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Abstract: We consider Ising-spin systems starting from an initial Gibbs measureν and
evolving under a spin-flip dynamics towards a reversible Gibbs measureµ �= ν. Bothν
andµ are assumed to have a translation-invariant finite-range interaction. We study the
Gibbsian character of the measureνS(t) at timet and show the following:

(1) For allν andµ, νS(t) is Gibbs for smallt .
(2) If bothν andµ have a high or infinite temperature, thenνS(t) is Gibbs for allt > 0.
(3) If ν has a low non-zero temperature and a zero magnetic field andµ has a high or

infinite temperature, thenνS(t) is Gibbs for smallt and non-Gibbs for larget .
(4) If ν has a low non-zero temperature and a non-zero magnetic field andµ has a high

or infinite temperature, thenνS(t) is Gibbs for smallt , non-Gibbs for intermediate
t , and Gibbs for larget .

The regime whereµ has a low or zero temperature andt is not small remains open. This
regime presumably allows for many different scenarios.

1. Introduction

Changing interaction parameters, like the temperature or the magnetic field, in a ther-
modynamic system is the preeminent way of studying such a system. In the theory
of interacting particle systems, which are used as microscopic models for thermody-
namic systems, one associates with each such interaction parameter a class of stochastic
evolutions, like Glauber dynamics or Kawasaki dynamics.

In recent years there has been extensive interest in thequenching regime, in which one
starts from a high- or infinite-temperature Gibbs state and considers the behavior of the
system under a low- or zero-temperature dynamics. This is interpreted as a fast cooling
procedure (which is different from the slow cooling procedure of simulated annealing).
One is interested in the asymptotic behavior of the system, in particular, the occurrence
of trapping in metastable frozen or semi-frozen states (see [13,36,37,14,35,38,6]).
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Another regime that has been intensively studied is the one where, starting from a
low-non-zero-temperature Gibbs state of Ising spins in a positive magnetic field, one
considers a low-non-zero-temperature negative-magnetic-field Glauber dynamics (see
[40] and references therein). Under an appropriate rescaling of the time and the magnetic-
field strength, one finds a metastable transition from the initial plus-state to the final
minus-state.

In this paper we concentrate on the opposite case of theunquenching regime, in which
one starts from a low-non-zero-temperature Gibbs state of Ising spins and considers the
behavior of the system under a high- or infinite-temperature Glauber dynamics. This is
interpreted as a fast heating procedure.As far as we know, this regime has not been studied
much (see e.g. [1]), as no singular behavior was expected to occur. Although we indeed
know that there is exponentially fast convergence (cf. [25], Chapter 1, Theorem 4.1, and
[33,34]) to the high- or infinite-temperature Gibbs state (i.e., the asymptotic behavior is
unproblematic), we will show thatat sharp finite times there can be transitions between
regimes where the evolved state is Gibbsian and regimes where the evolved state is
non-Gibbsian.

If a measure is Gibbsian, then it is at least moderately well-behaved in the sense that
it is possible to associate a reasonable interaction to it, and by taking the inverse norm of
this interaction, some notion of effective temperature. As has been discussed in detail in
[10], for discrete bounded spins, such as the Ising spins which we consider here, uniform
summability of the interaction is one of the weakest notions of “well-behavedness” one
could desire. The problem we study here can thus be interpreted as the question if by fast
heating a system can lose (instead of change) its temperature. A more detailed question,
which we do not address here (see Open Problem 7.4.1), would be to compute explicitly
the changing temperatures (interactions) in those regimes where they exist. Also one
might hope to obtain better regularity properties than just uniform summability.

In the light of the results in [10], Chapter 4, on renormalization-group transformations,
it should perhaps not come as a surprise that such transitions can happen. Indeed, we can
view the time-evolved measure as a kind of (single-site) renormalized Gibbs measure.
Even though the image spinσt (x) at timet at sitex is not a (random) function of the
original spinsσ0(y) at time 0 fory in only a finite block aroundx, by the Feller character
of the Glauber dynamics it depends only weakly on the spinsσ0(y) with y large. In that
sense the time evolution is close to a standard renormalization-group transformation,
without rescaling, and so a priori we can expect Griffiths-Pearce pathologies.

We will prove the following:

(1) For an arbitrary initial Gibbs measure and an arbitrary Glauber dynamics, both
having finite range, the measure stays Gibbsian in a small time interval, whose
length depends on both the initial measure and the dynamics (Theorem 4.1). This
result, though somewhat surprising, essentially comes from the fact that for small
times the set of sites where a spin flip has occurred consists of “small islands” that
are far apart in a “sea” of sites where no spin flip has occurred.

(2) For a high- or infinite-temperature initial Gibbs measure and a high- or infinite-
temperature Glauber dynamics, the measure is Gibbsian for allt > 0 (Theorems 5.1
and 6.2).

(3) For a low-non-zero-temperature initial Gibbs measure and a high- or infinite-
temperature Glauber dynamics, there is a transition from Gibbs to non-Gibbs (The-
orems 5.2 and 6.3). This result is somewhat counter-intuitive: after some time of
heating the system it reaches a high temperature, where a priori we would expect the
measure to be well-behaved because it should be exponentially close to a Completely
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Analytic (see [8]) high-temperature Gibbs measure. As we will see, this intuition is
wrong because the system in fact loses its temperature. However, from the results of
[31] it follows that this transition does not occur when the initial measure is a rigid
ground state (zero-temperature) measure (i.e., a Dirac measure).

(4) For a low-non-zero-temperature initial Gibbs measure and a high- or infinite-
temperature Glauber dynamics, there possibly is a transition back from non-Gibbs
to Gibbs when the Hamiltonian of the initial Gibbs measure has a non-zero magnetic
field (Theorems 5.2 and 6.3).

The complementary regimes, with a low- or zero-temperature Glauber dynamics acting
over large times, are left open.

In Sect. 2 we start by giving some basic notations and definitions, and formulating
some general facts.

In Sect. 3 we give representations of the conditional probabilities of the time-evolved
measure and clarify the link between the Gibbsian character of the time-evolved measure
and the Feller property of the backwards process. These results are useful for proving
the “positive side”, i.e., for showing that the time-evolved measure is Gibbsian. We use
a criterion of [10], Chapter 4, Step 1, or [11] to identifybad configurations (points
of essential discontinuity of every version of the conditional probabilities) as those
configurations for which theconstrained system (i.e., the measure at time 0 conditioned
on thefuture bad configuration at timet > 0) exhibits a phase transition. This criterion
will serve for the “negative side”, i.e., for showing that the time-evolved measure is
non-Gibbsian.

In Sect. 4 we prove that for an arbitrary initial measure and an arbitrary dynamics,
both having finite-range interactions, the measure at timet is Gibbs for allt ∈ [0, t0],
wheret0 depends on the interactions.

In Sect. 5 we treat the case of infinite-temperature dynamics, i.e., a product of in-
dependent Markov chains. This example already exhibits all the transitions between
Gibbs and non-Gibbs we are after. Moreover, it has the advantage of fitting exactly in
the framework of the renormalization-group transformations: the time-evolved measure
is nothing but a single-site Kadanoff transform of the original measure, where the pa-
rameterp(t) of this transform varies continuously fromp(0) = ∞ to p(∞) = 0. For
the case of a low-temperature initial measure we restrict ourselves to thed-dimensional
Ising model.

In Sect. 6 we show that the results of Sect. 5 also apply in the case of a high-
temperature dynamics. The basic ingredient is a cluster expansion in space and time, as
developed in [30] and worked out in detail in [27]. This is formulated in Theorem 6.1
and is the technical tool needed to develop the “perturbation theory” around the infinite-
temperature case.

In Sect. 7 we give a dynamical interpretation of the transition from Gibbs to non-
Gibbs in terms of a change in themost probable history of an improbable configuration.
We show that the transition is not linked with a wrong behavior in the large deviations
at fixed time, and we close by formulating a number of open problems.

2. Notations and Definitions

2.1. Configuration space. The configuration space of our system is� = {−1,+1}Zd ,
endowed with the product topology. Elements of� are denoted byσ, η. A configuration
σ assigns to each lattice pointx ∈ Z

d a spin valueσ(x) ∈ {−1,+1}. The set of all finite
subsets ofZd is denoted byS. For� ∈ S andσ ∈ �, we denote byσ� the restriction of
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σ to�, while�� denotes the set of all such restrictions.A functionf : �→ R is called
local if there exists a finite set� ⊂ Z

d such thatf (η) = f (σ) for σ andη coinciding
on�. The minimal such� is called the dependence set off and is denoted byDf . The
vector space of all local functions is denoted byL. This is a uniformly dense subalgebra
of the set of all continuous functionsC(�).A local functionf : �→ R with dependence
setDf ⊂ � can be viewed as a function on��. With a slight abuse of notation we use
f for both objects. Forσ, η ∈ � and� ⊂ Z

d , we denote byσ�η�c the configuration
whose restriction to� (resp.�c) coincides withσ� (resp.η�c ). Forx ∈ Z

d andσ ∈ �,
we denote byτxσ the shifted configuration defined byτxσ (y) = σ(y+ x). The shift on
functionsf ∈ C(�) is defined byτxf (σ ) = f (τxσ ). For a sequence of real numbers
a�, indexed by finite subsets ofZ

d , we write

lim
�↑Zd

a� = a (2.1)

if for any ε > 0 there exists a finite set�0 ⊂ Z
d such that for any� ⊃ �0

|a� − a| ≤ ε. (2.2)

A sequence of probability measuresµ� on �� is said to converge to a probability
measureµ on� (notationµ� → µ) if

lim
�↑Zd

∫
f dµ� =

∫
f dµ ∀f ∈ L. (2.3)

