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Abstract

The notion of balanced realizations for nonlinear state space model reduction problems was 2rst introduced by Scherpen
in 1993. Analogous to the linear case, the so-called singular value functions of a system describe the relative importance
of each state component from an input–output point of view. In this paper it is shown that the procedure for nonlinear
balancing has some interesting ambiguities that do not occur in the linear case. Speci2cally, distinct sets of singular value
functions and balanced realizations are possible. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Balanced realizations for nonlinear state space model reduction problems was 2rst introduced by Scherpen
in [9]. Analogous to the Gramians matrices used in the linear case, controllability and observability (energy)
functions are used to determine how important each state component is in in;uencing the input–output map
of the system. These functions are then transformed, through a change of coordinates, into a simultaneous
diagonal form in order to identify the so-called singular value functions of the system. In the linear case, these
functions are equivalent to the square of the (constant) Hankel singular values of the system. State truncation
is 2nally accomplished by examining the singular value functions in a neighborhood of 0 and deleting states
that correspond to the smallest singular value functions in a local sense.
The procedure for nonlinear balancing, however, has two interesting ambiguities that do not occur in the

linear case. First, it appears that the singular value functions de2ned in [9] are dependent on a particular
factorization of the observability function. It will be shown by example that in a 2xed coordinate frame this
factorization is not unique, and thus other distinct de2nitions for the singular value functions are possible. Of
course, this is of great concern in model reduction applications since decisions about state deletion should only
depend on the coordinate frame of the state space and on intrinsic qualities of the input–output map [7,8,10].
(Analogous issues arise in other applications where state dependent matrices are introduced, e.g. state depen-
dent Riccati equations and linear parameter varying (LPV) systems.) Next, given a 2xed factorization, there
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is a rich source of nonuniqueness for singular value functions via norm preserving coordinate transformations.
However, the particular subclass of orthogonal transformations has a natural kind of invariance property.
The paper is organized as follows. In Section 2, the background for the problem is provided by outlining

some standard results on nonlinear balanced realizations from [9]. Then a simple example is given to illustrate
the nonuniqueness phenomena. In Section 3, each nonuniqueness source is examined independently, and the
notion of consistency conditions is introduced. The 2nal section summarizes the conclusions of the paper.
The mathematical notation used throughout is fairly standard. Vector norms are represented by ‖x‖=

√
xTx

for x∈Rn. L2(a; b) represents the set of Lebesgue measurable functions, possibly vector-valued, with 2nite L2

norm ‖x‖L2 =
√∫ b

a ‖x(t)‖2 dt. If L : Rn �→ R is a diIerentiable function, then its partial derivative @L=@x will
be the row vector of partial derivatives @L=@xi where i=1; : : : ; n.

2. The nature of the problem

Let M be an n-dimensional smooth manifold, and let

ẋ=f(x) + g(x)u;

y= h(x)

be a system de2ned in terms of local coordinates on M with u(t)∈Rm and y(t)∈Rp. It is assumed that f, g
and h are smooth on M, f(0)= 0 and h(0)= 0. The corresponding controllability and observability functions
(or energy functions, collectively) for such a system are de2ned below.

De�nition 2.1. The controllability and observability functions for the system (f; g; h) are de2ned, respectively,
as

Lc(x)= min
u∈L2(−∞;0)

x(−∞)=0; x(0)=x

1
2

∫ 0

−∞
‖u(t)‖2 dt

and

Lo(x)=
1
2

∫ ∞

0
‖y(t)‖2 dt;

when x(0)= x, and u(t)= 0 for 06 t ¡∞.

In order for a balanced realization to exist, the following system properties are assumed:

1. f is asymptotically stable on some neighborhood Y of 0.
2. The system (f; g; h) is zero-state observable on Y .
3. Lc and Lo exist and are smooth on Y .

The next collection of results form the core of the standard nonlinear balancing procedure.

