 (
yWPZd

u f ~yW !u<sxW8
8 < (

yWPZd
u f ~yW !u, ~3.9!

and they form a space with a rather cumbersome structure.
For instance, it is in general impossible to find different pro-
files takingexactlythe same values on a~finite or infinite! set
U. The notion of quasilocality, Eq.~3.4! or ~3.6!, loses,
therefore, its original meaning. Rather, the ‘‘independence
from infinity’’ should be understood as the followingconti-
nuity property: Given any«.0 one has that forU8,Zd

large enough andd.0 small enough

usxW8
8 2vxW8

8 u,d,xW8PU8⇒urL8
8 ~s8!2rL8

8 ~v8!u<«.
~3.10!

This property is satisfied, for instance, if the renormalized
Hamiltonian on the profiles is of the form~3.1! for an inter-
action that is summable in the sense~3.2!. The purpose of
this paper is to show that there exists one momentum trans-
formation such that, at least at low temperatures, the renor-
malized system lacks property~3.10!, and hence there is no
renormalized Hamiltonian defined in the usual sense. We
shall determine, in Sec. IV,oneparticular profiles8 ~equal
to ‘‘all-0’’ ! for which Eq. ~3.10! is violated for a particular
L8 ~formed by two consecutive sites!. Of course, it is natural
to wonder how relevant the phenomenon is from the physical
point of view, given that the discontinuity involves few and
atypical configurationss8. We shall comment on this point
in Sec. V.

The lack of continuity~3.10! @or quasilocality~3.6!# can
be interpreted as exhibiting some sort of ‘‘action at a dis-
tance’’: Infinitely far away spin-flips produce a sizeable
change close to the origin,even when the intermediate renor-
malized spins are (almost) frozen. This is in contrast with the
usual behavior in equilibrium statistical mechanics~Gibbsian
behavior! where changes at infinity can propagate only
through fluctuations of intermediate spins. It is not hard to
imagine the explanation: A fixed renormalized configuration
still allows fluctuations in the corresponding constrained sys-
tem of original spins. These fluctuations act as ‘‘hidden de-
grees of freedom’’ that in some instances can bring informa-
tion from infinity. This happens when the constrained system
of original spins develops long-range correlations, i.e., when
it undergoes aphase transition. The argument of the next
section consists precisely in showing that for the chosen ex-
ample such a phase transition does take place.

IV. NON-GIBBSIANNESS DUE TO MOMENTUM
TRANSFORMATIONS

We consider the nearest-neighbor ferromagnetic Ising
model inL5Z2,

H52 (
^xW ,yW &

sxWsyW1h(
yW

syW , ~4.1!

at low temperatures, that is, largeb. It has been shown that
the low-temperature states for this model under a~local!
block-average transformation with even block sizes are

mapped onto non-Gibbsian states@@8#, Theorem 4.6#. A very
simple example of this phenomenon for 1 by 2 blocks was
presented in@18#. We shall now prove a similar result for a
momentum transformation of the type introduced above.

Let us first sketch some intuition behind our argument. In
real space, the momentum transformation~2.10! looks ap-
proximately like an average. Expressions of this type have
been studied, for example, in@19,20# ~see also@@15# Appen-
dix 2# for a stochastic version!. Even when Eq.~2.10! in-
volves a sum over all spinsyW of the lattice, one would expect
that eachsxW8

8 is essentially determined only by the spinssyW

inside the block of sideL centered atLxW8. Therefore, the
mechanism causing non-Gibbsianness for average transfor-
mations@@8# Section 4.3.5# should apply to the present case
with minor adaptations.

We will take for our example the identity in one direction
and in the other direction the soft cutoff function:

f̂ ~k!5H cos2~k! for uku<p/2,

0 otherwise.
~4.2!

This function integrates out half of the momenta degrees
of freedom in this direction, which corresponds to taking a
~not strictly local! average over blocks of size 1 by 2, cen-
tered at sites with even coordinates in the direction in which
we renormalize.

Its Fourier transform is easily computable. Indeed,f (0)
5 1

4 , f (2)5 f (22)5 1
8 , and for all othern

f ~n!52
2

p
sinS n

p

2 D3
1

~n22!n~n12!
. ~4.3!

@In particular f (n)50 for all evennÞ0,62.#
The initial ~and crucial! part of the argument consists in

exhibiting a transformed configurationv8 such that the cor-
responding constrained system of original spins has a phase
transitionat zero temperature. The configuration in question
is vxW

850 for all xWPZ2. The corresponding original configu-
rations must, therefore, satisfy the constraint

(
l

f ~ l !v2n1 l50 ~4.4!

for eachn in the direction under consideration. We claim that
the only four ground states are the 4-periodic configuration
~strip state!

1122112211 ~4.5!

and its translates over distances 1, 2, or 3~while in the other
direction they are of course translation invariant!. It is imme-
diate to check that these configurations are compatible with
the constraint. Moreover, it is not difficult to check that un-
der the constraint~4.4! they are ground states.