2.2. Dynamics. The dynamics we consider in this paper is governed by a collection of
spin-flip ratesc(x, σ ), x ∈ Z

d , σ ∈ �, satisfying the following conditions:

1. Finite range: cx : σ �→ c(x, σ ) is a local function ofσ for all x, with diam(Dcx ) ≤
R <∞.

2. Translation invariance: τxc0 = cx for all x.
3. Strict positivity: c(x, σ ) > 0 for all x andσ .

Note that these conditions imply that there existε,M ∈ (0,∞) such that

0< ε ≤ c(x, σ ) ≤ M <∞ ∀x ∈ Z
d , σ ∈ �. (2.4)

Given the rates(cx), we consider the generator defined on local functionsf ∈ L by

Lf =
∑
x∈Zd

cx∇xf, (2.5)

where

∇xf (σ ) = f (σx)− f (σ). (2.6)

Here,σx denotes the configuration defined byσx(x) = −σ(x) andσx(y) = σ(y) for
y �= x. In [25], Theorem 3.9, it is proved that the closure ofL onC(�) is the generator
of a unique Feller process{σt : t ≥ 0}. We denote byS(t) = exp(tL) the corresponding
semigroup, byPσ the path-space measure givenσ0 = σ , and byEσ expectation over
Pσ . The semigroup works on probability measuresν on� via∫

(S(t)f )(σ )ν(dσ) =
∫
f (σ)νS(t)(dσ ), (2.7)
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stated in words:νS(t) is the distribution of the configuration at timet if the initial
distribution at time zero isν. A probability measureµ on the Borelσ -field of� is called
invariant for the process with generatorL if∫

Lf dµ = 0 ∀f ∈ L. (2.8)

It is calledreversible if∫
(Lf )gdµ =

∫
f (Lg)dµ ∀f, g ∈ L. (2.9)

Reversibility implies invariance. For spin-flip dynamics with generatorL defined by
(2.5), reversibility ofµ is equivalent to

c(x, σ x)
dµx

dµ
= c(x, σ ) ∀x ∈ Z

d , σ ∈ �, (2.10)

whereµx denotes the distribution ofσx whenσ is distributed according toµ. Note
that (2.10) implies the existence of a continuous version of the Radon-Nikodým (RN)-
derivativedµx/dµ. This will be important in the sequel.

2.3. Interactions and Gibbs measures. A good interaction is a function

U : S ×�→ R, (2.11)

such that the following two conditions are satisfied:

1. Local potentials in the interaction: U(A, σ) depends onσ(x), x ∈ A, only.
2. Uniform summability: ∑

A�x
sup
σ∈�

|U(A, σ)| <∞ x ∈ Z
d . (2.12)

The set of all good interactions will be denoted byB. A good interaction is called
translation invariant if

U(A+ x, τ−xσ ) = U(A, σ) ∀A ∈ S, x ∈ Z
d , σ ∈ �. (2.13)

The set of all translation-invariant good interactions is denoted byBt i . An interactionU
is calledfinite-range if there exists anR > 0 such thatU(A, σ) = 0 for allA ∈ S with
diam(A) > R. The set of all finite-range interactions is denoted byBf r and the set of
all translation-invariant finite-range interactions byBf rti . ForU ∈ B, ζ ∈ �,� ∈ S, we
define the finite-volume Hamiltonian with boundary conditionζ as

H
ζ
�(σ) =

∑
A∩��=∅

U(A, σ�ζ�c) (2.14)

and the Hamiltonian with free boundary condition as

H�(σ) =
∑
A⊂�

U(A, σ), (2.15)



106 A.C.D. van Enter, R. Fernández, F. den Hollander, F. Redig

which depends only on the spins inside�. Corresponding to the Hamiltonian in (2.14)
we have the finite-volume Gibbs measuresµ

U,ζ
� ,� ∈ S, defined on� by

∫
f (ξ)µ

U,ζ
� (dξ) =

∑
σ�∈��

f (σ�ζ�c)
exp[−Hζ

�(σ)]
Z
ζ
�

, (2.16)

whereZζ� denotes the partition function normalizingµU,ζ� to a probability measure.

Because of the uniform summability condition, (2.12), the objectsH
ζ
� andµU,ζ� are

continuous as a function of the boundary conditionζ .
For a probability measureµ on �, we denote byµζ� the conditional probability

distribution ofσ(x), x ∈ �, givenσ�c = ζ�c . Of course, this object is only defined on
a set ofµ-measure one. For� ∈ S, ' ∈ S and� ⊂ ', we denote byµ'(σ�|ζ ) the
conditional probability to findσ� inside�, given thatζ occurs on' \ �. ForU ∈ B,
we callµ a Gibbs measure with interactionU if its conditional probabilities coincide
with the ones prescribed in (2.16), i.e., if

µ
ζ
� = µ

U,ζ
� µ− a.s. ∀� ∈ S, ζ ∈ �. (2.17)

We denote byG(U) the set of all Gibbs measures with interactionU . For anyU ∈ B,
G(U) is a non-empty compact convex set. The set of all Gibbs measures is

G =
⋃
U∈B

G(U). (2.18)

Note thatG is not a convex set, since, forU andV in Bt i , convex combinations ofG(U)
andG(V ) are not inG unlessG(U) = G(V ) (see [10, Sect. 4.5.1]).

Remark. We will often use the notationH(·) = ∑
A U(A, ·) for the “Hamiltonian”

corresponding to the interactionU . This formal sum has to be interpreted as the collection
of finite-volume Hamiltonians in (2.14), or as “energy differences”, i.e., ifσ andη agree
outside a finite volume�, then

H(η)−H(σ) = H
η
�(η)−Hη

�(σ). (2.19)

Definition 2.1. A measure µ is called Gibbsian if µ ∈ G, otherwise it is called non-
Gibbsian.

2.4. Gibbsian and non-Gibbsian measures. In this paper we study the time-dependence
of the Gibbsian property of a measure under the stochastic evolutionS(t). In other words,
we want to investigate whether or notνS(t) ∈ G at a given timet > 0.

Proposition 2.2.The following three statements are equivalent:

1. µ ∈ G.
2. µ admits a continuous and strictly positive version of its conditional probabilities
µ
ζ
�, � ∈ S, ζ ∈ �.

3. µ admits a continuous version of the RN-derivatives dµx/dµ, x ∈ Z
d .

Proof. See [23] and [41]. ��
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We will mainly use item 3 and look for a continuous version of the RN-derivatives
dµx/dµ by approximating them uniformly with local functions.

A necessary and sufficient condition forµ to be non-Gibbsian (µ �∈ G) is the existence
of a bad configuration, i.e., a point of essential discontinuity. This is defined as follows:

Definition 2.3. A configuration η ∈ � is called bad for a probability measure µ if there
exist ε > 0 and x ∈ Z

d such that for all � ∈ S there exist ' ⊃ � and ξ, ζ ∈ � such
that: ∣∣µ'(σ(x)|η�\{x}ζ'\�)− µ'(σ(x)|η�\{x}ξ'\�)∣∣ > ε. (2.20)

Note that in this definition only the finite-dimensional distributions ofµ enter. It is clear
that a bad configuration is a point of discontinuity ofevery version of the conditional
probabilities ofµ. Therefore, for such a configuration the equality (2.17) cannot hold.
Conversely, a measure that has no bad configurations is Gibbsian (see e.g. [29]).

2.5. Main question. Our starting points in this paper are the following ingredients:

1. A translation invariant initial measure ν ∈ G(Uν), corresponding to a finite-range
translation-invariant interactionUν ∈ Bf rti as introduced in Sect. 2.3.

2. A spin-flip dynamics, with flip rates as introduced in Sect. 2.2. This dynamics is
supposed to have a translation-invariantreversible measureµ, which thus satisfies

dµx

dµ
= c(x, σ )

c(x, σ x)
. (2.21)

Hence, by Proposition 2.2 there exists an interactionUµ ∈ B such thatµ ∈ G(Uµ).
Since the rates are translation invariant and have finite range, this interaction can
actually be chosen inBf rti and satisfies (recall (2.14) and (2.17))

dµx

dµ
= exp

(∑
A�x

[Uµ(A, σ)− Uµ(A, σx)]
)
. (2.22)

Without loss of generality we can take the ratesc(x, σ ) of the form

c(x, σ ) = exp

(
1

2

∑
A�x

[Uµ(A, σ)− Uµ(A, σx)]
)
. (2.23)

A finite-volume approximation of the rates in (2.23) that we will often use is given
by

c�(x, σ ) = exp
[
H
µ
�(σ)−Hµ

�(σ
x)
]
, (2.24)

whereHµ
� is the Hamiltonian with free boundary condition (with a slight abuse of

notation the upper indexµ is referring here to the measureµ, not to the boundary
condition) associated with the interactionUµ (recall (2.15)). These rates generate a
pure-jump process on�� = {−1,+1}� with generator

(L�f )(·) =
∑
x∈�

c�(x, ·)∇xf (·) ∀f ∈ L. (2.25)
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SinceL�f converges toLf as� ↑ Z
d for any local functionf ∈ L, the corresponding

semigroupS�(t) converges strongly in the uniform topology onC(�) to the semigroup
S(t), i.e., S�(t)f → S(t)f as� ↑ Z

d in the uniform topology for anyf ∈ C(�).
Therefore we have the following useful approximation result. Letν be a probability
measure on� andν� its restriction to�� (viewed as a subset of�). Then

lim
�↑Zd

ν�S�(t) = νS(t), (2.26)

where the limit is in the sense of (2.3). Ifν ∈ G(Uν) is a Gibbs measure, then we can
replace the finite-volume restrictionν� by the free-boundary-condition finite-volume
Gibbs measure (in the uniqueness regime), or by the appropriate finite-volume Gibbs
measure with generalized boundary condition that approximatesν (in the phase coexis-
tence regime).

