

 University of Groningen

Developing an Architecture for the Software Subsystem of a Learning Technology System –
an Engineering Approach
Avgeriou, Paraskevas; Retalis, Simos; Papasalouros, Andreas; Skordalakis, Manolis

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P., Retalis, S., Papasalouros, A., & Skordalakis, M. (2001). Developing an Architecture for the
Software Subsystem of a Learning Technology System – an Engineering Approach. In EPRINTS-BOOK-
TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/developing-an-architecture-for-the-software-subsystem-of-a-learning-technology-system--an-engineering-approach(a37ac0e1-0785-4cd1-80c6-a36aa840a44b).html

Developing an Architecture for the Software Subsystem of a Learning Technology
System – an Engineering Approach

Avgeriou Paris Retalis Simos Papasalouros Andreas Skordalakis
Manolis

National Technical University
of Athens

Dept. of Electrical and
Computer Engineering
pavger@softlab.ntua.gr

Department of
Computer Science

University of Cyprus
retal@softlab.ntua.gr

National Technical University of Athens
Dept. of Electrical and Computer

Engineering
{andpapas, skordala}@softlab.ntua.gr

Abstract
There exists an urgent demand on defining

architectures for Learning Technology Systems (LTS), so
that high-level frameworks for understanding these
systems can be discovered, portability, interoperability
and reusability can be achieved and adaptability over
time can be accomplished. In this paper we propose an
architecting process for only the software subsystem of an
LTS. We base our work upon the LTSA working standard
of IEEE LTSC, which serves as a business model and on
the practices of a well-established software engineering
process. Special emphasis is granted on imposing a
component-based nature on the produced architecture.

1. Introduction

Learning Technology Systems (LTS) are learning,
education and training systems that are supported by the
Information Technology. Examples of such systems are
computer-based training systems, intelligent tutoring
systems, web-based distance learning systems and so on.

It is common knowledge that the application of
Learning Technologies does not comprise a panacea to
the problem of accomplishing knowledge-driven
education and training and performing the “educational
shift” from teacher to learner-centered [1]. Even though
LTS are quite promising in aiding to the accomplishment
of this cause, undoubtedly a vast amount of research
needs to be conducted in order to move from promise to
practice [2]. Much of this research effort is focused on
developing system architectures for LTS.

In this paper we profess the numerous advantages of
introducing a component-based architecture for the
software subsystem of LTS, seen from a software
engineering point of view. The added value of our work
is the proposal of a component-based architecting process

for the software part of Learning Technology Systems,
i.e. a software architecting process. This process has three
important key aspects: it is founded on the higher-level
architecture of IEEE P1484.1 Learning Technology
Systems Architecture [http://ltsc.ieee.org/]; it adopts and
customizes a big part of the well-established, widely-
adopted, industry-leading software engineering process,
the Unified Software Development Process (USDP) [3];
and it is fundamentally and inherently component-based.

The structure of the paper is as follows: In section 2
we provide the theoretical background of the process,
which derives both from the software engineering
discipline and the LTS standardization efforts. Section 3
deals with the description of the process itself, focusing
also on the fact that it receives input from LTS working
standards and that special care is taken to produce an
inherently component-based architecture. Section 4
contains conclusions about the added value of our
approach and future plans.

2. Theoretical background

We consider Learning Technology Systems, to be

comprised of a human subsystem (learners, tutors,
administrators etc.), a software subsystem, and a
subsystem of miscellaneous non-software resources
(workstations, computer networks, printed material etc.).
In this section we will present the theoretical background
of this paper, by focusing on two different concepts: 1)
the holistic architecture of LTS, that contains all the
aforementioned subsystems and is an interdisciplinary
subject of study from engineering, instructional theory
and design etc.; 2) the specific architecture of the
software subsystem, which is a subject of study of the
software engineering discipline. The first concept is being
discussed because the holistic architecture of an LTS can
actually provide the business model for the software

subsystem of the LTS. The second concept is naturally
being discussed because it will briefly outline the
software engineering process and other concepts, needed
to comprehend the proposed architecting process.

The largest effort on developing an LTS architecture
has been carried out in the IEEE P1484.1 Learning
Technology Systems Architecture (LTSA) workgroup.
The LTSA deals with the Learning Technology System as
a whole, encompassing a software system, human
resources and other non-software resources and their
interactions. The LTSA describes a high-level system
architecture and layering for learning technology systems,
and identifies the objectives of human activities and
computer processes and their involved categories of
knowledge. These are all encompassed into the 5 layers,
where each layer is a refinement of the concepts in the
above layer: “Learner and Environment Interactions”,
“Human-Centered and Pervasive Features”, “System
Components”, “Stakeholder Perspectives and Priorities”,
and “Operational Components and Interoperability -
codings, APIs, protocols”. Similar work of defining
abstraction-implementation levels has recently
commenced within the ISO/IEC JTC1 SC36
[http://jtc1sc36.org].

