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Adaptive switching gain for a discrete-time sliding mode controller

G. MONSEES{* and J. M. A. SCHERPEN{

Sliding mode control is a well-known technique capable of making the closed loop system robust with respect to certain
kinds of parameter variations and unmodelled dynamics. The sliding mode control law consists of a continuous com-
ponent which is based on the model knowledge and discontinuous component which is based on the model uncertainty.
This paper extends two known adaption laws for the switching gain for continuous-time sliding mode controllers to the
multiple input case. Because these adaption laws have some fundamental problems in discrete-time, we introduce a new
adaption law speci®cally designed for discrete-time sliding mode controllers.

1. Introduction

Sliding mode control is a well-known robust control
algorithm for linear as well as non-linear systems

(DeCarlo et al. 1988, Utkin 1992, Hung et al. 1993,
Edwards and Spurgeon 1998, Utkin et al. 1999).

Continuous-time sliding mode control has been exten-

sively studied and has been used in various applications.
Much less is known of discrete-time sliding mode con-

trollers. In practice it is often assumed that the sampling
frequency is su� ciently high to assume that the control-

ler is continuous-time (Young and OÈ zguÈ ner 1999).
Another possibility is to design the sliding mode

controller in discrete-time, based on a discrete-time
model, however stability has not yet been assured

(Gao et al. 1995, Bartoszewicz 1998, van den

Braembussche 1998).
The ®eld of adaptive sliding mode controllers has

received quite a bit of attention as well. In the case of
continuous-time controllers, the ®eld of adaptive sliding

mode controllers can be divided into several groups.
One group is formed by the model adaptive sliding

mode controllers, for which we refer to, for example,
Feng and Wu (1996) and Kwan (1995) . Also the combi-

nation of adaptive backstepping and sliding mode con-
trol has recently been a topic of research as can be found

in various publications (Sira-Ramirez and Llanes-

Santiago 1993, Bartolini et al. 1997, Koshkouei and
Zinober 1999, Sankaranarayana n et al. 1999). However,

most attention from the research society, at least spoken
in terms of the amount of publications, has been

devoted to the adaptive switching gain sliding mode
controllers. The major part of these publications focus

on a very simple adaption procedure (see, for example,
Leung et al. 1991, Su et al. 1991, Wang and Fan 1993,

Jiang et al. 1994, Roh and Oh 2000. In this paper that
simple procure is called the method I adaption law. A
slightly more advanced method has been published in

Lenz et al. (1998) and Wheeler et al. (1998), which we
call the method II adaption law.

The ®eld of discrete-time adaptive sliding mode con-
trollers has, so far, mainly been focused on model adap-
tive controllers (see, for example, Bartolini et al. 1995,

Park and Kim 1996, Chan 1997, Haskara et al. 1997,
Utkin 1998). Here we focus on an adaptive switching

gain sliding mode controller. We ®rst study the e� ective-
ness of the existing adaptive switching gains (method I

and method II) when they are converted to the discrete-
time domain. It is shown that the Method I procedure
will, in general, lead to an unstable closed-loop system.

Method II leads to much better results but still has the
potential of leading to an unstable closed-loop system if

the parameters are not chosen carefully. To overcome
the drawbacks of these two adaption laws in discrete-
time, a new adaption law speci®cally designed for dis-

crete-time sliding mode controllers is introduced.
Preliminary results of this adaption law were introduced

by the authors in Monsees and Scherpen (2000) for the
single input case.

The outline of this paper is as follows: } 2 brie¯y
introduces the continuous-time controllers employing
the method I and method II adaption procedures.

Section 3 introduces a discrete-time controller which
uses the discretized version of method I and method

II, and their applicability is studied. In } 4 the rules
de®ned by Gao et al. (1995) are introduced. According
to these rules a discrete-time sliding mode controller is

derived. These rules also form the basis on which the
method III adaptive switching gain is de®ned. In } 5 a

discrete time multiple input simulation example is used
to compare the discretized method II adaption law with
the newly de®ned method III adaption law. Finally } 6

presents the conclusions.
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2. Continuous-time sliding mode control

2.1. Introduction

In this section we brie¯y introduce a continuous-time
sliding mode controller for a multiple input system. We
consider the system

_xx…t† ˆ Ax…t† ‡ Bu…t† ‡ f …t; x; u† …1†

with the system matrices A 2 n£n and B 2 n£m, and
the disturbance and modelling error vector f 2 n.
De®ne ¼…t† 2 m by