The main question that we will address in this paper is the following:

Question. Is νS(t) a Gibbs measure?

In order to study this rather general question we have to distinguish between different
regimes, as defined next.

Definition 2.4.U ∈ B is a high-temperature interaction if

sup
x∈Zd

∑
A�x
(|A| − 1) sup

σ,σ ′∈�
|U(A, σ)− U(A, σ ′)| < 2. (2.27)

Inequality (2.27) implies the Dobrushin uniqueness condition for the associated condi-
tional probabilitiesµU,ζ� ,� ∈ S, ζ ∈ � (see [15], p. 143, Proposition 8.8). In particular,
it implies that|G(U)| = 1 (i.e., no phase transition). Note that it is independent of the
“single-site part” of the interaction, i.e., of the interactionsU({x}, σ ).
Remark. The left-hand side of (2.27) defines a norm that we interpret as “inverse tem-
perature”, i.e., small norm means high temperature.

Definition 2.5. We call:

1. a Gibbs measure ν “high-temperature” if it has an interaction satisfying (2.27).
2. a measure ν “infinite-temperature” if it is a product measure, (i.e., if the corresponding

interaction Uν satisfies Uν(A, σ) = 0 for all A with |A| > 1).
3. a dynamics “high-temperature” if it has an associated reversible Gibbs measure µ

with an interaction Uµ satisfying (2.27).
4. a dynamics “infinite-temperature” if it has a reversible product measure µ (i.e., if the

corresponding interaction Uµ satisfies Uµ(A, σ) = 0 for all A with |A| > 1).

We will use the following abbreviations:Tν � 1 is shorthand for “the Gibbs measure
ν is high-temperature”,Tν = ∞ for “the Gibbs measureν is infinite-temperature”,
Tµ � 1 for “the dynamics is high-temperature” andTµ = ∞ for “the dynamics is
infinite-temperature”. Thus,Tν denotes the “temperature” of the initial measureν, while
Tµ denotes the “temperature” of the dynamics. As we will see in Sect. 5, the study of
infinite-temperature dynamics is particularly instructive, since it can be treated essen-
tially completely and already contains all the interesting phenomena we are after. In the
regime we will study (Tµ � 1), we automatically have the uniqueness of the reversible
measureµ and the convergenceνS(t)→ µ ast → ∞.
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3. General Facts

3.1. Representation of the RN-derivative. As summarized in Proposition 2.2, an object
of particular use in the investigation of the Gibbsian character of a measure is its RN-
derivativedµx/dµ w.r.t. a spin flip at sitex. In this section we show how to exploit
the reversibility of the dynamics in order to obtain a sequence of continuous functions
converging to the RN-derivative of the time-evolved measureνt = νS(t) w.r.t. spin flip.
Let us first consider the finite-volume case. We start from the finite-volume generator

[L�f ](σ ) =
∑
x∈�

c�(x, σ )(f (σ
x)− f (σ)), (3.1)

where the finite-volume ratesc�(x, ·) are given by (2.24). Suppose that our starting
measureν ∈ G(Uν) is such that|G(Uν)| = 1, which implies that the free-boundary-
condition finite-volume approximationsν� converge toν. The free-boundary-condition
finite-volume Gibbs measureµ�, corresponding to the interactionUµ, is the reversible
measure of the generatorL�. We can then compute, using reversibility,

d[ν�S�(t)]x
d[ν�S�(t)] (σ ) =

(
d[ν�S�(t)]x
d[µ�S�(t)]x (σ )

)(
d[µ�S�(t)]x
d[µ�S�(t)] (σ )

)(
d[µ�S�(t)]
d[ν�S�(t)] (σ )

)

=
(
d[ν�S�(t)]
d[µ�S�(t)] (σ

x)

)(
dµx�

dµ�
(σ)

)(
d[µ�S�](t)
d[ν�S�(t)] (σ )

)

=
[
S�(t)

(
dν�

dµ�

)
(σ x)

](
dµx�

dµ�
(σ)

)[
S�(t)

(
dν�

dµ�

)
(σ )

]−1

.(3.2)

Definition 3.1. We define the “difference Hamiltonian”Hµ,ν
� (σ ) =∑

A⊂�[Uµ(A, σ)−
Uν(A, σ)]. Note that Hµ,ν

� depends on both the initial measure and the dynamics.

Using this definition, we may rewrite (3.2) as

dν�S�(t)
x

dν�S�(t)
(σ ) = dµx�

dµ�
(σ)

E
�
σx

(
exp[Hµ,ν

� (σt )]
)

E�σ

(
exp[Hµ,ν

� (σt )]
) , (3.3)

whereE
�
σ denotes the expectation for the process with semigroupS�(t) starting from

σ . Since this semigroup converges to the semigroupS(t) of the infinite-volume process
as�→ Z

d , we obtain the following:

Proposition 3.2.If the right-hand side of (3.3) converges uniformly as� ↑ Z
d , then for

any σ ∈ � and t ≥ 0:

dνS(t)x

dνS(t)
(σ ) = dµx

dµ
(σ) lim

�↑Zd

Eσx
(
exp[Hµ,ν

� (σt )]
)

Eσ

(
exp[Hµ,ν

� (σt )]
) , (3.4)

and νS(t) is a Gibbs measure.

Proof. The claim follows from a combination of (2.26) and (3.3) with Lemma 3.3 below.
��
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Lemma 3.3.If νn → ν weakly as n→ ∞, and dνxn/dνn ∈ C(�) exists for any n ∈ N

and converges uniformly to a continuous function-, then- defines a continuous version
of dνx/dν.

Proof. Let f : �→ R be a continuous function. Defineθx : �→ � by θx(σ ) = σx .
Then alsof ◦ θx : �→ R is a continuous function. Therefore∫

f dνx =
∫
(f ◦ θx(σ )) ν(dσ )

= lim
n↑∞

∫
(f ◦ θx(σ )) νn(dσ )

= lim
n↑∞

∫
dνxn

dνn
(σ )f (σ )νn(dσ )

= lim
n↑∞

∫
-(σ)f (σ )νn(dσ )

=
∫
-fdν, (3.5)

where the fourth equality follows from

lim
n↑∞

∫ ∣∣∣dνxn
dνn

(σ )−-(σ)
∣∣∣f (σ)νn(dσ ) ≤ lim

n↑∞‖f ‖∞‖dν
x
n

dνn
−-‖∞ = 0. (3.6)

Since (3.5) holds for any continuous functionf , the statement of the lemma follows
from the Riesz representation theorem.��

Proposition 3.2, combined with Proposition 2.2, will be used in Sects. 4–6 to prove
Gibbsianness.

3.2. Path-space representation of the RN-derivative. An alternative representation of
the RN-derivativedνxt /dνt is obtained by observing thatνt = νS(t) is the restriction
of the path-space measureP

[0,t]
ν to the “layer”{t} × �. In some sense, this path-space

measure can be given a Gibbsian representation with the help of Girsanov’s formula.
The “relative energy for spin flip” of this path-space measure is a well-defined (though
unbounded) random variable. Conditioning the path-space measure RN-derivative for
a spin flip at sitex on the layer{t} × �, we get the RN-derivativedνxt /dνt . More
formally, let us denote byπt the projection on timet in path space, i.e.,πt (ω) = ωt with
ω ∈ D([0, t], �), the Skorokhod space. By a spin flip at sitex in path space we mean a
transformation

1x : D([0, t], �)→ D([0, t], �) (3.7)

such that

(πt (ω))
x = πt (1x(ω)). (3.8)

Different choices are possible, but in this section we choose

(1x(ω))(s, y) =
{−ω(s, x) for y = x, 0 ≤ s ≤ t,
ω(s, y) otherwise.

(3.9)
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Let F[t] denote theσ -field generated by the projectionπt . Then we can write the fol-
lowing formula:

dνS(t)x

dνS(t)
= E

[0,t]
ν

(
dP

[0,t]
ν ◦1x
dP

[0,t]
ν

| F[t]

)
. (3.10)

This equality is useful because of the Gibbsian form of the RHS of (3.10) given by
Girsanov’s formula, as shown in the proof of the following:

Proposition 3.4.Let ν be a Gibbs measure on �. For any t > 0,

νS(t)x " νS(t), (3.11)

and the RN-derivative can be written in the form

dνS(t)x

dνS(t)
= E

[0,t]
ν

[(
dνx

dν
◦ π0

)
-x | F[t]

]
, (3.12)

where-x : D([0, t], �)→ R is a continuous function on path space (in the Skorokhod
topology).