To pinpoint the exact relation of the architecting
process under study with LTSA, we must clarify that an
architecture produced by this process cannot be
straightforwardly matched into a layer of the LTSA. On
the other hand, an architecture produced this way, defines
software components that derive from Layer 3
components; it also takes under consideration several of
the stakeholder perspectives of layer 4 and deals with
some of the low-level issues of layer 5. A final point is
that the LTSA does not deal with specific details of
implementation technologies necessary to create the
system components, while our approach suggests
technologies of this kind, because they comprise a
fundamental aspect of a software architecture.

As far as the involvement of software engineering to
the proposed architecting process is concerned, we have
chosen to adopt the USDP, an architecture-centric, use-
case-driven, iterative and incremental process. The USDP
incorporates the views, i.e. the most significant modeling
elements, of five different models: the use-case model,
the analysis model, the design model, the deployment
model, and the implementation model. This set of views
corresponds with the classic 4+1 views described in [4].
Except for the five architectural views, the architecture
also contains some non-functional requirements, platform
decisions, architecture patterns contained and other
generic features.

The notation used to describe the architecture is the
Unified Modeling Language [5], a widely adopted visual
modeling language in the software industry and an Object
Management Group [http://www.omg.org] standard.

Another concept that we adopt from the software
engineering discipline is the component-based nature of
the architecting process. A software component can be
deployed independently and is subject to composition by
third parties [6]. Components can be plugged together,
according to certain rules, and constitute greater
components, also referred to as component frameworks.

The component-based nature of the proposed
architecting process derives from the fifth and final view
of the architecture description, that is the implementation
model view. Together with the provision of USDP to
promote a component-based architecture, our approach
further enforces this by proposing binding and
implementation technologies for the development of
system components.

3. The process of architecting

The architecting process for the software system of an

LTS combines the issues discussed in the previous
section into a simple process model depicted in Figure 1.

Business Model

5 layers of LTSA

Architecture of the
software part of the

LTS

USDP, and UML modeling

business modeling (for requirements capturing)

Figure 1- The macroscopic view of the architecting

process for the software subsystem of an LTS

The first step produces a business model from the first
4 layers of the LTSA, so that the context of the software
subsystem will be firmly grasped and all requirements
will be captured. In our case the context of the software
subsystem is the LTS itself, as it is particularly seen for
the purposes of the system under development, e.g. a
web-based distance learning system, an intelligent
tutoring system etc. In other words at this stage, particular
LTSA stakeholder perspectives must be chosen in order
to define the business model. Next, the human activities
and computer processes incorporated in these
perspectives, serve as business use cases, which are the
business processes involved in an LTS. Also the people
and other non-human entities, which interoperate with the
system, serve as business actors. The business use cases

and the business actors together form the business use
case model, which is the first part of a business model.
The second part comprises of a business object model,
which depicts how the business use cases, i.e. the
system‘s functionality, is realized. The result of business
modeling is a complete set of the LTS’s processes, fully
analyzed, from an Information Technology point of view,
as the LTSA does not encompass a theory of learning. In
order for the requirements capturing to be completed from
the pedagogical point of view, an instructional or learning
theory needs to be taken under account [7].

After the business model is specified, the USDP puts
into effect the workflows and builds the software
architecture. Our aim though, is to produce an inherently
component-based architecture with the help of the USDP.
How can that be achieved? As stated in [6], a software
system architecture in the component-based paradigm
consists of a set of component frameworks, an
interoperation design for the component frameworks, and
a set of platform decisions. This statement corresponds
with the architecture description given in the USDP,
where the architectural views of the models describe the
component frameworks and the interoperation design
between them, from five different viewpoints, while
platform decisions are matched with the rest of the
architecture description, as described earlier. We shall
follow this pattern in order to enforce the component-
based nature in the proposed architecting process. We
shall first analyze the system into component frameworks
or as we simply call them subsystems, describe their
interaction and lastly make platform decisions.

The business processes defined in the business model
are transformed into the use-case model by refining the
business model, and elaborating on those business use
cases that relate with the software system to be
developed. This results into capturing all the functional
and non-functional requirements that are specific to
individual use-cases. In the next workflow, that generates
the analysis model, every use case will be realized in-
depth, and a first-level decomposition of the system into
analysis packages will be performed, also showing their
dependencies and their contents, which will be used as an
input to the design model.

The decomposition of the Learning Technology
System is continued during the design model, by
specifying the very coarse-grained discrete subsystems, as
they have derived from the use case and analysis model.
Especially for the purpose of identifying subsystems, the
analysis packages, together with their dependencies and
contents are being used as a starting point.

These subsystems, that are in essence component
frameworks, are meant to be further processed by
identifying their contents and specifying their interfaces.
The process then continues by building the deployment
model of the system, which actually maps the software

components into hardware components. Finally, the last
workflow of this process produces the implementation
model, which defines the executable components and
their dependencies on each other.

After the five models of the USDP have been
completed, all the component frameworks and
interoperations between them have been identified. At the
last part of the component-based architecting process, we
make platform and implementation decisions, that we
consider to be the most suitable for a component-based
system. These technologies embodied in a component
development model are depicted in Figure 2.