¼…t† ˆ Sx…t† …2†

where matrix S 2 m£n should be chosen such that once
the system reaches sliding mode (i.e. ¼…t† ˆ 0), the
systems’ dynamics are stable and consequently the
system will `slide’ along the surface ¼…t† ˆ 0 towards
the origin in state-space. The design procedure for S
can be found in the literature (see, for example, Utkin
1992, Edwards and Spurgeon 1998, Utkin et al. 1999). A
control-law which drives the system into sliding mode
and subsequently keeps it in sliding mode can be found
to be

u…t† ˆ ¡…SB†¡1…SA ¡ FS†x…t† ¡ »…t; x; u†…SB†¡1 ¼…t†
k¼…t†k

…3†

where F 2 m£m is a design parameter and »…t; x; u† 2
‡ is known as the switching gain. If the switching gain

»…t; x; u† is larger then a certain minimum value (which
depends on the disturbance f …t; x; u†) then the closed-
loop system is guaranteed to reach sliding mode in ®nite
time and subsequently maintain sliding mode (Utkin
1992, Edwards and Spurgeon 1998, Utkin et al. 1999).
A large discontinuous component may however excite
unmodelled dynamics which could lead to chattering.
For this reason the switching gain should not be exces-
sively large. Finding an expression for »…t; x; u† can be
hard or even impossible so in practice one could be
forced to determine the switching gain by experimenta-
tion. But in case of time-varying circumstances (for ex-
ample di� erent modes of operation or changing external
conditions), the switching gain should be tuned on a
regular basis to maintain the best possible performance.
Another solution would be to have an adaptive switch-
ing gain which is the topic of this paper.

2.2. Adaption method I

The most straightforward adaption mechanism for
the switching gain can be found in Leung et al. (1991),
Su et al. (1991), Wang and Fang (1993), Jiang et al.
(1994) and Roh and Oh (2000)

»̂»…t† ˆ
…t

¾ˆto

k¼…¾†k d¾ …4†

This adaption law is based on the fact that once the
switching gain is su� ciently large, the system will be
forced to the switching surface ¼…t† ˆ 0. However, this
adaption law has three major drawbacks:

(1) In case of a large initial error, the switching gain
»̂»…t† will increase quickly due to this error and
not because of a model-mismatch. This may
result in a switching gain which is signi®cantly
larger then necessary.

(2) Noise on the measurements will prevent »…t† to
be exactly zero so the adaptive gain will continue
to increase.

(3) The adaption law can only increase the gain but
never decrease it. So if the circumstances change
such that a smaller switching gain is permitted
the adaption law is not able to adapt to these
new circumstances.

To overcome these drawbacks, the next section intro-
duces another adaption law which does not have these
disadvantages.

2.3. Adaptation method II

Another way of determining the switching gain is by
the adaption law as introduced by Lenz et al. (1998) (in
Wheeler et al. (1998) a similar, but more advanced adap-
tion procedure is used) for the single input case. We give
here the straightforward extension to the multiple input
case.

For this adaption law we change the discontinuous
control component in equation (3) to

ud…t† ˆ
¡»…t; x†…SB†¡1k¼…t†k¡1¼…t† if k¼…t†k > ¯

¡»…t; x†…SB†¡1¯¡1¼…t† if k¼…t†k µ ¯

(

(with ¯ 2 some small positive constant scalar) which is
the straightforward vector extension of the scalar
saturation function. Now, ud…t† steers the system within
the boundary region k¼…t†k < ¯. Once the system enters
the boundary region and stays in it, the system is said to
be in pseudo sliding mode (Slotine and Li 1991). The
e� ect of this modi®cation is that the discontinuous con-
trol part is softened (in fact it is no longer discontinu-
ous) which prevents the chattering e� ect (Edwards and
Spurgeon 1998).

The switching gain »̂»…t† can now be adapted accord-
ing to

»̂»…t† ˆ
…t

¾ˆto

k¼…¾†k ¡ Á… † d¾ …5†

where Á 2 is a positive constant satisfying Á < ¯.
Intuitively, equation (5) is simple to explain: increase
the switching gain »̂» while you are outside the region
k¼…t†k < Á and decrease »̂» if k¼…t†k < Á.
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If we compare this adaption law with the drawbacks
of the ®rst method then we see that:

(1) In case of a large initial error, the switching gain

»̂» will increase fast due to this error, but once the
system has reached the boundary region
k¼…t†k < Á the switching gain will be decreased
again.