Proof. We first approximate our process by finite-volume pure-jump processes and use
Girsanov’s formula to obtain the densities of these processes w.r.t. the independent spin-
flip process. Indeed, denote byP

�
σ the path-space measure of the finite-volume approx-

imation with generator (2.25) and byP�,0σ the path-space measure of the independent
spin-flip process in�, i.e., the process with generator

L0
�f =

∑
x∈�

∇xf, f ∈ L. (3.13)

We have forf : �→ R such thatDf ⊂ �,∫
f (σ) νS(t)x(dσ ) = lim

�↑Zd

∫
ν(dσ)

∫
P
�
σ (dω) f (πt (1x(ω)))

= lim
�↑Zd

∫
ν(dσ)

∫
P
�,0
σ (dω)

dP
�
σ

dP
�,0
σ

(ω) f (πt (1x(ω))) . (3.14)

SinceP
�,0
σ is the path-space measure of the independent spin-flip process, the trans-

formed measureP�,0σ ◦1x equalsP�,0σx . Abbreviate

F�(ω) =
dP

�
ω0

dP
�,0
ω0

(ω). (3.15)

Then we obtain∫
ν(dσ)

∫
P
�,0
σ (dω)F�(ω)f (πt (1x(ω)))

=
∫
ν(dσ)

∫
P
�,0
σx (dω)F�(1x(ω))f (πt (ω))

=
∫
ν(dσ)

∫
P
�
σx (dω)

dP
�,0
σx

dP
�
σx

(ω)F�(1x(ω))f (πt (ω))

=
∫
ν(dσ)

dνx

dν
(σ )

∫
P
�
σ (dω)

(
-x,�(ω)f (πt (ω))

)
, (3.16)
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where-� can be computed from Girsanov’s formula (see [26] p. 314) and for� large
enough reads

-x,�(ω) = exp

[ ∑
|y−x|≤R

∫ t

0
log

c(y, ωxs )

c(y, ωs)
dN

y
s (ω)

+
∑

|y−x|≤R

∫ t

0
[c(y, ωs)− c(y, ωxs )]ds

]
, (3.17)

whereNyt (ω) is the number of spin flips at sitey up to timet along the trajectoryω. We
thus obtain the representation of (3.12) by observing that-x,� does not depend on�
for� large enough and using the convergence ofP

�
σ to Pσ as� ↑ Z

d . Indeed, the only
point to check is that (

dνx

dν
◦ π0

)
-x ∈ L1(Pν), (3.18)

so that the conditional expectation in (3.12) is well-defined. However, this is a conse-
quence of the following two observations:

1. dνx/dν is uniformly bounded becauseν ∈ G.
2. For-x we have the bound

|-x(ω)| ≤ e2Ct
(
M

ε

)NR,xt (ω)

, (3.19)

where, as in (2.4),M andε are the maximum and minimum rates,NR,xt (ω) is the
total number of spin flips in the region{y : |y − x| ≤ R} up to timet along the
trajectoryω. Since the rates are bounded from above, the expectation of the RHS of
(3.19) overPσ is finite uniformly inσ .
��

3.3. Backwards process. Proposition 3.4 provides us with a representation of the RN-
derivativedνxt /dνt that can be interpreted as the expectation of a continuous function
on path spacein the backwards process. The backwards process is the Markov process
with a time-dependent transition operator given by

(S∗ν (s, t)f )(σ ) = Eν(f ◦ πs |σt = σ) 0 ≤ s ≤ t, (3.20)

whereEν(·|σt = σ) is conditional expectation with respect to theσ -field at timet . Note
that this transition operator depends on the initial Gibbs measureν and is a function of
s andt (time-inhomogeneous process). Although the evolution has a reversible measure
µ, at any finite time the distribution at timet is notµ. This causes essential differences
between the forward and the backwards process.

The dependence ofS∗ν (s, t) on ν is crucial and shows that even for innocent dy-
namics, like the independent spin-flip process, the transition operators of the backwards
process may fail to be Feller for certain choices ofν (see Sect. 5 below). In general, the
independence of the Poisson clocks that govern the spin flips (in the backwards process
this meanswere flipped) is lost.

In order to have continuity of the RN-derivativedνxt /dνt , it is sufficient that the
operatorsS∗ν (s, t) have the Feller property, i.e., map continuous functions to continuous
functions.
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Proposition 3.5.If ν is a Gibbs measure, then:

S∗ν (s, t)C(�) ⊂ C(�) ∀ 0 ≤ s < t ≤ t0 $⇒ νS(t) ∈ G ∀ 0 ≤ t ≤ t0. (3.21)

Proof. This is an immediate consequence of Proposition 3.4. See also [22].��

As in Sect. 3.1, we can thus hope to approximate the transition operators of the
backwards process by “local operators” (operators mappingL ontoL).

Proposition 3.6.For any σ ∈ � and 0 ≤ s < t , if, for f ∈ L, the sequence of functions

σ �→ Eσ

(
exp[Hµ,ν

� (σt )]f (σt−s)
)

Eσ

(
exp[Hµ,ν

� (σt )]
) (3.22)

converges uniformly as � ↑ Z
d , then

(S∗ν (s, t)f )(σ ) = lim
�↑Zd

Eσ

(
exp[Hµ,ν

� (σt )]f (σt−s)
)

Eσ

(
exp[Hµ,ν

� (σt )]
) , (3.23)

and S∗ν (s, t)f ∈ C(�), i.e., S∗ν (s, t) is Feller.

Proof. Let us first computeS∗ν (s, t) in the case of the finite-volume reversible Markov
chain with generator (2.25). For the sake of notational simplicity, we omit the indices�

referring to the finite volume, and abbreviateνs = νS(s):

(S∗ν (s, t)f )(σ ) =
∑
η

pt−s(η, σ )
νs(η)

νt (σ )
f (η)

= µt(σ )

νt (σ )

∑
η

pt−s(σ, η)
νs(η)

µs(η)
f (η)

=
[
S(t)

(
dν

dµ

)
(σ )

]−1∑
η

pt−s(σ, η)
[
S(s)

(
dν

dµ

)
(η)

]
f (η)

=
S(t − s)

(
S(s)

(
dν
dµ

)
f
)

S(t)
(
dν
dµ

) (σ )

= Eσ

(
exp[Hµ,ν

� (σt )]f (σt−s)
)

Eσ

(
exp[Hµ,ν

� (σt )]
) , (3.24)

whereHµ,ν
� is defined in Definition 3.1. ��

Propositions 3.5 and 3.6 are the analogues of Propositions 2.2 and 3.2. We will
not actually use them, but they provide useful insight. The relation between the Feller
property of the backwards process and the Gibbsianness of thestationary measure has
been observed in [21].
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3.4. Criterion for Gibbsianness of νS(t). A useful tool to study whetherνS(t) ∈ G is to
consider the joint distribution of(σ0, σt ), whereσ0 is distributed according toν. Let us
denote this joint distribution bŷνt , which can be viewed as a distribution on{−1,+1}S
with S = Z

d ⊕ Z
d consisting of two “layers” ofZd . The correspondence betweenν̂t

andνS(t) is made explicit by the formula∫
ν̂t (dσ, dη)f (σ )g(η) =

∫
ν(dσ)(f S(t)g)(σ ) f, g ∈ L. (3.25)

A priori the joint distributionν̂t has more chance of being Gibbsian thanνS(t) and for
the high-temperature dynamics we study this is actually the case. The measureνS(t)

can then be viewed as the restriction of a Gibbs measure of a two-layer system to the
second layer. Restrictions of Gibbs measures have been studied e.g. in [39,31,11,29,
28], and it is well-known that they can fail to be Gibbsian. In fact, most examples of
non-Gibbsian measures can be viewed as restrictions of Gibbs measures. Formally, the
Hamiltonian ofν̂t is

Ht(σ, η) = Hν(σ)− logpt (σ, η), (3.26)

wherept (σ, η) is the transition kernel of the dynamics. Of course, the object logpt (σ, η)

has to be interpreted in the sense of the formal sums
∑
A U(A, σ) introduced in Sect. 2.3.

More precisely, ifδσ S(t) is a Gibbs measure for anyσ , then logpt (σ, η) is the Hamil-
tonian of this Gibbs measure. In order to prove or disprove Gibbsianness of the measure
νS(t), one has to study the Hamiltonian (3.26) forfixed η. Let us denote byG(Hη

t ) the
set of Gibbs measures associated with the HamiltonianH

η
t (·) = Ht(·, η). From [11] we

have the following:

Proposition 3.7.For any t ≥ 0, if ν̂t is Gibbs, then

1. If |G(Hη
t )| = 1 for all η ∈ �, then νS(t) is a Gibbs measure.

2. For monotone specifications, if |G(Hη
t )| ≥ 2, then η is a bad configuration for νS(t),

so νS(t) is not a Gibbs measure (by Proposition 2.2).

Remark. Part 2 is expected to be true without the requirement of monotonicity but this
has not been proved.

A monotone specification arises e.g. when the Hamiltonian of (3.26) comes from a
ferromagnetic pair potential and an arbitrary single-site part (possibly an inhomogeneous
magnetic field).

4. Conservation of Gibbsianness for Small Times

Having put the technical machinery in place in Sects. 2–3, we are now ready to formulate
and prove our main results in Sects. 4–6.

In this section we prove that, for every finite-range spin-flip dynamics starting from a
Gibbs measureν corresponding to a finite-range interaction, the measureνS(t) remains
Gibbsian in a small interval of time[0, t0]. The intuition behind this theorem is that for
small times the set of sites where a spin flip has occurred consists of “small islands” that
are far apart in a “sea” of sites where no spin flip has occurred. This means that sites that
are far apart have more or less disjoint histories.
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Theorem 4.1.Let both the initial measure ν and the reversible measure µ be Gibbs
measures for finite-range interactions Uν , resp. Uµ. Then there exists t0 = t0(µ, ν) > 0
such that νS(t) is a Gibbs measure for all 0 ≤ t ≤ t0.

Proof. During the proof we abbreviateH� = H
µ,ν
� . We prove that the limit

lim
�↑Zd

Eσx (exp[H�(σt )])
Eσ (exp[H�(σt )]) (4.1)

converges uniformly int ∈ [0, t0] for t0 small enough whenUν,Uµ ∈ Bf r . The t0
depends on bothUν andUµ.

Let us writeRν,Rµ to denote the range ofUν,Uµ (see Sect. 2.2).