Lemma 2.1 (Milnor [5]). Let L be a smooth real-valued function on a convex neighborhood V ⊂ Rn of 0
with L(0)= 0. Then L exhibits the factorization

L(x)= aT(x)x;

where a is the smooth vector >eld on V with component functions

ai(x)=
∫ 1

0

@L
@xi

(tx1; : : : ; txn) dt:

Observe that aT(0)= @L=@x(0), and in fact any factorization of the form L(x)= ãT(x)x necessarily has the
property that ãT(0)= @L=@x(0). The following lemma comes from applying Morse’s Lemma to Lc [5], and
the above lemma twice to Lo.
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Lemma 2.2. For a system (f; g; h) with corresponding energy functions (Lc; Lo), there exists a coordinate
transformation x=�( Nx), �(0)= 0, de>ned on a neighborhood V of 0 which converts the system into an
input-normal realization, where

NLc( Nx) :=Lc(�( Nx))= 1
2 Nx

T Nx;

NLo( Nx) :=Lo(�( Nx))= 1
2 Nx

TM ( Nx) Nx

with M an n×n symmetric matrix-valued function having smooth component functions on NV :=�−1(V ) and
M (0)= @2 NLo=@ Nx2(0).

NLc and NLo are the energy functions for the transformed system ( Nf; Ng; Nh) since each satis2es the corre-
sponding Hamilton–Jacobi–Bellman equation. Analogous to the above observation, any factorization of the
form NLo( Nx)= 1

2 Nx
TM ′( Nx) Nx necessarily has the property that M ′(0)= @2 NLo=@ Nx2(0). In order to diagonalize M ,

the following technical lemma is needed.

Lemma 2.3 (Kato [3]). If there exists a neighborhood NV of 0; where the number of distinct eigenvalues of
M is constant everywhere NV ; then the eigenvalues and orthonormalized eigenvectors (�i; pi); i=1; : : : ; n of
M are smooth functions of Nx∈ NV .

Theorem 2.1. For a system (f; g; h) satisfying the condition in Lemma 2:3; there exists a coordinate
transformation x=  (z);  (0)= 0, de>ned on a neighborhood U of 0 which converts the system into a
input-normal=output-diagonal realization, where

L̃c(z) :=Lc( (z))= 1
2 z

T z;

L̃o(z) :=Lo( (z))= 1
2 z

T diag(�1(z); : : : ; �n(z))z

with �1(z)¿ · · ·¿ �n(z) being smooth functions on W :=  −1(U ).

The set of functions �i, i=1; : : : ; n are called the singular value functions of (f; g; h). The 2nal step of this
balancing procedure is given below.

Theorem 2.2. For the system in Theorem 2:1; there exists a coordinate transformation z=  ( Nz);  (0)= 0;
de>ned on the neighborhood W of 0 which converts the system into a balanced realization, where

PLc( Nz) := L̃c( ( Nz))

= 1
2 Nz

T diag(!( Nz1)−1; : : : ; !( Nzn)−1) Nz

PLo( Nz) := L̃o( ( Nz))

= 1
2 Nz

T diag(!1( Nz1)−1�1( −1( Nz)); : : : ; !n( Nzn)−1�n( −1( Nz))) Nz;

with !i( Nzi) := �i(0; : : : ; 0;  −1
i ( Nzi); 0; : : : ; 0)1=2 for i=1; : : : ; n.

Note that along coordinate axes it is easily veri2ed for i=1; : : : ; n that

PLc(0; : : : ; 0; Nzi; 0; : : : ; 0) = 1
2 Nz

2
i !i( Nzi)−1

PLo(0; : : : ; 0; Nzi; 0; : : : ; 0) = 1
2 Nz

2
i !i( Nzi):

To illustrate the nonuniqueness features in the above balancing procedure, consider the following example.
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Example 2.1. Consider the system well de2ned on an open neighborhood of 0 in R2:

f(x)=−
[
"2x1 + 2"x2 + ("2 − 2)x22

x2

]
;

g(x)=
√
2
[
"− 2x2

1

]
;

h(x)=
1√
3
(3"(x1 + x22) + ("− 2

√
2)x2);

where "=(
√
3 +

√
2)(

√
3 + 2). The corresponding energy functions can be shown to be

Lc(x)= 1
2 (x

2
1 + 2x1x22 + x22 + x42);