(2) Noise on the measurements does not disturb the
adaption procedure if the boundary region is
chosen su� ciently large.

(3) The method II adaption law seeks the lowest
possible switching gain which keeps the system
within the boundary region k¼…t†k < ¯. So when
the circumstances permit a lower switching gain,
the adaption law will automatically adjust the
switching gain to the new circumstances.

3. Discrete-time sliding mode control

3.1. Introduction

The switching part in a continuous-time sliding
mode controller brings the system to the switching sur-
face and keeps the system on the surface despite any
modelling errors and disturbances with known bound.
The underlying motivation is given by the fact that the
switching part can instantaneously react to an error such
that it is cancelled out directly. This is obviously no
longer possible in discrete-time. The switching function
can only change its value at speci®c time-instances dic-
tated by the sampling frequency. Because of this limita-
tion of the switching time, the system will no longer stay
on the switching surface and no `true’ sliding mode will
be possible.

We will now de®ne a sliding mode controller for the
discrete-time system de®ned by

x‰k ‡ 1Š ˆ Ax‰kŠ ‡ Bu‰kŠ ‡ f ‰k; x; uŠ …6†

The switching function is de®ned by

¼‰kŠ ˆ Sx‰kŠ …7†

The design procedure for S can be found in } 4. We now
search for a controller which ful®lls the discrete-time
reaching condition (Gao et al. 1995)

¼‰k ‡ 1Š ¡ ¼‰kŠ ˆ ¡»
¼‰kŠ

k¼‰kŠk
¡ F¼‰kŠ …8†

(F 2 m£m being a stable design matrix) from which,
together with equation (6), we can determine in a similar
way as for the continuous time sliding mode controller
the required input to be

u‰kŠ ˆ ¡…SB†¡1 SAx‰kŠ ¡ …Im ¡ F†¼‰kŠ… †

¡ »‰k; x; uŠ…SB†¡1 ¼‰kŠ
k¼‰kŠk …9†

In contrast to the continuous-time case where there is
only a lower bound on the switching gain, discrete-time
sliding mode controllers have an upper bound on the
switching gain as well (van den Braembussche 1998).
As in the continuous-time case, one has to ®nd an
expression for »‰k; x; uŠ which is again depending on
the disturbance f ‰k; x; uŠ. In order to do so, we design
an adaptive switching gain, as is done in the previous
section for the continuous-time case.

3.2. Adaption method I

The method I adaption law de®ned for the continu-
ous-time sliding mode controller (} 2.2) can be directly
translated to the discrete-time domain by discretizing
the integral function in equation (4) by the summation

»̂»‰kŠ ˆ »̂»‰k ¡ 1Š ‡ ®k¼‰kŠk …10†

where ® is a small positive constant. However, as was
already pointed out, `true’ sliding mode is no longer
possible in discrete-time. For this reason, the term
k¼‰kŠk will never converge to zero and consequently
the adaptive switching gain will grow unbounded.

3.3. Adaption method II

The method II adaption law introduced in } 2.3 can
be discretized by

»̂»‰kŠ ˆ »̂»‰k ¡ 1Š ‡ ® k¼‰kŠk ¡ Á… †

where ® and Á are small positive constants similar to the
continuous time case described in } 2.3.

The above adaption law still increases the gain »̂»
until the system remains within in the boundary
k¼k < Á. However, since in discrete-time `true’ sliding
mode is no longer achievable, the boundary region
k¼k < Á cannot be chosen arbitrarily small. If the
boundary Á is chosen smaller then achievable there
will not exist a switching gain which is able to keep
the system within the selected boundary region, and
consequently the adaptive gain will grow unbounded.
Hence, Á has to be chosen carefully. The simulation
example in } 5 demonstrates this.

4. New adaption method (III)

4.1. Discrete-time sliding mode de®nition

The method II adaption law works in continuous-
time rather well but as described in the previous section
and demonstrated in } 5, it is not always suitable in the
discrete-time case. To overcome this problem we intro-
duce a new adaption method which is based on the
following de®nition of discrete-time sliding mode for
single input systems, introduced by (Gao et al. (1995):
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RI Starting from any initial state, the trajectory
will move monotonically towards the switching
plane and cross it in ®nite time.

RII Once the trajectory has crossed the switching
plane the ®rst time, it will cross the plane
again in every successive sampling period,
resulting in a zigzag motion about the switch-
ing plane.