I: Rν < ∞, Rµ = 0. To warm up, we first deal with unbiased independent spin-
flip dynamics. For this dynamics the distribution ofσt underP0

σx coincides with the
distribution ofσxt underP0

σ . Therefore we can write

E
0
σ

(
exp[H�(σxt )]

)
E0
σ (exp[H�(σt )]) =

∑
A⊂� δ

|A|
t (1− δt )|�|−|A| exp[(HA�{x} −H)(σ)]∑

A⊂� δ
|A|
t (1− δt )|�|−|A| exp([HA −H)(σ)]

=


∑
A⊂�

(
δt

1−δt
)|A|

exp[(HA�{x} −H {x})(σ )]
∑
A⊂�

(
δt

1−δt
)|A|

exp[(HA −H)(σ)]


-x(σ), (4.2)

where

-x(σ) = exp[(H {x} −H)(σ)] (4.3)

is a continuous function ofσ , the sum runs over

A = {y ∈ � : σt (y) �= σ0(y)}, (4.4)

while

δt = P
0
σ (σt (x) �= σ0(x)) = 1− e−2t . (4.5)

The notationHA, A ⊂ �, is defined by

HA(σ) = H(σA) (4.6)

with σA the configuration obtained fromσ by flipping all the spins inA.
Suppose first thatRν = 1. Then

HA∪B −HA = HB −H ∀ A,B : d(A,B) > 1. (4.7)

For A ⊂ � we can decomposeA into disjoint nearest-neighbor connected subsets
γ1, . . . , γk and thus rewrite (4.2) as follows:

E
0
σ

(
exp[H�(σxt )]

)
E0
σ (exp[H�(σt )]) =

(∑∞
n=0

1
n!
∑
γ1,... ,γn⊂�,γi∩γj=∅

∏n
i=1w

x
σ (γi)∑∞

n=0
1
n!
∑
γ1,... ,γn⊂�,γi∩γj=∅

∏n
i=1wσ (γi)

)
-x (4.8)



116 A.C.D. van Enter, R. Fernández, F. den Hollander, F. Redig

with

wxσ (γ ) = ε
|γ |
t exp[Hγ�{x}(σ )−H {x}(σ )],

wσ (γ ) = ε
|γ |
t exp[Hγ (σ)−H(σ)], (4.9)

andεt = δt/(1− δt ). Note thatwxσ (γ ) = wσ (γ ) for all γ that do not containx.
Next, since

|(Hγ −H)(σ)| ≤ |γ |C (4.10)

with

C = 2 sup
�

sup
σ

|H�(σ)|
|�| <∞, (4.11)

we have the estimate

|wσ (γ )| ≤ exp(−αt |γ |) with αt = −C + log(1/εt ). (4.12)

A similar estimate holds for|wxσ (γ )|. Sinceαt ↑ ∞ ast ↓ 0, it follows that fort small
enough we can expand the logarithm of both the numerator and the denominator in (4.8)
in a uniformly convergent cluster expansion:

log


 ∞∑
n=0

1

n!
∑

γ1,... ,γn⊂�,γi∩γj=∅

n∏
i=1

wxσ (γi)


 =

∑
'

a(')wxσ ('),

log


 ∞∑
n=0

1

n!
∑

γ1,... ,γn⊂�,γi∩γj=∅

n∏
i=1

wσ (γi)


 =

∑
'

a(')wσ ('). (4.13)

The weightswxσ (') andwσ (') differ only for clusters' containingx. By the uniformity
in σ of the estimate (4.12) we have, fort small enough,∑

'�x
|a(')| sup

σ
|wσ (')| <∞, (4.14)

and the same holds forwσ (') replaced bywxσ ('). Therefore

lim sup
�↑Zd

∑
'�x,' �⊂�

sup
σ

|a(')(wxσ (')− wσ ('))| = 0 ∀x ∈ Z
d (4.15)

and hence we obtain uniform convergence of the limit in (4.1).
The caseRν <∞ is treated in the same way. We only have to redefine theγi ’s as the

Rν-connected decomposition ofA. Note thatt0 depends onRν and converges to zero
whenRν ↑ ∞.

II: Rν <∞, Rµ <∞. Next we prove that the limit (4.1) converges uniformly if both
interactionsUµ,Uν are finite range. For the sake of notational simplicity we first restrict
ourselves to the caseRν = Rµ = 1.

We abbreviateU = Uµ−Uν . The idea is that we go back to the independent spin-flip
dynamics via Girsanov’s formula. After that we can again set up a cluster expansion,
which includes additional factors in the weights due to the dynamics.



Stochastic Evolution of Gibbs Measures 117

The first step is to rewrite (4.1) in terms of the independent spin-flip dynamics:

Eσx (exp[H�(σt )])
Eσ (exp[H�(σt )]) (4.16)

=
E

0
σ

(
exp

(∑
y∈�

∫ t
0 logc(y, σ xs )dN

y
s + ∫ t

0(1− c(y, σ xs ))ds
)

exp[H�(σxt )]
)

E0
σ

(
exp

(∑
y∈�

∫ t
0 logc(y, σs)dN

y
s + ∫ t

0(1− c(y, σs))ds
)

exp[H�(σt )]
) .

For a given realizationω of the independent spin-flip process, we say that a sitey is
ω-active if the spin at that site has flipped at least once. The set of allω-active sites is
denoted byJ (ω). Let σ̄ denote the trajectory that stays fixed atσ over the time interval
[0, t]. ForA ⊂ �, define

U1(A, ω) =
∫ t

0 logc(y, ωs)dN
y
s (ω)+

∫ t
0(1− c(y, ωs))ds if A = Dcy

= 0 if A �= Dcy ,

U2(A, ω) = U(A,ωt ),

(4.17)

and put

U(A, ω) = U1(A, ω)+ U2(A, ω). (4.18)

Also define

Ux(A, ω) = U(A, ωx), (4.19)

where the trajectoryωx is defined as

(ωx)s = (ωs)
x 0 ≤ s ≤ t. (4.20)

With this notation we can rewrite the right-hand side of (4.16) as(
E

0
σ

(
exp

(∑
A⊂�[Ux(A, ω)− Ux(A, σ̄ )]))

E0
σ

(
exp

(∑
A⊂�[U(A, ω)− U(A, σ̄ )]))

)
-x(σ), (4.21)

where

-x(σ) = exp

(∑
A�x

[U(A, σ̄ )− U(A, σ̄ x)]
)

(4.22)

is a continuous function ofσ . In order to obtain the uniform convergence of (4.1), it
suffices now to prove the uniform convergence of the expression between brackets in
(4.21).

As in Part I, we decompose the set ofω-active sites into disjoint nearest-neighbor
connected setsγ1, . . . , γk and rewrite, using the product character ofE

0
σ ,

E
0
σ

(
exp

(∑
A⊂�[Ux(A, ω)− Ux(A, σ̄ )]))

E0
σ

(
exp

(∑
A⊂�[U(A, ω)− U(A, σ̄ )]))

=
∑∞
n=0

1
n!
∑
γ1,... ,γn⊂�,γi∩γj=∅

∏n
i=1w

x
σ (γi)∑∞

n=0
1
n!
∑
γ1,... ,γn⊂�,γi∩γj=∅

∏n
i=1wσ (γi)

. (4.23)
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The cluster weights are now given by

wσ (γ ) = et |γ |E0
σ


1{J (ω)⊃γ } exp


 ∑
A∩γ �=∅

[U(A, ωγ σ̄�\γ )− U(A, σ̄ )]



 , (4.24)

and an analogous expression forwxσ after we replaceU by Ux . The factoret |γ | arises
from the probability

P
0
σ

(
J (ω)c ⊃ � \ ∪iγi

) = e−t |�\∪i γi | = e−t |�|
∏
i

et |γi |. (4.25)

Having arrived at this point, we can proceed as in the case of the independent spin-flip
dynamics. Namely, we estimate the weightswσ and prove that

wσ (γ ) ≤ e−αt |γ | (4.26)

with αt ↑ ∞ ast ↓ 0. To obtain this estimate, note that

P
0
σ (J (ω) ⊃ γ ) ≤ (1− e−t )|γ |. (4.27)

Then apply to (4.24) Cauchy-Schwarz, the bounds in (2.4) on the flip rates, and the
estimate

C = sup
�

sup
σ

1

|�|
∑

A∩��=∅
|U(A, σ)| <∞, (4.28)

to obtain

wσ (γ ) ≤ eKt |γ |(1− e−t )− 1
2 |γ | for someK = K(ε,M,C). (4.29)

This clearly implies (4.26).
The caseRν,Rµ <∞ is straightforward after redefinition of theγi ’s. ��

5. Infinite-Temperature Dynamics

5.1. Set-up. In this section we consider the evolution of a Gibbs measureν under a
product dynamics, i.e., the flip ratesc(x, σ ) depend only onσ(x). The associated process
{σt : t ≥ 0} is a product of independent Markov chains on{−1,+1}:

Pσ = ⊗x∈ZdPσ(x), (5.1)

wherePσ(x) is the Markov chain on{−1,+1} with generator working onϕ : {−1,+1}
→ R:

Lxϕ(α) = c(x, α)[ϕ(−α)− ϕ(α)]. (5.2)

Let us denote bypxt (α, β) the probability for this Markov chain to go fromα to β in
time t . The Hamiltonian (3.26) of the joint distribution of(σ0, σt ) is then given by

Ht(σ, η) = Hν(σ)−
∑
x

logpxt (σ (x), η(x)). (5.3)
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This equation can be rewritten as

Ht(σ, η) = Hν(σ)−
∑
x

hx1(t)σ (x)−
∑
x

hx2(t)η(x)−
∑
x

hx12(t)σ (x)η(x) (5.4)

with

hx1(t) =
1

4
log

pxt (+,+)pxt (+,−)
pxt (−,+)pxt (−,−)

,

hx2(t) =
1

4
log

pxt (+,+)pxt (−,+)
pxt (+,−)pxt (−,−)

,

hx12(t) =
1

4
log

pxt (+,+)pxt (−,−)
pxt (+,−)pxt (−,+)

. (5.5)

The fieldshx1, resp.hx2, tend to pullσ , resp.η, in their direction, whilehx12 is acoupling
betweenσ andη that tends to align them. Indeed, note thathx12(t) is positive because

pxt (+,+)pxt (−,−)− pxt (+,−)pxt (−,+) = det(exp(tLx)) ≥ 0. (5.6)

In what follows we will consider the case where the single-site generatorsLx are inde-
pendent ofx and are given by

L = 1

2

(−1+ ε 1− ε
1+ ε −1− ε

)
for some 0≤ ε < 1. (5.7)

For ε > 0 this means independent spin flips favoring plus spins, forε = 0 it means
independent unbiased spin flips. The invariant measure of the single-site Markov chain
is (ν(+), ν(−)) = 1

2(1+ ε,1− ε). The relevant parameter in what follows is

δ = ν(−)
ν(+) =

1− ε
1+ ε . (5.8)

In terms of this parameter the fields in (5.5) become

h1(t) = 1

4
log

(
1+ δe−t
1+ 1

δ
e−t

)
,

h2(t) = −1

2
logδ + h1(t),

h12(t) = 1

4
log

(1+ δe−t )(1+ 1
δ
e−t )

(1− e−t )2 . (5.9)

In particular, forδ = 1 we geth1(t) = h2(t) = 0 and

h12(t) = 1

2
log

1+ e−t
1− e−t . (5.10)
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5.2. 1 " Tν ≤ ∞, Tµ = ∞.