Lo(x)= 1
4 (3x

2
1 + 2x1x2 + 6x1x22 + 3x22 + 2x32 + 3x42)

for all x∈R2. Now applying the coordinate transformation

x=�( Nx)=
[
Nx1 + Nx21

Nx2

]
yields an input-normal form with energy functions:

Lc( Nx)= 1
2 NxT Nx;

Lo( Nx)= 1
2 Nx

TM ( Nx) Nx= 1
2 NxT

[
3
2

1
2

1
2

3
2

]
Nx:

Since M is constant in this representation, the singular value functions appear to be the constant functions:
�1(z)= 2; �2(z)= 1 in the diagonalized coordinate frame x=  (z). The situation is more complex, however,
than it 2rst appears. For example, consider the smooth symmetric matrix-valued function

A( Nx)= c1( Nx)

[
−2 Nx2 Nx1
Nx1 0

]
+ c2( Nx)

[
0 Nx2
Nx2 −2 Nx1

]
;

where c1; c2 ∈C∞(R2), the ring of smooth real-valued functions de2ned on R2. Since NxTA( Nx) Nx=0 everywhere
on R2 and A(0)= 0, another input-normal form in the same coordinate system is:

NLc( Nx)= 1
2 NxT Nx;

NLo( Nx) = 1
2 Nx

T(M ( Nx) + A( Nx)) Nx

:= 1
2 Nx

TM ′( Nx) Nx

= 1
2 NxT

[
3
2 − 2c1( Nx) Nx2 1

2 + c1( Nx) Nx1 + c2( Nx) Nx2
1
2 + c1( Nx) Nx1 + c2( Nx) Nx2 3

2 − 2c2( Nx) Nx1

]
Nx: (1)

For most choices of c1; c2, the condition in Lemma 2.3 is satis2ed, and thus M ′ is smoothly diagonalizable.
Consider, for example, the case: c1( Nx)= Nx1 and c2( Nx)= Nx2. Then it follows that the eigenvalues of M ′ are
�′1( Nx)= 2 + ( Nx1 − Nx2)2 and �′2( Nx)= 1 − ( Nx1 + Nx2)2, which are distinct everywhere on R2. The diagonalizing
transformation

x=  ′(z′)=

[ 1√
2
+ 1

2 z
′
1 − z′2

1√
2
+ 1

2 z
′
2

1√
2

− 1√
2

]
z′
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Fig. 1. The singular value functions for Example 2.1 when c1(x)= c2(x)= 0 (light gray), and when c1(x)= x1 and c2(x)= x2 (dark gray).

yields the corresponding input-normal=output-diagonal form:

L̃
′
c(z

′) :=Lc( ′(z′))= 1
2 (z

′)Tz′;

L̃
′
o(z

′) := Lo( ′(z′))

= 1
2 (z

′)T diag(�′1(z
′); �′2(z

′))z′

= 1
2(z

′)T diag(2 + 2(z′2)
2; 1− 2(z′1)

2)z′:

Thus, it is clear that a diIerent factorization of Lo, via the introduction of the matrix-valued function A,
leads to a diIerent set of singular value functions. Note, however, that they are identical along respective
coordinate directions, i.e., �′1(z

′
1; 0)= �1(z1; 0) and �′2(0; z

′
2)= �2(0; z2). This is illustrated in Fig. 1. However,

notice in Fig. 2 that this relation does not hold for every set of ci functions. Furthermore, observe that any
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Fig. 2. The singular value functions for Example 2.1 when c1(x)= c2(x)= 0 (light gray), and when c1(x)= x32 and c2(x)= − 3x31
(dark gray).

coordinate transformation of the form x= &(w)=T (w)w with TT(w)T (w)= I transforms the energy func-
tions in (1) to yet another input-normal=output-diagonal form after applying the diagonalizing transformation
w=  ̂ (y):

L̂c(y) :=Lc((& ◦  ̂ )(y))= 1
2y

Ty;

L̂o(y) :=Lo((& ◦  ̂ )(y))= 1
2y

T diag(�̂1(y); �̂2(y))y;

where �̂i(y)= �i((& ◦  ̂ )(y)), i=1; 2. Such orthogonal transformations thus represent a second source of
nonuniqueness that has immediate consequences in nonlinear balancing and model reduction. In the next
section these issues are considered in detail.
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3. Sources of nonuniqueness

In this section two sources of nonuniqueness in computing the singular value functions of a system are
examined: the addition of a null matrix function and a norm preserving coordinate transformation.