Indeed, to lower the energy of the configurations one
needs a larger number of consecutive aligned spins. But we
claim that if there were a row of three identical spins, say
plus, next to each other, then constraint~4.4! could not be
satisfied. The idea is that the contribution of these three spins
cannot possibly be compensated by the remaining spins so as
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to make the sum~4.4! equal to zero. If the middle plus would
be on an even site, say at zero, this happens because

(
u l u>3

u f ~ l !u,min$ f ~0!1 f ~1!1 f ~21!

1v2f ~2!1v22f ~22!:v2 ,v22561%

5 f ~1!1 f ~21! S 5
4

33p D , ~4.6!

as a simple calculation shows. If, on the other hand, the
middle plus would be on an odd site, the interval of three
plus spins would need to have a minus spin both to its left
and to its right, otherwise we would have the situation just
shown to be impossible. In this case, we see that the con-
straint ~4.4!, centered at either the left or the rightmost plus
site, cannot be fulfilled because, once more, the ‘‘tail’’ can-
not compensate the central five spins. For instance, assuming
the origin is the rightmost plus of the block, this follows
from the fact that

(
u l u>3

u f ~ l !u,min$ f ~0!2 f ~1!1 f ~21!1v2f ~2!

1 f ~22!:v22561%5 f ~0! ~5 1
4 !.

~4.7!

We conclude that the constrained system has multiple,
namely four, ground states.

The remaining part of the argument follows closely the
presentation in@@8# Section 4.3.5#. There are three additional
steps.

~1! Existence of a phase transition at nonzero temperature
for the constrained system.This follows from a well-known
theory~Pirogov-Sinai theory@@21#, Chap. 2#, @@8#, Appendix
B#; note that as remarked in@22#, the theory also applies to
systems with constraints!. There is one extremal phase asso-
ciated to each of the four ground states.~Depending onf,
these constrained phases may involve only a small number of
configurations!.

~2! Selection of the phases of the constrained system via
block-spin boundary conditions.This requires the choice of a
profile s81such that if it is imposed in a sufficiently large
~but finite! volume, the constrained configurations deep in-
side this volume have to be close to the prescribed ground
state. This is straightforward, though a little cumbersome to
write. The procedure is as follows: For a given~large! region
U8, pick first a configurations1 such that~a! inside U8
coincides with the strip configuration~4.5! corresponding to
the phase to be selected, and~b! outside U8, is identical
equal to11. The corresponding profile is ours81. A calcu-
lation involving simple inequalities very much like Eqs.~4.6!
and ~4.7! shows thats1 is the only original configuration
yielding the profiles81. It was to ensure this uniqueness that
the ‘‘all-1 ’’ configuration was chosen for the exterior ofU8
~less extreme configurations would have destroyed this
uniqueness; of course the ‘‘all-2 ’’ configuration would have
worked equally well!. It is now easy to see that this profile
s81 does the job it was designed for. Indeed, for each set
M 8.U8 let us consider the familyOU8,M8

81 formed by all the
profiles obtained by performing the momentum transforma-

tion ~2.10! of all configurations coinciding withs1 inside
M 8. These profiles have two important properties.

~i! As M 8 grows, the profiles become arbitrarily close to
s81insideU8.

~ii ! Given any fixedL8, if U8.L8 is large enough, then
for M 8.U8 large enough all the constrained configurations
for profiles of OU8,M8

81 coincide with the initially selected
striped configuration insideL8. This is checked through the
same inequalities proving the uniqueness of the original con-
figuration for the profiles81. These inequalities are sharp,
hence they are insensitive to the effect of far away spins.

~3! ‘‘Unfixing’’ of the spins close to the origin.Alter the
previous setOU8,M8

81 by allowing arbitrary values ofsxW8
8 for

xW8 on a setL8 formed by the origin and one of its neighbors.
This corresponds to allowing fluctuations of these renormal-
ized spins. This leads to a final setOL8,U8,M8

81 of profiles. It is
clear, but boring to justify mathematically, that the probabil-
ity distribution for the spins atL8 will favor the configura-
tion corresponding to the selected strip configuration.~See
the discussion in@@8# Section 4.2#.!

The upshot of this argument is therefore the following.
Let OL8,U8,M8

81 andÔL8,U8,M8
81 be the families of profiles ob-

tained by the above procedure for two different strip configu-
rations~4.5!. Then the preceding argument shows that there
exists ac.0 such that

s8POL8,U8,M8
81 ,v8PÔL8,U8,M8

81 ⇒urL8
8 ~s8!2rL8

8 ~v8!u>c
~4.8!

for all large enoughU8.L8 for M 8.U8 sufficiently large.
This proves that a violation of Eq.~3.10! is obtained when
the profile insideU8 is close to the ‘‘all-0’’ configuration.
The fact that we have introduced another setM 8 is a conces-
sion to mathematical rigor: In this way the violation involves
opensets of configurations and this ensures that the phenom-
enon isessentialin probabilistic terms, that is, it cannot be
avoided by redefining probability weights in sets of measure
zero~open sets have nonzero renormalized measure because
so do the initial measures, and smooth momentum transfor-
mation are continuous!.