Theorem 5.1.Let ν be a high- or infinite-temperature Gibbs measure, i.e., its interac-
tion Uν satisfies (2.27). Let S(t) be the semigroup of an arbitrary infinite-temperature
dynamics. Then νS(t) is a Gibbs measure for all t ≥ 0.

Proof. The joint distribution of(σ0, σt ) is Gibbs with Hamiltonian (recall (3.26) and
(5.4))

Ht(σ, η) = Hν(σ)+
∑
x

[h1(t)+ h12(t)η(x)]σ(x)+ h2(t)
∑
x

ηx. (5.11)

For fixedη, the last term is constant inσ and can therefore be forgotten. SinceHt(·, η)
differs fromHν(·) only in the single-site interaction,Ht(·, η) satisfies (2.27) if and
only if Hν(·) satisfies (2.27). Hence|G(Ht (·, η)| = 1 for anyη, and we conclude from
Proposition 3.7 thatνS(t) is Gibbsian. ��

Theorem 5.1 should not come as a surprise: the infinite-temperature dynamics acts
as a single-site Kadanoff transformation and in the Dobrushin uniqueness regime such
renormalized measures stay Gibbsian [16,20,10].

5.3. 0 < Tν " 1, Tµ = ∞, δ = 1. For the initial measure we choose the low-
temperature plus-phase of thed-dimensional Ising model,ν = νβ,h, i.e., the Hamiltonian
Hν is specified to be

Hν(σ) = −β
∑
<x,y>

σ(x)σ (y)− h
∑
x

σ (x), (5.12)

where
∑
<x,y> denotes the sum over nearest-neighbor pairs, andβ � βc with βc the

critical inverse temperature. The dynamics has generator

Lf =
∑
x

∇xf, (5.13)

corresponding to the caseδ = 1. The joint measure has a Hamiltonian as in (5.11), with
h1(t) = h2(t) = 0 andh12(t) = ht :

Ht(σ, η) = −β
∑
<x,y>

σ(x)σ (y)− h
∑
x

σ (x)− ht
∑
x

σ (x)η(x). (5.14)

The “dynamical field” is given byht = −(1/2) log[tanh(t/2)].
Theorem 5.2.For β � βc:

1. There exists a t0 = t0(β, h) such that νβ,hS(t) is a Gibbs measure for all 0 ≤ t ≤ t0.
2. If h > 0, then there exists a t1 = t1(h) such that νβ,hS(t) is a Gibbs measure for all
t ≥ t1.

3. If h = 0, then there exists a t2 = t2(β) such that νβ,0S(t) is not a Gibbs measure for
all t ≥ t2.

4. For d ≥ 3, if 0 < h ≤ h(β) small enough, then there exist t3 = t3(β, h) < t4 =
t4(β, h) such that νβ,hS(t) is not a Gibbs measure for all t3 ≤ t ≤ t4.
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Proof. The proof uses (5.14).

1. For smallt the dynamical fieldht is large and, forgiven η, forcesσ in the direction
of η. Rewrite the joint Hamiltonian in (5.14) as

Ht(σ, η) =
√
ht

(
− β√

ht

∑
<x,y>

σ(x)σ (y)− h√
ht

∑
x

σ (x)−√
ht
∑
x

σ (x)η(x)

)

= √
ht H̃t (σ, η). (5.15)

For 0≤ t ≤ t ′0 small enough,H̃t (·, η) has the unique ground stateη and so, forλ ≥ λ0

large enough,λH̃t satisfies the Dobrushin uniqueness criterion (see [15], Example 2,
p. 147). Therefore, for 0≤ t ≤ t0 such that

√
ht ≥ λ0, Ht(·, η) has a unique Gibbs

measure for anyη. Hence,νS(t) is Gibbs by Proposition 3.7(1).

2. For larget the dynamical fieldht is small and cannot cancel the effect of the external
field h > 0. Rewrite the joint Hamiltonian as

Ht(σ, η) =
√
β

(
−√β ∑

<x,y>

σ(x)σ (y)− h√
β

∑
x

σ (x)− ht√
β

∑
x

σ (x)η(x)

)

= √
βH̃t (σ, η). (5.16)

Fort ≥ t1 = t1(h) large enough,̃Ht(·, η) has the unique ground stateσ = h/|h|. Hence,
for β large enough,

√
βH̃t (·, η) satisfies the Dobrushin uniqueness criterion (again, see

[15], Example 2, p. 147). Hence,νS(t) is Gibbs by Proposition 3.7(1).

3. This fact is a consequence of the results in [10], Sect. 4.3.4, for the single-site Kadanoff
transformation. Chooseη = ηa to be a fully alternating configuration. Fort ≥ t2 large
enough,Ht(·, ηa) has two ground states, and by an application of Pirogov–Sinai theory
(see [10] Appendix B), it follows that, forβ large enough,|G(Ht (·, ηa)| ≥ 2. Therefore
ηa is a bad configuration forνS(t), implying thatνS(t) is not Gibbs by Proposition
3.7(2).

4. In this case we rewrite the Hamiltonian in (5.14) as

Ht(σ, η) = −β
∑
<x,y>

σ(x)σ (y)−
∑
x

[h+ htη(x)]σ(x). (5.17)

For “intermediate”t we have thath and ht are of the same order. More precisely,
chooset such that3

2h ≤ ht ≤ 5
2h. As explained in [10], Sect. 4.3.6, we can find

a bad configurationηspec such that the dynamical-field term
∑
x htη(x)σ (x) in the

Hamiltonian “compensates” the homogeneous-field term
∑
x hσ(x) (i.e.,

∑
x∈�(h +

htηspec(x)) = o(|�|) for large blocks�). For thisηspec, Ht(·, ηspec) has two ground
states, which are predominantly plus and minus. Since the proof of existence ofηspec
requires analysis of the (non-symmetric) random field Ising model, we have to restrict
to the cased ≥ 3. Unlike the previous case,ηspecis not constructed, but chosen from
a (Bernoulli) measure one set. If in (5.17) we chooseη to be Bernoulli distributed with
probabilityp for a+1 (notationνp), then we are exactly in the situation of the asymmetric
random field Ising model. Zahradnik’s result (see [42]) shows that there exists a value
of p such that, forβ large enough andνp-almost everyη, Ht(·, η) exhibits a phase
transition. If we choose nowηspecto be an element of this set ofνp-measure one, then
|G(Ht (·, ηspec)| ≥ 2, implying thatνS(t) is not Gibbs by Proposition 3.7(2).��
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Remark. From the estimate (B89) in [10], Appendix B, we can conclude the following:

1. t0(β, h)→ 0 asβ → ∞, t0(β, h)→ ∞ ash→ ∞.
2. t1(h)→ 0 ash→ ∞, t1(h)→ ∞ ash→ 0.
3. t2(β)→ 0 asβ → ∞.
4. t3(β, h)→ 0 asβ → ∞, t4(β, h)→ ∞ asβ → ∞.

5.4. 0 < Tν " 1, Tµ = ∞, δ < 1. Let us now consider a biased dynamics. At first
sight one might expect this case to be analogous to the case of an unbiased dynamics
with an initial measure havingh > 0. However, this intuition is false.

Theorem 5.3.The same results as in Theorem 5.2 hold, but with the ti’s also depending
on δ. For item 4 the additional restrictions d ≥ 3 and |h + 1

4 logδ| small enough are
needed.

Proof. The last term in (5.4) being irrelevant, we can drop it and study the Hamiltonian

Ĥt (σ, η) = −β
∑
<x,y>

σ(x)σ (y)−
∑
x

σ (x) [(h+ h1(t))+ h12(t)η(x)] . (5.18)

This Hamiltonian is of the same form as (5.14), but withh becomingt-dependent. We
have limt↑∞ h1(t) = 0 and limt↑∞ h12(t) = 0 with

lim
t↑∞

h12(t)

h1(t)
= 1+ δ

1− δ > 1, (5.19)

so that, in the regime whereβ � βc, h = 0, t � 1, we find that the effect ofh12(t)

dominates. Hence we can find a special configuration that compensates the effect of the
fieldh1(t) for which the Hamiltonian (5.18) has two ground states, implying thatνS(t) �∈
G. Similarly, whenh > 0 we can findt intermediate such that

∑
x(h + h1(t))σ (x) is

“compensated” by
∑
h12(t)σ (x)η(x), as in the proof of item 4 of the previous theorem.

��
Remark. Note that ifTν = 0, Tµ = ∞, thenνS(t) is a product measure for allt > 0
and hence is Gibbs.