3.1. Null matrix functions

Let V be an open neighborhood of 0, and let C∞(V ) denote the abelian ring of smooth real-valued
functions de2ned on V . (Addition and multiplication are de2ned in the obvious pointwise fashion on V , see
for example [4].) Let Mn(C∞(V )) denote the set of n× n matrices with components from C∞(V ). Using the
usual notions of matrix addition and multiplication, Mn(C∞(V )) is an associative ring with identity [2]. The
subset Sn(C∞(V )) consists of all symmetric matrices in Mn(C∞(V )). The following subset of Sn(C∞(V )) is
most relevant in this paper.

De�nition 3.1. A(V ) ⊂ Sn(C∞(V )) is the set of matrix-valued functions on V where A∈A(V ) if

i. A(0)= 0,
ii. xTA(x)x=0; ∀x∈V .

Any A∈A(V ) is called a null matrix function on V . Properties of A(V ) are considered in the following
lemma, and then an application is given in the subsequent lemma.

Lemma 3.1. For any neighborhood V of 0; the following statements are true:

i. A(V ) is a vector space over R.
ii. A(V ) is a module over C∞(V ).
iii. The matrix A ≡ 0 is the only constant matrix in A(V ).
iv. The relation M ∼ M ′ ⇔ M −M ′ ∈A(V ) is an equivalence relation on Sn(C∞(V )).

Proof. Proofs of these statements are elementary.

Lemma 3.2. On any neighborhood V of 0 and for any M;M ′ ∈ Sn(C∞(V ))

xTM (x)x= xTM ′(x)x; x∈V ⇔ M ∼ M ′:

Proof. The proof is trivial using the fact that the equivalence on the left-hand side also implies M (0)=
M ′(0).

An interesting observation about the set A(V ) is its relationship to an isotropy subgroup of the matrix
group

GLn(C∞(V )) := {E ∈Mn(C∞(V )): ∃F ∈Mn(C∞(V )) with EF = I};
where I denotes the identity matrix [6]. Viewing GLn(C∞(V )) as a transformation group on V with the usual
group action

 : GLn(C∞(V ))× V �→ V

: (E; x) �→ E(x)x;

the isotropy subgroup for any x∈V is

Ix := {E ∈GLn(C∞(V )): E(x)x= x}:
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The corresponding isotropy subgroup for V is

IV :=
⋂
x∈V

Ix:

Now given any symmetric element Ẽ ∈ IV such that Ẽ(0)= I , it is immediate that Ẽ − I ∈A(V ), that is,

xT(Ẽ(x)− I)x= xT(Ẽ(x)x − x)= 0:

However, it is easy to 2nd examples of null matrices with no corresponding element in IV . Speci2cally, it
is possible for xTA(x)x=0 everywhere on V without A(x)x=0. Hence, the usual methods associated with
matrix groups do not completely describe the nature of A(V ).
Returning now to the main problem, it was observed in the example from the previous section that the

equivalence M ∼ M ′ on Sn(C∞(V )) does not imply equivalence of their respective pointwise spectra. This
is a fundamental source of nonuniqueness in the calculation of the singular value functions of a system.
However, it is still possible to make some general statements relating their spectra. This is done using the
following result.

Lemma 3.3. If A∈A(V ) then its (i; j)th component function can be factored as aij(x)= "ij(x)x; where "ij

is a smooth vector >eld on V . In particular; the kth component of "ij; denoted "ijk ; satis>es

i. "ijk(0)= @aij=@xk(0)
ii. "ijk(0) + "kij(0) + "jki(0)= 0; ∀i; j; k
iii.

∑
ijk ("ijk(x) + "kij(x) + "jki(x))xixjxk =0 on V .

