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basalts is expected in subarcs. Barring extensive in®ltration of
externally derived ¯uids, our study implies marked devolatilization
under forearcs (for clay-rich marls with high-temperature
geotherms) or retention of H2O and CO2 to depths well beyond
subarcs (for siliceous limestones in all geotherms and clay-rich
marls with low-temperature geotherms). Accordingly, most of the
initial CO2 and H2O in subducted marine sediments will not be
released beneath volcanic arcs. This inference is consistent with both
the de®ciency in the amount of CO2 released from arc volcanoes
compared to the amount of CO2 contained within subducted
carbonates (Table 1) and with the imbalance between subducted
versus expelled H2O (ref. 1).

Our equilibrium analysis implicitly assumes that there is no
signi®cant kinetic overstepping and metastability of metamorphic
reactions. Although signi®cant disequilibrium has been suggested
for the transformation of anhydrous oceanic basalts and gabbros to
eclogites15, the catalytic effect of H2O (ref. 15) implies that equilib-
rium is more likely in dehydrating systems such as subducted
sediments.

Melting is an alternative mechanism for release of volatiles from
subducted sediment. Recent experiments using marine red clay16

suggest that sediment melting does not occur for the geotherms that
we consider here. However, because metastable starting materials
(for example, red clay) are unsuitable models for subduction-zone
metamorphism and melting, con®rmation of this conclusion
requires experiments with more realistic initial mineral assem-
blages. Dissolution of minerals in supercritical ¯uids remains a
possible, albeit largely unquanti®ed, alternative mechanism for
devolatilization.

As shown in Fig. 2, ¯uids produced by metamorphism of
subducted marine sediments are H2O-rich. Consequently, expul-
sion of such ¯uids to the overlying mantle wedge would not
substantially affect the P±T conditions of melting (solidus) of the
mantle wedge compared to those expected in the presence of a pure
H2O ¯uid.

Devolatilization of subducted sediment could contribute to
seismicity along the tops of subducted slabs. The continuous
nature of devolatilization is compatible with the spread of earth-
quake hypocentres along individual subduction zones17. However,
correlation of slab seismicity with metamorphic devolatilization
of subducted sediments needs to consider the marked differ-
ences in devolatilization for different bulk compositions and
geotherms. M
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Table 1 Subduction zone carbon budget

Subducted carbon (Tmol yr-1)*
Sediment carbonate8 1.2
Sediment organic carbon1 0.8
Oceanic metabasalts19 3.4
Total 5.4

Expelled carbon (Tmol yr-1)
Arc magmatism20 2±3

Carbon imbalance² (Tmol yr-1) 2.5±3.5
.............................................................................................................................................................................

*1 Tmol = 1012 mol.
² (Subducted carbon) - (expelled carbon).
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Spring temperatures in temperate regions have increased over the
past 20 years1, and many organisms have responded to this
increase by advancing the date of their growth and reproduc-
tion2±7. Here we show that adaptation to climate change in a long-
distance migrant is constrained by the timing of its migratory
journey. For long-distance migrants climate change may advance
the phenology of their breeding areas, but the timing of some
species' spring migration relies on endogenous rhythms that are
not affected by climate change8. Thus, the spring migration of
these species will not advance even though they need to arrive
earlier on their breeding grounds to breed at the appropriate time.
We show that the migratory pied ¯ycatcher Ficedula hypoleuca
has advanced its laying date over the past 20 years. This temporal
shift has been insuf®cient, however, as indicated by increased
selection for earlier breeding over the same period. The shift is
hampered by its spring arrival date, which has not advanced.
Some of the numerous long-distance migrants will suffer from
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climate change, because either their migration strategy is unaffec-
ted by climate change, or the climate in breeding and wintering
areas are changing at different speeds, preventing adequate
adaptation.

Higher spring temperatures over the past two decades have led to
advancing tree phenology and subsequently to earlier peaks in
insect abundance9±11. Several bird species3,4, but not all9,12, have
advanced their egg-laying date as a consequence of this advance-
ment in their food supply4±7,9. Advancement of laying has not kept
up with selection for earlier laying in areas where early spring
temperatures have not increased as much as those late in spring9,13.
Adaptive advancement of reproduction may also be hampered in
species that rely on endogenous rhythms or environmental stimuli
unrelated to temperature8, such as day length. Long-distance
migrants are extremely vulnerable in this sense, because in some
well-studied species the timing of spring migration from the over-
wintering area is triggered by cues that are unlinked to the climate at
their breeding grounds, and their breeding date is constrained by
their arrival date.