6. High-Temperature Dynamics

6.1. Set-up. In this section we generalize our results in Sect. 5 for the infinite-
temperature dynamics to the case of a high-temperature dynamics. The key technical
tool is a cluster expansion that allows us to obtain Gibbsianness of the joint distribution
of (σ0, σt )with a Hamiltonian of the form (3.26). The main difficulty is to give meaning
to the term logpt (σ, η), i.e., to obtain Gibbsianness of the measureδσ S(t) for anyσ . In
the whole of this section we will assume that the ratesc(x, σ ) satisfy the conditions in
Sect. 2.2 and, in addition,

c(x, σ ) = 1+ ε(x, σ ) (6.1)

with

supσ,x |ε(x, σ )| = δ " 1,

ε(x, σ ) = ε(x,−σ). (6.2)
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The latter corresponds to a high-temperature unbiased dynamics, i.e., a small unbiased
perturbation of the unbiased independent spin-flip process. For the initial measure we
consider two cases:

1. A high- or infinite-temperature Gibbs measureν. In that case we will find thatνS(t)
stays Gibbsian for allt > 0.

2. The plus-phase of the low-non-zero-temperatured-dimensional Ising model,νβ,h,
corresponding to the Hamiltonian in (5.12). In that case we will find the same tran-
sitions as for the infinite-temperature dynamics.

6.2. Representation of the joint Hamiltonian. In this section we formulate the main
result of the space-time cluster expansion in [30] and [27]. We indicate the line of proof
of this result, and refer the reader to [27] for the complete details.

Theorem 6.1.Let ν be a Gibbs measure with Hamiltonian Hν , and let the dynamics be
governed by rates satisfying (6.1–6.2). Then the joint distribution of (σ0, σt ), when σ0
is distributed according to ν, is a Gibbs measure with Hamiltonian

Ht(σ, η) = Hν(σ)+Ht
dyn(σ, η). (6.3)

The Hamiltonian Ht
dyn(σ, η) corresponds to an interaction Utdyn(A, σ, η), A ∈ S, that

has the following properties:

1. The interaction splits into two terms

Utdyn = Ut0 + Utδ , (6.4)

where Ut0 is the single-site potential corresponding to the Kadanoff transformation:

Ut0({x}, σ, η) = −1
2 log[tanh(t/2)]σ(x)η(x) x ∈ Z

d ,

Ut0(A, σ, η) = 0 if |A| �= 1.
(6.5)

2. The term Utδ = Utδ(A, σ, η) decays exponentially in the diameter of A, i.e., there
exists α(δ) > 0 such that

sup
t≥0

sup
x

∑
A�x

sup
σ,η
eα(δ)diam(A)|Utδ(A, σ, η)| <∞, (6.6)

and α(δ) ↑ ∞ as δ ↓ 0.
3. The potential Utdyn converges exponentially fast to the potential Uµ of the high-

temperature reversible Gibbs measure:

lim
t↑∞ sup

x

∑
A�x

sup
σ,η
eα(δ)diam(A)|Utδ(A, σ, η)− Uµ(A, η)| = 0. (6.7)

4. The term Utδ is a perturbation of the term Ut0, i.e.,

lim
δ↓0

sup
t≥0

supx
∑
A�x supσ,σ ′,η |Utδ(A, σ, η)− Utδ(A, σ ′, η)|

log[tanh(t/2)] = 0. (6.8)
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Remarks. 1. Equation (6.5) corresponds to the infinite-temperature dynamics (i.e.,
c ≡ 1).

2. Equation (6.8) expresses that the potential as a function of the ratesc is continuous
at the pointc ≡ 1, and that the Kadanoff term is dominant forδ " 1.

Main steps in the proof of Theorem 6.1 in [27].

• Discretization. The semigroupS(t) can be approximated in a strong sense by
discrete-time probabilistic cellular automata with transition operators of the form
Pn(σ

′|σ) =∏
x Pn(σ

′(x)|σ), where

Pn(σ
′(x)|σ) =

[
1− 1

n
c(x, σ )

]
δσ ′(x),σ (x) + 1

n
c(x, σ )δσ ′(x),−σ(x). (6.9)

• Space-time cluster expansion for fixed discretizationn. Forn fixed the quantity

-xn (σ, η) = log

(
dδσP

1nt2
n

)x(
dδσP

1nt2
n

) (6.10)

is defined by the convergent cluster expansion

-xn (σ, η) =
∑

'�x,'∈C
wx,nσ,η('), (6.11)

whereC is an appropriate set of clusters onZ
d+1.

• Uniformity in the discretization n. The functions-xn converge uniformly asn ↑ ∞
to a continuous function-x (which defines a continuous version ofdµx/dµ). This
is shown in two steps:
1. Uniform boundedness.

sup
n

sup
x

sup
σ,η

|-xn (σ, η)| <∞. (6.12)

2. Uniform continuity.

lim
�↑Zd

sup
ζ,ξ

sup
x

sup
n

|-xn (σ�ζ�c , η�ξ�c)−-xn (σ, η)| = 0 ∀σ, η ∈ �. (6.13)

By (6.12) and (6.13) we obtain that-xn as a function ofn contains a uniformly
convergent subsequence. The limit-x is independent of the subsequence, since it is
a continuous version ofdµx/dµ.

6.3. 1 " Tν ≤ ∞, 1 " Tµ <∞. Given the result of Theorem 6.1, the case of a high-
or infinite-temperature initial measure is dealt with via Dobrushin’s uniqueness criterion
(recall Theorem 5.1 in Sect. 5.2).

Theorem 6.2.Let ν be a high-temperature Gibbs measure, i.e., its interaction Uν sat-
isfies (2.27). Let the rates satisfy (6.1–6.2). Then, for δ small enough, νS(t) is a Gibbs
measure for all t ≥ 0.
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Proof. For fixedη, the HamiltonianHt(·, η) of (6.3) corresponds to an interactionUη,δt .
By (6.6) and (6.8), this interaction satisfies

lim
δ↓0

sup
t

sup
x

∑
A�x
(|A| − 1) sup

σ,σ ′
|Uη,δt (σ )− Uη,δt (σ ′)|

=
∑
A�x
(|A| − 1)|Uν(σ)− Uν(σ ′)| < 2. (6.14)

Therefore, forδ small enough, (2.27) is satisfied for the interactionU
η,δ
t for all t ≥ 0 and

all η. Hence|G(Ht (·, η))| = 1, and we conclude from Proposition 3.7(1) thatνS(t) ∈ G.
��

6.4. 0 < Tν " 1, 1 " Tµ < ∞. We consider as the initial measure the plus-phase of
the low-temperature Ising modelνβ,h, introduced in Sect. 5.3. The joint distribution of
(σ0, σt ) has the Hamiltonian

Ht(σ, η) =− β
∑
<x,y>

σ(x)σ (y)− h
∑
x

σ (x)

− 1

2
log[tanh(t/2)]

∑
x

σ (x)η(x)+Hδ
t (σ, η), (6.15)

whereHδ
t corresponds to the interactionUδdyn introduced in (6.4). The following is the

analogue of Theorem 5.2:

Theorem 6.3.For β � βc and 0< δ " 1:

1. There exists t0 = t0(β, h, δ) such that νβ,hS(t) is a Gibbs measure for all 0 ≤ t ≤ t0.
2. If h > 0, then there exists t1 = t1(β, h, δ) such that νβ,hS(t) is a Gibbs measure for

all t ≥ t1.
3. If h = 0, then there exists t2 = t2(β, δ) such that νβ,0S(t) is not a Gibbs measure for

all t ≥ t2.
4. For d ≥ 3, if 0 < h < h(β) and 0 < δ < δ(β, h), then there exist t3(β, h, δ) <
t4(β, h, δ) such that νβ,hS(t) is not a Gibbs measure for all t3 ≤ t ≤ t4.

Proof. 1. This a consequence of Theorem 4.1.
2. This is proved in exactly the same way as the corresponding item in Theorem 5.2.
3. Letηa be the fully alternating configuration. We cannot rely on monotonicity in this

case, because of the presence of the dynamical part of the HamiltonianHt(·, ηa),
which is not a single-site interaction. It is therefore not sufficient to show that, for
the fully alternating configurationηa , the HamiltonianH(·, ηa) exhibits a phase
transition. In order to prove thatηa is a bad configuration, we have to show the
following slightly stronger fact. There existsγ > 0 such that for all� ⊂ Z

d , if
m+
�(dσ) is a Gibbs measure corresponding to the interactionH(·, ηa�+�c), then

∫
m+
�(dσ)σ (0) > γ > 0. (6.16)
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Indeed, if we can show this, then for anym−
� that is Gibbs measure with Hamiltonian

Ht(·, ηa�−�c): ∫
m−
�(dσ)σ (0) < −γ, (6.17)

and, as a consequence,

|νS(t) (σ(0)|ηa�+�c)− νS(t) (σ(0)|ηa�−�c) | ≥ 2γ > 0. (6.18)

This shows thatηa is an essential point of discontinuity for the conditional proba-
bilities of νS(t). The proof of (6.16) relies on Pirogov-Sinai theory for the Hamil-
tonianHt(·, ηa�+�c). The first step is to prove that the all-plus-configuration is the
unique ground state of this Hamiltonian. Since the Ising Hamiltonian satisfies the
Peierls condition, we conclude from [10] Proposition B.24 that the ground states of
Ht(·, ηa�+c�) are either the all-plus-configuration or the all-minus-configuration. If
we drop the termHδ

t (·, ηa�+�c) (i.e., if δ = 0), then the remaining Hamiltonian has
as the unique ground state the all-plus-configuration and satisfies the Peierls condi-
tion. Therefore, forδ small enough, we conclude from [10] Proposition B.24 that
Ht(·, ηa�+�c) has the all-plus-configuration as the only possible ground state. From
(6.15) it is easy to verify that the all-plus-configuration is actually a ground state for
δ small enough. In order to conclude that, forβ large enough, the unique phase of
Ht(·, ηa�+�c) is a weak perturbation of the all plus configuration (uniformly in�),
the only extra complication is given by the infinite-range character of the dynamic part
of the HamiltonianHt(·, η). However, for this we can rely on the theory developed
in [3], or [7], which allows exponentially decaying perturbations of a finite-range in-
teraction satisfying the Peierls condition (see e.g. Eqs. (1.3), (2.2) of [3]). Similarly,
for β large enough,Ht(·, ηa�−�c) has a unique phase which is a weak perturbation
of the all-minus-configuration.