RIII The size of each successive zigzagging step is
non-increasing and the trajectory stays within
a speci®ed band.

The above de®nitions can be extended to multiple
input problems by applying the rules to the m entries
of the switching function ¼i‰kŠ independently (Gao et al.
1995). To study the implications of the above rules on
the switching gain we ®rst bring the system (6) in the so-
called regular form by the orthogonal transformation
Tr 2 n£n

x1‰kŠ
x2‰kŠ

µ ¶
ˆ Trx‰kŠ …11†

where x1‰kŠ 2 n¡m and x2‰kŠ 2 m, resulting in

x1‰k ‡ 1Š ˆ A11x1‰kŠ ‡ A12x2‰kŠ ‡ fu‰k; x; uŠ …12†

x2‰k ‡ 1Š ˆ A21x1‰kŠ ‡ A22x2‰kŠ

‡ B2u‰kŠ ‡ fm‰k; x; uŠ …13†

where the matrices in the above equations can be found
from

A11 A12

A21 A22

" #
ˆ TrATT

r

0

B2

" #
ˆ TrB

‰S1 S2Š ˆ STT
r

fu‰k; x; uŠ

fm‰k; x; uŠ

" #
ˆ Tr f ‰k; x; uŠ

where B2 2 m£m has full rank. The term fu‰k; x; uŠ is
called the unmatched uncertainty since it is in the null-
space of B, the term fm‰k; x; uŠ is called the matched
uncertainty since it is in the range of B. The switching
function in the new coordinate-system is given by

¼‰kŠ ˆ S1x1‰kŠ ‡ S2x2‰kŠ …14†

If we assume that the closed-loop system is in `true’, or
continuous-time, sliding mode (i.e. ¼‰kŠ ˆ 0) then we can
write with equations (12) and (14) (setting the unknown
term fu‰k; x; uŠ to zero)

x1‰k ‡ 1Š ˆ A11 ¡ A12S¡1
2 S1

¡ ¢
x1‰kŠ …15†

The matrices S1 and S2 are design parameters and
should be chosen such that the matrix …A11¡
A12S¡1

2 S1† is stable. We choose S2 such that S2B2 ˆ Im

(where Im is the identity matrix of size m). In this way
the ith input only a� ects the ith component of the

switching function. The matrix S1 can be found by the
use of, for example, pole-placement or LQR design.

By applying the invertible coordinate transformation
T¼ 2 n£n

x1‰kŠ
¼‰kŠ

µ ¶
ˆ T¼

x1‰kŠ
x2‰kŠ

µ ¶
…16†

the system representation (12) and (13) becomes

x1‰k ‡ 1Š ˆ ·AA11x1‰kŠ ‡ ·AA12¼‰kŠ ‡ fu‰k; x; uŠ …17†

¼‰k ‡ 1Š ˆ ·AA21x1‰kŠ ‡ ·AA22¼‰kŠ ‡ u‰kŠ

‡ S1 fu‰k; x; uŠ ‡ S2fm‰k; x; uŠ …18†

where ·AA11 ˆ …A11 ¡ A12S¡1
2 S1†, ·AA12 ˆ …A12S¡1

2 †, ·AA21 ˆ
…S1

·AA11 ‡ S2…A21 ¡ A22S¡1
2 S1††, and ·AA22 ˆ …S1A12S¡1

2 ‡
S2A22S¡1

2 †. We now propose the control-law

u‰kŠ ˆ ¡ ·AA21x1‰kŠ ¡ … ·AA22 ¡ F†¼‰kŠ ‡ ud ‰kŠ …19†

where F 2 m£m is a diagonal design matrix with diag-
onal entries 0 µ ¿i < 1 and

ud ‰kŠ ˆ ¡
»1 sign …¼1‰kŠ†

..

.

»m sign …¼m‰kŠ†

2

64

3

75 …20†

Note that control law (19) is equal to control-law (9)
written in the new coordinates, where the discontinuous
control part is changed to the above de®nition (20).
Substituting the control-law (19) into equation (18)
leads to

¼i‰k ‡ 1Š ˆ ¿i¼i‰kŠ ¡ »i sign …¼i‰kŠ† ‡ fi‰k; x; uŠ …21†

where the subscript i ˆ 1 . . . m denotes the ith entry of a
vector, and the vector f

i
‰k; x; uŠ is the shorthand notation

for the term PiS2 fm‰k; x; uŠ ‡ PiS1 fu‰k; x; uŠ, where Pi 2
m£m is a matrix with the ith diagonal entry is equal to 1

and all other entries equal 0. We assume that the dis-
turbance fi‰k; x; uŠ is bounded by k fi‰k; x; uŠk < Fi.