We examined how a long-distance migrant bird, the pied ¯y-
catcher Ficedula hypoleuca, has responded to recent climate change,
using data from a long-term study in the Hoge Veluwe (The
Netherlands). Pied ¯ycatchers overwinter in the zone of dry tropical
forest at about 108 north in west Africa, and breed in temperate
forests in Europe14. Males normally arrive before females, and
females select males on the quality of their territory15.

Temperatures at the time of arrival and the start of breeding by
pied ¯ycatchers (16 April to 15 May) have increased signi®cantly
over the period 1980±2000 (Fig. 1a). Over the same period, the
birds have not advanced the spring arrival on their breeding
grounds (Fig. 1b), but have advanced their mean laying date by
about 10 days (Fig. 1c). Mean laying date was unrelated to popu-
lation size16, and population size did not show a signi®cant trend (r =
-0.08, n = 21, P = 0.72). Selection for early laying date has become
stronger over the course of this 20-year period (Fig. 1d), indicating
that early laying pairs do better than later pairs. Thus, the response

in laying date has not been suf®ciently strong to track the advance-
ment of spring.

Mean laying date was strongly correlated with the mean tem-
perature in the second half of April and the ®rst half of May (Fig. 2a),
but arrival date was not (Fig. 2b). Arrival and laying dates were
furthermore uncorrelated with temperatures in the ®rst half of
April, just before arrival of most birds (arrival: r = -0.04, n = 20,
P = 0.87; laying: r = 0.30, n = 21, P = 0.20). The advancement of
egg-laying date was, to a large extent, caused by plasticity of
individual females to temperature12 (analysis of covariance
(ANCOVA): individual, F272,411 = 2.16, P , 0.001; age, F1,412 =
17.12, P , 0.001; temperature, F1,412 = 50.57, P , 0.001; average
individual slope (-1.10 6 0.15) signi®cantly differs from popula-
tion slope (-1.67 6 0.24), F1,413 = 13.55, P , 0.001), and not by
selection for genotypes for early breeding (heritability17 (h2) for
laying date (relative to yearly mean) calculated from mother±
daughter regression is not signi®cant: F1,225 = 1.11, P = 0.29,
h2 = 0.16 6 0.15). As a consequence of the correlation between
laying and temperature (Fig. 2a) and the absence of a
correlation between arrival date and temperature (Fig. 2b),
the interval between arrival and egg-laying has decreased with
increasing temperatures (linear regression: F1,19 = 9.73, P = 0.006).

Pied ¯ycatchers were able to advance their laying date because
they normally arrive on their breeding grounds earlier than their
average optimal laying date14. Their spring migration strategy,
triggered by day-length variation on their wintering grounds8,
enabled them to arrive in time to respond adaptively to the naturally
occurring variation in the start of spring18, and thereby start egg-
laying at the date that maximizes ®tness9. Owing to the advanced
phenology on their breeding grounds and their relatively in¯exible
arrival date, however, this window has become too narrow, and a
signi®cant part of the population is now laying too late to exploit
the peak in insect abundance optimally (as shown by the increasing
selection for early laying; Fig. 1d).

The strong response of laying date in the pied ¯ycatcher seems at
variance with the lack of response in the resident great tit Parus
major population breeding in the same area9. In both cases, however,
the advancement of laying date is insuf®cient, as indicated by the
presence of increased selection for earlier breeding. For the great tits,
which start egg-laying about 2 weeks earlier than the ¯ycatchers, the
lack of a suf®cient response is due to increasing temperatures in late,
but not in early spring. For the ¯ycatchers, the advancement is not
hampered by such temporal variation in climate change, but
because their timing of spring migration is triggered by day
length, which is not affected by spring temperatures on their
breeding grounds. The decision when to start spring migration
thus becomes maladaptive if the cue used for migration is indepen-
dent of the environmental change in the breeding area.
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Figure 1 Spring temperature, breeding and spring arrival date of a pied ¯ycatcher

population in the Netherlands from 1980 to 2000. a, Mean average daily temperature in

the period of arrival increased (linear regression: F1,19 = 8.31, P , 0.001). b, Median

arrival date did not advance (F1,19 = 2.32, P = 0.15). c, Mean laying date did advance