4. We can use the line of proof of item 4. ofTheorem 5.2, introducing a special configura-
tionηspecsuch that, in the HamiltonianHt(·, ηspec), the effect of the uniform magnetic
field is “compensated”. This requires analysis of the Ising model perturbed by a uni-
formly small random interaction and therefore we have to restrict tod ≥ 3. More
precisely, if we considerHt(·, η), whereη is distributed according to the Bernoulli
measureνp, then we are exactly in the framework of [42], except that our random
perturbation is not of finite range but exponentially decaying. However, as Pirogov–
Sinai analyses do not distinguish between finite range and exponentially decaying
interactions, similar arguments as those developed in [42] should still work in our
case to conclude the existence of a value ofp such that, forνp-almost everyη,Ht(·, η)
exhibits a phase transition. However, we have not written out the details here.

��
Remark. A result related to Theorem 6.2 was obtained in [30]. Although the abstract
of that paper is formulated in a somewhat ambiguous manner, its results apply only to
initial measures that are product measures (in particular, Dirac measures). In particular,
this includes the caseTν = 0 and 1" Tµ <∞. The results of [30] (or [27]) then imply
that the measure is Gibbs for allt > 0. This seems surprising, becauset2(β, δ)→ 0 as
β → ∞. It is therefore better for the intuition to imagine a Dirac-measure as a product
measure, rather than to view it as a limit of low-temperature measures.
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7. Discussion

7.1. Dynamical interpretation. In the case of renormalization-group pathologies, the
interpretation of non-Gibbsianness is typically linked to the presence of ahidden phase
transition in the original system conditioned on the image spins (the constrained system).
In the context of the present paper, we view the phenomenon of transition from Gibbs
to non-Gibbs as achange in the choice of most probable history of an improbable
configuration at time t > 0.

To that end we offer the following heuristic picture. Let us consider the case of the
low-temperature plus-phase of the Ising model in zero magnetic field (β � βc, h = 0)
with an unbiased (δ = 1) infinite-temperature dynamics. Consider the spin at the origin
at timet conditioned on a neutral (say alternating) configuration in asufficiently large
annulus� around it. For small times the occurrence of such an improbable configuration
indicates that with overwhelming probability a very similar configuration was present
already at time 0. As the initial measure is an Ising Gibbs measure, the distribution at
time 0 of the spin at the origin is determined by its local environment only and does not
depend on what happens outside the annulus�. As all spins flip independently, no such
dependence can appear within small times.

However, after a sufficient amount of time (larger than the transition timet2 in Theo-
rem 6.3), if the same improbable configuration is observed, then it has much more chance
of being recently created (due to atypical fluctuations in the spin-flip processes) than of
being the survivor of an initial state. Indeed, having been there at time 0 is improbable,
but having survived for a large time is even more improbable. Suppose now that out-
side the annulus� we observe anenormous annulus ' in which the magnetization is
more negative than−m∗(t)/2, wherem∗(t) is the value of the evolved magnetization
(which starts fromm∗(0) and decays exponentially fast to zero). Because a large droplet
of the minus-phase shrinks only at finite speed and typically carries a magnetization
characteristic of the evolved minus-phase, with large probability there was anenormous
droplet of the minus phase (even a bit larger than') at time 0, which the spin at the
origin remembers. Indeed, the probability of this happening is governed by the size of
the surface of '. In contrast, the probability of a large negatively magnetized droplet,
arising through a large fluctuation in the spin-flip process starting from a typical plus-
phase configuration, is governed by thevolume of '. Therefore, this second scenario
can safely be forgotten. Although for any size of the initial droplet of the minus-phase
there is a time after which it has shrunk away, for each fixed timet we can choose an
initial droplet size such that at timet it has shrunk no more than to size'. Since we
want the shrinkage until timet to be negligible with respect to the linear size of', we
need to choose' larger whent is larger.

Thus, the transition reflects a cross-over between two improbable histories for seeing
an improbable (alternating) annulus configuration. It can be viewed as a kind of large
deviation phenomenon for a time-inhomogeneous system. One could alternatively de-
scribe it by saying that for small times a large alternating droplet must have occurred at
time 0, while after the transition timet2 a large alternating droplet must have been cre-
ated by the random spin-flips: a“nature to nurture” transition [37]. The mathematical
analysis of this interpretation would rely on finding the (constrained) minimum of an en-
tropy function on the space of trajectories. Alternatively, one could try to study the large
deviation rate function for the magnetization of the measure at time 0 conditioned on an
alternating configuration at timet . This rate function should exhibit a unique minimum
for 0 ≤ t < t2 and two minima fort > t2.
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7.2. Variational principle and large deviations. If νS(t) is a Gibbs measure, then the
relative entropy densitiesh(µ|νS(t)) exist for any translation invariant probability mea-
sureµ. In a forthcoming publication, we will prove that this weaker property of existence
of relative entropy density is true in a much more general context: it only depends on
the positivity and locality of the ratesc(x, σ ) and it is true for allt ≥ 0. This means that
the non-Gibbsianness ofνS(t) is not related to “wrong large deviation properties”.

7.3. Reversibility. Throughout the whole paper, we have assumed the stationary measure
µ to be reversible. However, this is a condition that only serves to make formulas nicer.
It is not at all a necessary condition: if we consider any high-temperature spin-flip
dynamics, then we know that the stationary measureµ is a high-temperature Gibbs-
measure. Equation (3.2) can be rewritten in the general situation: we have to replace
S�(t) in the right-hand side byS∗�(t), whereS∗(t) is the semigroup corresponding to
the rates of the reversed process, i.e., the rates

c∗(x, σ ) = c(x, σ x)
dµx

dµ
. (7.1)

In all the formulas of Sect. 2, we then have to replaceEσ by E
∗
σ , referring to expectation

in the process with semigroupS∗(t).

7.4. Open problems.

1. Trajectory of the interaction. In the regime 1" Tν ≤ ∞, 1 " Tµ ≤ ∞, what can
we say about the trajectoryt �→ Ut? It is not hard to prove that it is analytic inBt i and
converges toUµ. In fact, since the interaction of the two-layer system is exponentially
decaying, we expect the analyticity of the curvet �→ Uνt to hold in a subspace ofB
with a stronger norm. But can we say something about the rate of convergence? Note
that we can view thecurve {Uνt : t ≥ 0} as a continuous trajectory in the spaceB,
interpolating betweenUν andUµ, which implies thatG contains an arc-connected
subset (i.e., we can pass from one high-temperature Gibbs measureν to anotherµ
along a weakly continuous curve not leavingG). Other topological characteristics of
G are discussed in [10], Sect. 4.5.6.

2. Uniqueness of the transitions and estimates for the transition times. Even in the case
Tµ = ∞ we have not proved that the transition from Gibbs to non-Gibbs is unique,
e.g. thatt0(β,0) = t2(β) in Theorem 5.2. However, we expect that whenh = 0 the
alternating configuration is “the worst configuration”, i.e., the transition is sharp and
occurs at the first time at which the alternating configuration is bad. Another issue is
to find good estimates for theti ’s as a function of e.g. the temperatures, the magnetic
fields and the ranges of the interaction inν andµ.

3. Weak Gibbsianness. In the regimes whereνS(t) is not a Gibbs measure we expect
the measure to be “almost Gibbs” and “weakly Gibbs”. Almost Gibbs means that the
measure of the set of bad configurations is zero: this property has recently been proved
for several transformations of the Ising model, including the Kadanoff transformation
(see [12]). Weakly Gibbs means that we can define aνS(t)-a.s. summable interaction
Ut such that the conditional probabilities ofνS(t) can be written in Gibbsian form
(see [9,29]). The interactionUt can e.g. be constructed along similar lines as are
followed in the proof of Kozlov’s theorem (see [23,28]) and its summability is to be
controlled by the decay of “quenched correlations”, i.e., the decay of correlations in
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the measure at time 0 conditioned on having a fixed configurationη at timet . These
correlations are expected to decay exponentially forνS(t)-a.e.η, which would lead
to νS(t)-a.s. summability of the Kozlov-potential.

4. Low-temperature dynamics. The main problem of analyzing the regime 0< Tµ " 1
for larget is the impossibility of a perturbative representation of− logpt (σ, η). If
we still continue to work with the picture of the joint Hamiltonian in (3.26), then
the term− logpt (σ, η) will not converge to aσ -independent Hamiltonian ast ↑ ∞.
Therefore we cannot argue that for larget the Gibbsianness of the measureνS(t)
depends only on the presence or absence of a phase transition in the HamiltonianHν
of the initial measureν. The dynamical part of the joint Hamiltonian can induce a
phase transition. The regime 0< Tµ " 1 is very delicate and there is no reason to
expect a robust result for general models. Metastability phenomena will enter.

5. Zero-temperature dynamics. What happens whenTµ = 0? In this case there is only
nature, no nurture. We therefore expect the behavior to be different from 0< Tµ
" 1. Trapping phenomena will enter.

6. Other dynamics. Do similar phenomena occur under spin-exchange dynamics, like
Kawasaki dynamics? In particular, how do conservation laws influence the picture
(see [18,19,1])?
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