It is well known that the rules I, II, and III are
satis®ed if (Bartoszewicz 1996)

»i >
1 ‡ ¿i

1 ¡ ¿i

Fi …22†

If the above condition is met then the system will con-
verge in ®nite time to the quasi-sliding mode band ¢
given by

¢i ˆ »i ‡ Fi …23†

The above expression clearly demonstrates that the
quasi-sliding mode band is a function of the switching
gain. It is desired to make the quasi-sliding mode band
as small as possible, therefore the switching gain should
be chosen as small as possible. Taking this into account,
the de®nition of sliding mode (Rules I, II, and III) can
be used to formulate an adaption law for the switching
gain. This is introduced in the next section.
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4.2. Introducing the new adaption law (method III)

The three rules for discrete-time sliding mode intro-
duced in the previous section can be used as a guideline
for an adaptive switching gain. The following adaption
law exploits rule RII

»̂»i‰kŠ ˆ »̂»i‰k ¡ 1Š ‡ ®i sign …¼i‰kŠ† sign …¼i‰k ¡ 1Š†j j …24†

where ®i > 0 2 ‡ is the adaption constant which deter-
mines the speed of adaption of the ith switching gain.
According to rule RII , the switching surface should be
crossed in every successive time step. The above adap-
tion law increases the switching gain if the surface is not
crossed and decreases the switching gain if the surface
was crossed.

We study the adaption law by use of equation (21).
The ®rst theorem states that, regardless of the initial
conditions (though bounded), the switching surface is
crossed in ®nite time.

Theorem 1: For any bounded ¼i‰0Š and »̂»i‰0Š > 0 there
exists a ®nite time p such that sign …¼i‰pŠ† ˆ ¡ sign …¼i‰0Š†.

Proof: If ¼i‰0Š < 0. Then if ¼i‰ jŠ < 0; 80 < j < p, we
can write for ¼i‰pŠ

¼i‰pŠ ˆ ¿ p
i ¼i‰0Š ‡ »̂»i‰0Š

Xp¡1

jˆ0

¿ j
i

‡
Xp¡1

jˆ1

…p ¡ j†¿ j¡1
i ®i ¡

Xp¡1

jˆ0

¿ p¡1¡j
i fi‰ jŠ

Using the fact that j fi‰kŠj < Fi and
Pl

jˆ0 r j < 1=…1 ¡ r†
we obtain the expression

¼i‰pŠ > ¿
p
i ¼i‰0Š ‡ »̂»i‰0Š

Xp¡1

jˆ0

¿
j
i

‡
Xp¡1

jˆ1

…p ¡ j†¿ j¡1
i ®i ¡ 1

1 ¡ ¿i

Fi

Looking at the right-hand terms, we see that the nega-
tive terms ¿

p
i ¼i‰0Š and ¡1=…1 ¡ ¿ix†Fi are bounded. The

positive term »̂»i‰0Š
Pp¡1

jˆ0 ¿
j
i is bounded as well, but the

positive term
Pp¡1

jˆ1 …p ¡ j†¿ j¡1
i ®i is growing with p.

Therefore, there exists some time instant p for which
the right-hand side, and consequently ¼i‰pŠ, is positive.
For the case where ¼i‰0Š > 0 the proof follows along the
same lines. &

The above theorem states that the sliding surface is
crossed in ®nite time. As the next theorem states, this
also implies that, under some additional conditions, the
switching gain has become large enough to cross the
sliding surface in ®nite time.

Theorem 2: If sign …¼i‰p ‡ 1Š† ˆ ¡ sign …¼i‰pŠ† and
sign … fi‰pŠ† ˆ sign …¼i‰pŠ† then »̂»i‰pŠ > j fi‰pŠj.