We see that the argument is insensitive to the presence of
a magnetic field~because the constrained system is asked to
have small magnetization!, thus we are proving non-
Gibbsianness for low temperatures butarbitrary magnetic
field.

V. COMMENTS AND CONCLUSIONS

The present example of non-Gibbsianness as a conse-
quence of momentum-space transformations confirms the
suspicion of Griffiths@12# that ‘‘no peculiarities of this sort
have been found . . . ,which may merely reflect the fact that
no one has looked for them!’’ Nevertheless, one should not
draw too radical conclusions from this occurrence. On the
practical side, the main implication of non-Gibbsianness is
that one has to be very careful in designing renormalization
group transformations. This is in complete agreement with
what the founders and various practitioners of
renormalization-group methods have been saying all along.

Indeed, already Wilson and Kogut in their classic review
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emphasized ‘‘Otherwise,@that is, nonperturbatively#, the lo-
cality of @the renormalized interactions# is a nontrivial prob-
lem, which will not be discussed further’’@@14#, p. 145#. And
more explicitly, Fisher in his ‘‘Renormalization Group De-
siderata’’ listed the conditions needed for a successful renor-
malization scheme in Hamiltonian space: ‘‘A renormaliza-
tion group for a space of Hamiltonians should satisfy the
following: ~A! Existencein the thermodynamic limit, . . . ,
~C! Spatial locality, . . . , oneshould be able to identify the
same regions of space and associated local variables before
and after the transformation’’@@1#, Section 5.4.2#.

Our example adds to the numerous instances showing that
perversely or sloppily designed transformations can lead
people into trouble. As Goldenfeld points out in his book
Lectures on Phase Transitions and the Renormalization
Group @@3#, p. 268#, ‘‘It is dangerous to proceed without
thinking about the physics.’’ The moral is, then, that renor-
malization transformations must be carefully crafted and
case-tailored. Already Wilson, as quoted in@@23#, p. 492#,
warned ‘‘One cannot write a renormalization cookbook.’’

On the foundational side, examples like the present one
confirm the view expressed by Benfatto and Gallavotti@2# in
the opening sentence of their bookRenormalisation Group,
‘‘The notion of Renormalisation Group is not well-defined.’’
It is clear that the mathematical formalization of the method
requires much more than a naive approach in terms of
Hamiltonians and flows of coupling constants. In fact, the
example of this paper illustrates some features pointing into
promising directions for a better mathematical understanding
of the renormalization-group framework.

First, our problematic profiles were configurations with
small magnetization. At low temperatures, this corresponds
to a large fluctuation from the typical behavior, in which the
magnetization in a region of widthL is either positive or
negative of orderO(Ld). Renormalized effective interactions
are known not to be adequate to describe such large values of
the fluctuation field@20#; geometric expansions are much
more suitable. This suggests to combine renormalization-
group ideas with this type of expansion—cluster or polymer
expansion—to circumvent the ill-definedness of the renor-
malized Hamiltonian. These expansions have indeed been
successfully applied in the rigorous control of
renormalization-group transformations of unbounded-spin
systems @@19,20#, and references therein#. A related ap-
proach, for bounded-spin systems, resorted to the renormal-
ization of Peierls-like contours@24#.

This observation supports the idea that spin variables may
be the ‘‘wrong’’ variables and that the appropriate variables
in the presence of first-order transitions are nonlocal vari-
ables such as contours. It should be pointed out, however,
that the use of contours requires the consideration of differ-
ent ~contour! ensembles for separate phases. This would go
against the usual renormalization-group description based on

flows of parameters in spaces where the various parts of the
phase diagram can be connected, at least in a neighborhood
of the critical point. In this regard, the approach based on
low-temperature contour variables provides at best a partial
answer to the problem of rigorously justifying
renormalization-group calculations.

The second feature of our example is that the violation of
continuity was detected for a renormalized configuration that
is rather atypical~for instance, it will never be generated in
any reasonable numerical simulation scheme!. This seems to
be a systematic feature of most examples, and prompted Do-
brushin to propose the study of these measures with tech-
niques borrowed from the treatment of other known systems
where it is necessary to exclude sets of ‘‘bad’’ configura-
tions, namely unbounded spin systems and systems exhibit-
ing Griffiths singularities. This has given rise to a healthy
body of work@25–34#. As an upshot, a more general theory
involving a wider class of allowable Hamiltonians has been
proposed. This theory leads to the notion of ‘‘weak Gibb-
sianness’’ which seems a promising framework for a unified
treatment. See, for instance,@35# for a review of results in
this and related directions.

We think our result illustrates and clarifies to some extent
the reason why finding a good renormalization-group scheme
is such a nontrivial task, not only for strictly local but also
for only approximately local transformations. We produced
an example in the low-temperature regime, but the fact that
the mechanisms of non-Gibbsianness are so similar for real-
space and momentum-space transformations leads us to the
conjecture that, as in real space, also in momentum-space
one cannot trust that in general the critical region is free of
problems.
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