UML-specified
sub-system
interfaces

Sub-systems
from design

m odel in UML

IDL-specified
sub-system
interfaces

Java-specified
sub-system
interfaces

Sub-system s as
JavaBeans and

EJB

Creation or purchase of
JavaBeans and EJB

IDL to Java m apping

UML to IDL m apping

Enhance IDL-specified
 sub-system interfaces

COMPONENT-BASED
SOFTW ARE PART OF

AN LTS

Integration

Design of sub-system
interfaces in UML

COM, DCOM,
ActiveX

sub-system
interfaces

Sub-systems as
Microsoft

component
objects

Integration

Creation or purchase of
Microsoft com ponent objects

IDL to C++ , VBA etc. mapping

Figure 2- Component development model

The artifacts from the design model, that is sub-

systems with textually described interfaces are provided
as an input to the above development model. These
interfaces are then designed with concrete UML notation
and then mapped into the Interface Definition Language
(IDL), which is an ISO standard for formally defining

interfaces. Because the UML to IDL mapping is
incomplete, the produced IDL interfaces need to be
elaborated, so that a more accurate specification can be
achieved. The next step is to transform the IDL interfaces
into the implementation platform, in our case Java or
Microsoft technologies, through the Java IDL API, or the
Microsoft IDL APIs. The components now have
concretely defined interfaces in the programming
language, and they can either be constructed from scratch,
or acquired from existing implementations and possibly
modified to exactly fit the interfaces. The result is the
implementation of the sub-systems as JavaBeans or
Enterprise JavaBeans (EJB), which is the Java form of
components, or, as Microsoft component objects
(COM/DCOM objects, ActiveX controls etc.). The final
step is to integrate the components through an integration
and testing process into the final outcome: the
component-based software part of an LTS.

4. Conclusions and future work

Each one of these three key concepts of the proposed

process adds special value to the proposed architecture.
To start with, the proposed architecting process

professes the same principles as the LTSA, namely [8]: it
provides a framework for understanding existing and
future systems; it promotes interoperability, portability
and reusability by identifying critical system interfaces;
and it remains adaptable to new technologies and learning
technology systems.

An architecture that is built with the aid of the Unified
Software Development Process [3]: helps all concerned
stakeholders (e.g. developers, managers, customers) to
understand the system through a common language;
organizes the development effort, eliminating the
communications overhead; fosters reuse of system
components; and helps the maintenance and evolvement
of the system through development iterations and product
lifecycles, thus making the system change-tolerant.
Moreover, Software Engineering is unique in that it is
heavily driven by risk, and architecture-based
development is the primary successful approach in risk-
driven engineering [9].

Last but not least, as far as the enforced component-
based paradigm is concerned, it is claimed in [6] that
component-based architectures are inherently modular
and as such have significant software engineering
advantages: good modular architectures make
dependencies explicit and help to reduce and control
these dependencies; are naturally layered, leading to a
natural distribution of responsibilities; and it is easier to
migrate part of a system by adopting relevant component
interface standards.

Based on these points, it is concluded that an

inherently component-based software architecture is the
right step towards bringing the economies of scale,
needed to build affordable, interoperable as well as
effective software subsystems of Learning Technology
Systems.
We are currently investigating the use of this process into
real LTS implementations and the subsequent evaluation
of this process. This will raise several issues such as:
whether the LTSA is able to provide a full, well-
documented business model; how can a learning theory
be combined with the business model in order to provide
a full set of system requirements; whether the USDP,
which is a generic software engineering process, works
well in this type of applications; whether the binding
technologies and platforms proposed, will efficiently help
in the software system implementation; and whether the
proposed process indeed leads to a pure component-based
system.

References

[1] J. M. Spector, “Trends and Issues in Educational
Technology: How Far We Have Not Come”, ERIC-IT
Newsletter, Sep. 2000.
[2] The web-based education commission, “The power of the
Internet for learning: moving from promise to practice”,
Washington DC, December 2000, available on-line at
[http://www.ed.gov/offices/AC/WBEC/FinalReport/WBECRep
ort.pdf].
[3] I. Jacobson, G. Booch and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley, 1999.
[4] P.B Kruchten, “The 4+1 view model of architecture”, IEEE
Software, November 1995.
[5] G. Booch, J. Rumbaugh and I. Jacobson, The UML User
Guide, Addison-Wesley, 1999
[6] C. Szyperski, Component Software – Beyond Object-
Oriented Programming, ACM Press, 1999.
[7] C. McCormack and J. D. Jones, Building a Web-based
Education System, Wiley Computer Publishing, 1997.
[8] IEEE Learning Technology Standards Committee, “Draft
Standard for Learning Technology Systems Architecture
(LTSA)”, November 2000.
[9] T. Mowbray and W. Ruh, Inside CORBA – Distributed
Object Standards and Applications, Addison-Wesley, 1997.

	Developing an Architecture for the Software Subsy
	Contact author: Avgeriou Paris, (pavger@softlab.ntua.gr)
	
	Developing an Architecture for the Software Subsy

	1. Introduction
	2. Theoretical background
	3. The process of architecting
	4. Conclusions and future work
	References