Proof: We can write for ¼i‰p ‡ 1Š

¼i‰p ‡ 1Š ˆ ¿i¼i‰pŠ ¡ »̂»i‰pŠ sign …¼i‰pŠ† ‡ fi‰pŠ

Making »̂»i‰pŠ explicit results in

»̂»i‰pŠ ˆ ¿i¼i‰pŠ
sign …¼i‰pŠ†

¡ ¼i‰p ‡ 1Š
sign …¼i‰pŠ†

‡ fi‰pŠ
sign …¼i‰pŠ†

Since sign …¼i‰p ‡ 1Š† ˆ ¡ sign …¼i‰pŠ† it follows that

»̂»i‰pŠ ˆ ¿i¼i‰pŠj j ‡ ¼i‰p ‡ 1Šj j ‡ fi‰pŠ
sign …¼i‰pŠ†

By assumption sign … fi‰pŠ† ˆ sign …¼i‰pŠ† hence
fi‰pŠ=sign …¼i‰pŠ† ˆ j fi‰pŠj. Furthermore, j¼i‰pŠj > 0 and
j¼i‰p ‡ 1Šj > 0, leading to

»̂»i‰pŠ > j fi‰pŠj

Which proves the theorem. &

Theorem 1 states that the system will cross the
switching surface in ®nite time, starting from any initial
condition. Consequently, the system will cross the
switching surface over and over again. Then Theorem
2 states that under the condition that at the moment of
crossing the switching surface the sign of the disturbance
is the same as the sign of the switching function, the
switching gain is larger than the absolute value of the
disturbance. Therefore it may be concluded, especially
for slowly varying disturbances, that the switching gain
will pass some lower bound.

Before it is shown that the switching gain does not
grow unbounded, the notion of a p-cycle is introduced in
the De®nition 1.

De®nition 3: With a p-cycle it is meant that
sign …¼i‰kŠ† ˆ sign …¼i‰k ‡ pŠ†, while sign …¼i‰kŠ† ˆ
¡sign …¼i‰k ‡ iŠ†8i ˆ f1:::p ¡ 1g.

The value of the switching value after a p-cycle can
easily be determined, which is described in Lemma 1.

Lemma 4: Given the adaption law …24), the value of

»̂»i‰k ‡ pŠ after a p-cycle will be

»̂»i‰k ‡ pŠ ˆ »̂»i‰kŠ ‡ …p ¡ 4†®i

Proof: Within every p-cycle, ¼i‰kŠ changes sign only
twice. All other signs will be equal. This means that ®i

is subtracted twice from »̂»i‰kŠ and added p ¡ 2 times to

»̂»i‰kŠ, which adds e� ectively …p ¡ 4†®i to »̂»i‰kŠ. &

Clearly, Lemma 1 states that the switching gain over
one p-cycle is:

. decreasing for p < 4;

. constant for p ˆ 4;

. increasing for p > 4;
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If the switching gain ful®ls (22), then it follows that
the closed-loop will go into a 2-cycle. For 2-cycles, the
switching gain is decreasing and therefore the switching
gain is bounded from above.

In the case of a constant disturbance, the system will
settle down in a 4-cycle instead. In this case, the switch-
ing gain remains constant in an average sense. The next
theorem gives the upper and lower bound of the switch-
ing gain in a 4-cycle for constant disturbances.

Theorem 3: Consider the system …21† with a constant
disturbance ¡Fi, adaption law …24† and 0:58 < ¿i < 1.
In steady-state the adaptive gain »̂»i‰kŠ (where k is the
time instant where ¼i‰kŠ > 0) will be in the region