Proof.

i. This result follows from the fact that A(0)= 0 and applying Lemma 2.1 componentwise to A.
ii. Since xTA(x)x=0 everywhere on V then

@3

@xi@xj@xk
(xTA(x)x)

∣∣∣∣
x=0

=
@aij

@xk
(0) +

@aki

@xj
(0) +

@ajk

@xi
(0)= 0:

iii. Observe that

xTA(x)x=
∑
ij

("ij(x)x)xixj =
∑
ijk

"ijk(x)xixjxk =0:

Hence,

3
∑
ijk

"ijk(x)xixjxk =0;

∑
ijk

("ijk(x) + "kij(x) + "jki(x))xixjxk =0:

Next consider the following matrix perturbation theorem adapted from [1] (see p. 163).

Theorem 3.1. Let M0 ∈Rn×n be a simple symmetric matrix with eigenvalues {�i}ni=1 and orthonormal eigen-
vectors {pi}ni=1. For 0∈R and symmetric matrices M1; M2 ∈Rn×n de>ne

M (0)=M0 +M10+M20 2:

For su@ciently small |0|, the matrix M (0) is also simple, and its corresponding eigenvalues {�i(0)}ni=1 and
orthonormal eigenvectors {pi(0)}ni=1 depend analytically on 0, i.e.,

�i(0)= �(0)i + �(1)i 0+ �(2)i 0 2 + · · · ;
pi(0)=p(0)

i + p(1)
i 0+ p(2)

i 0 2 + · · · ;
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for i=1; 2; : : : ; n. In particular,

�(0)i = �i;

�(1)i =pT
i M1pi;

�(2)i =pT
i M2pi +

n∑
j=1
i �=j

1
�i − �j

|pT
i M1pj|2;

p(0)
i =pi;

p(1)
i =

n∑
j=1
i �=j

pT
i M1pj

�i − �j
:

A main result of the paper is given below.

Theorem 3.2. Suppose M ∈ Sn(C∞(V )) and M (0) is simple. Let {�i; pi} denote the smoothly de>ned eigen-
value and orthonormal eigenvector pairs for M on a neighborhood NV ⊂ V of 0 (cf. Lemma 2:3). Let
A∈A(V ) and de>ne M ′ =M + A with corresponding eigenvalues {�′i}ni=1. In the diagonalized coordinate
frame z=  −1(x) for M , the eigenvalues of M and M ′ are equivalent to >rst order along their respective
coordinate directions. That is, su@ciently close to 0

�′i( (0; : : : ; 0; zi; 0; : : : ; 0))= �i( (0; : : : ; 0; zi; 0; : : : ; 0)) + O(z2i ): (2)

Proof. Let M =P2PT be the spectral decomposition of M on NV . Then it follows directly that for any x∈ NV

M ′(x) =M (x) + A(x)

= P(x)2(x)PT(x) + A(x);

PT(x)M ′(x)P(x)︸ ︷︷ ︸
N (x)

=2(x) + PT(x)A(x)P(x)︸ ︷︷ ︸
B(x)

: (3)

Now set z=PT(x)x=  −1(x) or x=  (z), then

N ( (z))=2( (z)) + B( (z));

Ñ (z)= 2̃(z) + B̃(z): (4)

Note that Ñ (z) has the same eigenvalues as M ′( (z)) and B̃(z)∈A( −1( NV )), that is,

B̃(0)=B( (0))=B(0)= 0;

zTB̃(z)z = xTP(x)PT(x)A(x)P(x)PT(x)x

= xTA(x)x=0:

Now evaluate Eq. (4) in the ith coordinate direction

Ñ (0; : : : ; 0; zi; 0; : : : ; 0)= 2̃(0; : : : ; 0; zi; 0; : : : ; 0) + B̃(0; : : : ; 0; zi; 0; : : : ; 0):



228 W.S. Gray, J.M.A. Scherpen / Systems & Control Letters 44 (2001) 219–232

Fig. 3. Coordinate axis cross sections of the functions �1 and �2 in Example 2.1 when c1(x)= c2(x)= 0 (solid line), c1(x)= x1 and
c2(x)= x2 (dashed line), c1(x)= x32 and c2(x)=− 3x31 (marked ‘o’), and c1(x)= cos(x1)− 1 and c2(x)= 3sin(x2) (marked ‘+’).