(F1,20 = 17.14, P , 0.001). d, Standardized selection differential for laying date

decreased with year (F1,17 = 12.00, P = 0.003) over this period.
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Figure 2 Breeding date and spring arrival of a pied ¯ycatcher population as a function of

spring temperature in the Netherlands. a, Average laying date was signi®cantly related to

the mean average daily temperature (8C) in the second half of April and the ®rst half of May

(F1,20 = 37.59, P , 0.001). b, Median arrival date was unrelated to spring temperature

(F1,19 = 0.66, P = 0.43).
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In other long-distance migrants, arrival on the breeding grounds
is also relatively insensitive to the temperature on arrival19, although
in some species the temperature on journey is a good correlate of
arrival date20,21. Climatic factors may be important in ®ne-tuning
the onset and speed of migration, but climate change differs
between temperate and tropical latitudes1, and therefore a response
to environmental cues such as temperature for the onset and speed
of migration may not lead to an adequate arrival date on the
breeding grounds. Short-distance migrants may be more ¯exible
in their response, because the circumstances on the wintering
grounds will be a better predictor for the optimal arrival time on
the breeding grounds and genetic variation has been shown for
some of their migratory traits22,23.

Large-scale climate change may thus form a serious threat to at
least some of the numerous species that migrate from tropical
wintering grounds to temperate breeding areas24, because they
arrive at an inappropriate time to exploit the habitat optimally,
and face higher competition with resident species that may have
increased in numbers through enhanced winter survival25. This may,
in fact, be partly responsible for the decline of these species in
western Europe26. M

Methods
Data collection

Data were collected from a nest-box breeding population of pied ¯ycatchers in the Hoge
Veluwe area, central Netherlands, between 1965 and 2000 (ref. 9). We analysed data from
1980 to 2000, because temperature increased most markedly after 1980. We used only nests
that were considered to be ®rst nesting attempts of females during that year (n = 1,892).
Parents and chicks were ringed with uniquely numbered aluminium rings. Arrival data
were obtained from a local amateur bird group, working within 10 km from the study
area27. Members of this bird group recorded each year the ®rst singing pied ¯ycatcher, and
the median ®rst arrival date was used as approximation of arrival in the study area. The
lack of an advancement in arrival date was con®rmed by analysing the arrival date of the
®rst male recorded in the study area from 1992 to 2000 (F1,6 = 0.26, P = 0.63), the ®rst ten
males that arrived in an area nearby from 1980 to 1990 (F1,10 = 0.02, P = 0.88), and the
mean start of nest building of the ®rst ten pied ¯ycatcher nests each year in 1980±2000
(F1,19 = 0.92, P = 0.35; start of egg-laying was estimated from the state of the nest during
weekly checks).

Analyses

All analyses were performed with linear regression using two-tailed P values. In most cases
we used annual means. In the analysis of the response of individual females to
temperature, we used females that bred in at least 2 years (n = 273). In this analysis, female
age was a factor for ®rst known breeding or later breeding in the area (real age was not
determined), because ®rst year breeders normally breed later14. Individual is used here as a
factor in an ANCOVA. Temperature used is the average of the mean daily temperatures
from 16 April to 15 May recorded by the Royal Dutch Meteorological Institute (KNMI) at
De Bilt (The Netherlands). The standardized selection differential is the mean laying date
weighted for the number of recruits (offspring that return as breeding birds in the study
area) each nest produced minus the mean laying date, divided by the standard deviation of
laying date17. Selection differentials are given until 1998, because the number of recruits for
later years is not yet known.
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Stable associations of more than one species of symbiont within a
single host cell or tissue are assumed to be rare in metazoans
because competition for space and resources between symbionts
can be detrimental to the host1. In animals with multiple endo-
symbionts, such as mussels from deep-sea hydrothermal vents2

and reef-building corals3, the costs of competition between the
symbionts are outweighed by the ecological and physiological
¯exibility gained by the hosts. A further option for the coexistence
of multiple symbionts within a host is if these bene®t directly
from one another, but such symbioses have not been previously
described. Here we show that in the gutless marine oligochaete
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