1 ‡ ¿i ‡ ¿2
i ‡ ¿3

i

1 ‡ ¿i ‡ ¿2
i ¡ ¿3

i

Fi ¡ 1 ¡ ¿2
i

1 ‡ ¿i ‡ ¿2
i ¡ ¿3

i

®i < »̂»‰kŠ

<
1 ‡ ¿i ‡ ¿2

i ‡ ¿3
i

1 ‡ ¿i ¡ ¿2
i ‡ ¿3

i

Fi ‡ ¿i ¡ ¿3
i

1 ‡ ¿i ¡ ¿2
i ‡ ¿3

i

®i …25†

Proof: In steady-state the system will be in a 4-cycle
and, assuming ¼i‰kŠ > 0

¼i‰k ‡ 1Š ˆ ¿i¼i‰kŠ ¡ »̂»i‰kŠ ¡ Fi

¼i‰k ‡ 2Š ˆ ¿2
i ¼i‰kŠ ‡ …1 ¡ ¿i†»̂»i‰kŠ ¡ …1 ‡ ¿i†Fi ¡ ®i

¼i‰k ‡ 3Š ˆ ¿3
i ¼i‰kŠ ‡ …1 ‡ ¿i ¡ ¿2

i †»̂»i‰kŠ

¡ …1 ‡ ¿i ‡ ¿2
i †Fi ¡ ¿i®i

¼i‰k ‡ 4Š ˆ ¿4
i ¼i‰kŠ ‡ …1 ‡ ¿i ‡ ¿2

i ¡ ¿3
i †»̂»i‰kŠ

¡ …1 ‡ ¿i ‡ ¿2
i ‡ ¿3

i †Fi ‡ …1 ¡ ¿2
i †®i

As can be found in Lemma 2 (see the appendix),

¼i‰k ‡ 1Š < 0. Therefore, a 4-cycle also implies

¼i‰k ‡ 2Š < 0, ¼i‰k ‡ 3Š < 0, and ¼i‰k ‡ 4Š > 0, leading
to the conditions

»̂»i‰kŠ <
1 ‡ ¿i ‡ ¿2

i ‡ ¿3
i

¡1 ‡ ¿i ‡ ¿2
i ‡ ¿3

i

Fi ¡ ¿i ¡ ¿3
i

¡1 ‡ ¿i ‡ ¿2
i ‡ ¿3

i

®i

»̂»i‰kŠ <
1 ‡ ¿i ‡ ¿2

i ‡ ¿3
i

1 ¡ ¿i ‡ ¿2
i ‡ ¿3

i

Fi ‡
1 ¡ ¿2

i

1 ¡ ¿i ‡ ¿2
i ‡ ¿3

i

®i

»̂»i‰kŠ <
1 ‡ ¿i ‡ ¿2

i ‡ ¿3
i

1 ‡ ¿i ¡ ¿2
i ‡ ¿3

i

Fi ‡ ¿i ¡ ¿3
i

1 ‡ ¿i ¡ ¿2
i ‡ ¿3

i

®i

»̂»i‰kŠ >
1 ‡ ¿i ‡ ¿2

i ‡ ¿3
i

1 ‡ ¿i ‡ ¿2
i ¡ ¿3

i

Fi ¡ 1 ¡ ¿2
i

1 ‡ ¿i ‡ ¿2
i ¡ ¿3

i

®i

Taking the lowest upper bound and the lower bound
results in (25). &

In the Appendix (Lemma 3) it is shown for the case
of constant disturbances that shorter p-cycles are
achieved by larger switching gains, and conversely,
longer p-cycles for smaller gains. By Lemma 1, the
switching will be increased for p-cycles with p > 4 and

decreased for p < 2 decreased. Therefore, assuming that

® is chosen su� ciently small (ideally ® << Fi), the
switching gain will always be driven into the region
given by Theorem 3.

All analysis so far has focused on only one entry of
the switching function. Because of the choice of S2, each
entry ¼i of ¼ is coupled to only one input ui. Therefore,
we can treat all entries of the switching function sepa-
rately.

4.3. Extensions of method III

In case of a constant disturbance, the adaptive gain
converges to the region given by Theorem 3. Within this
region, no further adaption takes place. However it is
desirable to converge to the minimal switching gain
which still results in a 4-cycle. To ensure this, the adap-
tion procedure (24) could be changed to

»̂»i‰kŠ ˆ »̂»i‰k ¡ 1Š ‡ ®i sign …¼i‰kŠ† sign …¼i‰k ¡ 1Š† ¡  ij j
…26†

where 0 <  i < ®i. The value of the switching gain after
a p-cycle is now given by

»̂»i‰k ‡ pŠ ˆ »̂»i‰kŠ ‡ …p ¡ 4†®i ¡ p i

which can be obtained in a similar way as presented in
Lemma 1.

Also, the proposed control strategy introduces a lar-
ger deviation from ¼i‰kŠ ˆ 0 then the disturbance itself.
Especially for constant disturbances, the use of the pro-
posed discontinuous control may lead to an excessive
switching gain. Therefore, we could change the de®ni-
tion of the discontinuous control part (20) to

ui;d ‰kŠ ˆ
¡»̂»‡

i ‰kŠ if¼i‰kŠ ¶ 0

»̂»¡
i ‰kŠ if¼i‰kŠ < 0

(
…27†

where ui;d is the ith component of the discontinuous
control vector. The adaptive gains »̂»‡

i ‰kŠ and »̂»¡
i ‰kŠ

should be adapted according to the routine

if ¼i‰k ¡ 1Š ¶ 0: »̂»‡
i ‰kŠ ˆ »̂»‡

i ‰k ¡ 1Š
‡ ®i sign …¼i ‰kŠ† sign …¼i‰k ¡ 1Š†

»̂»¡
i ‰kŠ ˆ »̂»¡

i ‰k ¡ 1Š
if ¼i‰k ¡ 1Š < 0: »̂»¡

i ‰kŠ ˆ »̂»¡
i ‰k ¡ 1Š

‡ ®i sign …¼i ‰kŠ† sign …¼i‰k ¡ 1Š†
»̂»‡

i ‰kŠ ˆ »̂»‡
i ‰k ¡ 1Š

Note that in this case the switching gains can become
negative as well.