If |zi| is suTciently small then

Ñ (0; : : : ; 0; zi; 0; : : : ; 0)= 2̃(0; : : : ; 0; zi; 0; : : : ; 0) +
dB̃
dzi

∣∣∣∣
zi=0︸ ︷︷ ︸

Bi

zi + O(z2i ):

In light of Theorem 3.1 it follows that

�′i( (0; : : : ; 0; zi; 0; : : : ; 0))= �i( (0; : : : ; 0; zi; 0; : : : ; 0)) + eTi Bieizi + O(z2i )

with ei =(0; : : : ; 0; 1︸ ︷︷ ︸
ith position

; 0; : : : ; 0)T. However, from Lemma 3.3, part ii, it is known that eTi Biei = [Bi]ii =0. Thus

the theorem is proven.

Remark. (a) In the context of the singular value functions, i.e., when Lo(x)= 1
2x

TM (x)x and L′
o(x)=

1
2x

TM ′(x)x, the identity (2) becomes

�′i( (0; : : : ; 0; zi; 0; : : : ; 0))= �i(0; : : : ; 0; zi; 0; : : : ; 0) + O(z2i ):

The left-hand side of this identity is only equivalent to the true singular value functions for M ′ along the
coordinates axes if the (orthogonal) diagonalizing transformation z′ =( ′)−1(x) for M ′ is identical to the
diagonalizing transformation z=  −1(x) for M . This is the case in Example 2.1 from the previous section,
M and M ′ are simultaneously diagonalized by the same coordinate transformation. In Fig. 3, the theorem is
illustrated for this example using various sets of ci functions.
(b) In general the eigenvalues of M and M ′ are not equivalent to second order or higher. However, if

matrix Bi =0 in the proof of Theorem 3.2 then equality up to second order follows from the expression for
�(2)i in Theorem 3.1. This is exactly the case in Example 2.1 for the 2rst choice of functions c1 and c2.
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3.2. Norm preserving coordinate transformations

A smooth coordinate transformation x= &(w) is said to be norm preserving on a convex neighborhood
of the origin, W , if ‖x‖= ‖w‖ for all w∈W . Since all such maps satisfy &(0)= 0, it follows directly from
Lemma 2.1 that there exists at least one factorization of the form &(w)=V (w)w where V ∈Mn(C∞(W )), and
V (0) is nonsingular on at least an open neighborhood of 0. Thus, it is immediate that everywhere on W

‖&(w)‖2 =wTV T(w)V (w)w=wTw

or equivalently, V T(w)V (w)− I =AV (w)∈A(W ). In the context of energy functions, norm preserving trans-
formations are interesting because they preserve input-normal forms, that is,

Lc(x)= 1
2x

Tx= 1
2w

Tw= L̂c(w):

A speci2c class of norm preserving transformations are the so-called orthogonal transformations, which are
characterized by having a factorization &(w)=T (w)w where TT(w)T (w)= I for all w∈W . That is, TTT is
a symmetric, constant element of the isotropy subgroup IW . The following theorem gives conditions under
which an orthogonal transformation can be extracted from a given norm preserving transformation.

Theorem 3.3. Suppose that v(w)=V (w)w is a smooth, nonsingular, norm preserving coordinate transfor-
mation on an open neighborhood W of 0. Assume that V is a smooth n× n matrix-valued function on W
and de>ne A=V TV − I ∈A(W ). Consider a smooth n × n matrix-valued function 7 such that 7(w)w=0
for all w∈W . Then v(w)= (V (w)+7(w))w is an orthogonal transformation if 7(w) satis>es the following
state dependent Riccati equation:

7T(w)V (w) + V T(w)7(w) + 7T(w)7(w) + A(w)= 0: (5)

Proof. By de2nition (V (w) + 7(w))w is an orthogonal factorization of v(w) if

(V (w) + 7(w))T(V (w) + 7(w))= I:

Rewriting the latter equation, and using the expression for A(w) yields (5).

In the following theorem, it is observed that orthogonal coordinate transformations preserve the singular
value functions in a natural sense.

Theorem 3.4. Consider a system (f; g; h) with singular value functions �i; i=1; : : : ; n derived from a speci>c
input-normal form: Lc(x)= 1

2x
Tx; Lo(x)= 1

2x
TM (x)x. Any orthogonal coordinate transformation, x= &(w)=

T (w)w, yields the corresponding singular value functions

�̂i = �i ◦  −1 ◦ & ◦  ̂ ; i=1; : : : ; n; (6)

where x=  (z) and w=  ̂ (y) are diagonalizing transformations for M (·) and M (&(·)), respectively.

Proof. After applying the coordinate transformation & and using the orthogonality condition, the new system
has the input-normal form

L̂o(w)= 1
2w

TT−1(w)M (&(w))T (w)︸ ︷︷ ︸
M̂ (w)

w: (7)

Hence, it follows that the matrices M (&(w)) and M̂ (w) have the same eigenvalues for each w. To compute
the singular value functions starting from M̂ (·), use the fact that x=  (z)=T (z)z diagonalizes M (x) in the
appropriate fashion, i.e.,

TT
 (z)M ( (z))T (z)= diag(�1(z); : : : ; �n(z)):
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Consequently,

TT
 ( 

−1 ◦ &(w))T (w)M̂ (w)T−1(w)T ( −1 ◦ &(w))

=TT
 ( 

−1 ◦ &(w))M ( ( −1 ◦ &(w)))T ( −1 ◦ &(w))

= diag(�1( −1 ◦ &(w)); : : : ; �n( −1 ◦ &(w)))

= diag(�̂1(y); : : : ; �̂n(y));

where y=  ̂
−1

(w) is the diagonalized coordinate frame for M̂ (w). Equating the diagonal terms on the
right-hand side of the last two equations gives

�̂i(y)= �i( −1 ◦ &( ̂ (y))):

Hence, the theorem is proven.

In Example 2.1, the 2rst set of singular value functions were the constant values �1(z)= 2 and �(z)= 1.
Thus, in light of Eq. (6), they are invariant under all orthogonal coordinate transformations. This eliminates
the possibility that such a transformation can relate {�i} to the second set of singular value transformations
{�′i} derived from adding a null matrix. The next theorem is a combination of Theorems 3.2 and 3.4 and
describes the eIect of a general norm preserving coordinate transformation on a given set of singular value
functions.

Theorem 3.5. Consider a system (f; g; h) with singular value functions �i; i=1; : : : ; n derived from a speci>c
input-normal form: Lc(x)= 1

2x
Tx; Lo(x)= 1

2x
TM (x)x de>ned on a neighborhood W of 0 with M ∈ Sn(C∞(V ))

and M (0) simple. Any norm preserving coordinate transformation, x= &(w)=V (w)w, where V (w) is a
smooth function of w yields the following singular value functions expressed in the diagonalized coordinate
frame for M (&(·)):

�′i( ̂ (0; : : : ; 0; yi; 0; : : : ; 0))= (�i ◦  −1 ◦ & ◦  ̂ )(0; : : : ; 0; yi; 0; : : : ; 0) + O(y2
i ); i=1; : : : ; n;

for yi su@ciently close to 0, and where x=  (z) and w=  ̂ (y) are the diagonalizing transformation for
M (·) and M (&(·)), respectively.

Proof. Since V (0) is always nonsingular, then suTciently close to 0 the matrix V (w) is invertible. Applying
the coordinate transformation & and using the identity

V T(w)=V−1(w)[I + V (w)AV (w)V−1(w)];

where AV a null matrix, gives a new input-normal form where

PLo(w)= 1
2w

T{[I + AV (w)]V−1(w)M (&(w))V (w)︸ ︷︷ ︸
M̂ (w)

}w

(cf. Eq. (7)). Letting

M ′(w)= M̂ (w) + AV (w)M̂ (w);

the proof proceeds similar to that of Theorem 3.2 (cf. Eq. (3)). That is, let M̂ =2PT be the spectral decom-
position near the origin. Then

PT(w)M ′(w)P(w)︸ ︷︷ ︸
N (w)

=2(w) + PT(w)AV (w)P(w)︸ ︷︷ ︸
B(w)

2(w):

After setting y=PT(w)V−1(w)w=  ̂
−1

(w) it follows that

N ( ̂ )(y)=2( ̂ (y))B( ̂ (y))2( ̂ (y));

Ñ (y)= 2̃(y) + B̃(y)2̃(y):
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As before, Ñ has the same eigenvalues as M ′, and B̃ is a null matrix. Along the ith coordinate direction and
suTciently close to the origin

Ñ (0; : : : ; 0; yi; 0; : : : ; 0) = 2̃(0; : : : ; 0; yi; 0; : : : ; 0)

+
d
dyi

[B̃(0; : : : ; 0; yi; 0; : : : ; 0)2̃(0; : : : ; 0; yi; 0; : : : ; 0)]|yi=0yi + O(y2
i )

= 2̃(0; : : : ; 0; yi; 0; : : : ; 0) +
d
dyi

[B̃(0; : : : ; 0; yi; 0; : : : ; 0)]|yi=0︸ ︷︷ ︸
Bi

2̃(0)yi + O(y2
i ):

Applying Lemma 3.3 and Theorems 3.1 and 3.2,

�′i( ̂ (0; : : : ; 0; yi; 0; : : : ; 0)) = �̂( ̂ (0; : : : ; 0; yi; 0; : : : ; 0)) + eTi Bi2̃(0)ei + O(y2
i )

= (�i ◦  −1 ◦ & ◦  ̂ )(0; : : : ; 0; yi; 0; : : : ; 0) + eTi Biei�i(0) + O(y2
i )

= (�i ◦  −1 ◦ & ◦  ̂ )(0; : : : ; 0; yi; 0; : : : ; 0) + O(y2
i ):

3.3. Consistency conditions

Given an input–output system and two distinct state space realizations related by a coordinate transformation,
it is desirable to identify a coordinate balancing procedure which will result in the same singular value
functions. At the heart of this problem are certain consistency conditions. First consider the smooth realization
(f(x); g(x); h(x)) with a smooth energy function L(x), which is related via a smooth coordinate transformation
z= &(x); &(0)= 0, to the realization (f̃(z); g̃(z); h̃(z)) with energy function L̃(z)=L(&−1(z)). Assume that
L(0)= 0 and @L=@x(0)= 0. It is well known then that on a convex neighborhood of 0 there exist n × n
matrices V (x); M (x), and M̃ (z) such that

&(x)=V (x)x;

L(x)= xTM (x)x;

L̃(z)= zTM̃ (z)z;

where the entries of V (x); M (x) and M̃ (z) are smooth functions of x; x and z, respectively, and where
M (x) and M̃ (z) are symmetric [9]. It follows directly that L(x)= &(x)TM̃ (&(x))&(x). Furthermore, for all such
factorizations it is clear that M (0)=V (0)TM̃ (0)V (0). A factorization procedure to produce V (x); M (x), and
M̃ (z) would be consistent in this context if

V (x)TM̃ (&(x))V (x)=M (x): (8)

The idea can be visualized in the diagram below:

(f̃(z); g̃(z); h̃(z); L̃(z)) L̃-factorization−→ M̃ (z)

z= &(x) ↓ V (x) ↓
(f(x); g(x); h(x); L(x)) L-factorization−→ M (x)

It is easily veri2ed by the example that a procedure based on Lemma 2.1 does not exhibit property (8), except
when restricted to linear systems. This suggests a second consistency condition. Namely, if the coordinate
transformation &(x) is linear, then the factorization procedure should always produce a constant matrix,
i.e., V (x) is a constant matrix. If the energy function L(x) is a true quadratic form, then the factorization
procedure must result in a constant matrix, i.e., M (x) is a constant matrix. This latter property is exhibited
by the factorization in Lemma 2.1. Finally, observe that any factorization with both consistency properties
will always produce an orthogonal factorization of a norm preserving transformation. That is, since M (x)= I
and M̃ (z)= I , then from (8), V (x)TV (x)= I .
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4. Conclusions

It was shown that the current notion of singular value functions for nonlinear systems is not unique in
two ways. In a 2xed coordinate frame there are many ways to produce a state dependent quadratic form
from a given energy function, all are related by the addition of a null matrix. Furthermore, norm preserving
transformations can change the singular value functions at least to second order or higher. The special subclass
of orthogonal transformations preserves the singular value functions modulo two diagonalizing transformations.
These ideas then lead to the notion of consistency conditions in factoring an energy function.
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