5. Simulation example

As a simulation example of the proposed controller
set-up we have chosen the hover control of a Bell 205
helicopter. The simulation model can be obtained from
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Pieper et al. (1996) or Trentini and Pieper (2001). The
linear model is represented by the di� erential state equa-
tion

_xx…t† ˆ Ax…t† ‡ Bu…t† …28†

with the matrices

A ˆ

0 0:03 0:18 ¡0:01 ¡0:42 0:08 ¡9:810

¡0:10 ¡0:39 0:09 ¡0:10 ¡0:72 0:68 0 0

0:01 ¡0:01 ¡0:19 0 0:23 0:04 0 0

0:02 0 ¡0:41 ¡0:05 ¡0:27 0:27 0 9:81

0:03 ¡0:02 ¡0:88 ¡0:04 ¡0:57 0:14 0 0

¡0:01 ¡0:02 ¡0:06 0:07 ¡0:32 ¡0:71 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

2

666666666666666664

3

777777777777777775

B ˆ

0:08 0:13 0 0

¡1:17 0:04 0 0:01

0 ¡0:07 0 0:01

¡0:04 0 0:11 0:19

¡0:04 0 0:22 0:17

0:17 0 0:03 ¡0:47

0 0 0 0

0 0 0 0

2

666666666666666664

3

777777777777777775

The states and input variables are given by

x…t† ˆ

forward velocity

vertical velocity

pitch rate

lateral velocity

roll rate

yaw rate

pitch attitude

roll attitude

2

66666666666664

3

77777777777775

u…t† ˆ

collective

longitudinal cyclic

lateral cyclic

tail rotor collective

2

6664

3

7775

The model is discretized (zero order hold) with sampling
frequency Ts ˆ 5 ms. The parameters of the sliding
mode controller are given by F being a m £ m zero
matrix, and

S ˆ

0:0428 ¡0:1687 ¡0:0167 0:0028 ¡0:0013 ¡0:0029 0:0002 0:0005

1:1753 0:0788 ¡0:6302 0:0064 ¡0:0001 ¡0:0101 0:0132 0:0001

¡0:0084 0:0200 ¡0:0022 0:3036 0:7072 0:3785 ¡0:0003 0:0183

0:0196 ¡0:0584 0:0031 0:0889 0:0081 ¡0:3884 ¡0:0012 0:0002

2
6664

3
7775

S has been obtained by LQR design. The non-zero com-
ponents of the desired state, the vertical and lateral vel-
ocity (i.e. 2nd and 4th components of the state vector),
are depicted in ®gure 1.

In simulation, the system matrix A is perturbed by
the matrix ¯A (i.e. As ˆ A ‡ ¯A) given by

¯A ˆ 1e¡4 ¤

0:4564 0:1759 0:8124 0:0154 0:2044 0:7081 0:1285 0:8224

0:0185 0:4048 0:0089 0:7464 0:6704 0:4302 0:6970 0:6815

0:8211 0:9336 0:1370 0:4444 0:8339 0:3082 0:3381 0:8398

0:4443 0:9152 0:2056 0:9312 0:0174 0:1936 0:8382 0:7059

0:6154 0:4095 0:1995 0:4656 0:6776 0:1955 0:8235 0:3648

0:7916 0:8919 0:6045 0:4182 0:3741 0:6841 0:5547 0:3103

0:9220 0:0578 0:2697 0:8459 0:8278 0:3040 0:4513 0:3827

0:7381 0:3522 0:2004 0:5249 0:5000 0:5423 0:8636 0:5598

2

66666666666664

3

77777777777775

Simulation results for the discretized method II
adaption method are shown in ®gure 2 for the par-
ameters ® ˆ 5e¡3, ¯ ˆ 1e¡2, and Á ˆ 1

2 ¯. Clearly, for
these parameters the adaption method is unstable
because the parameters ¯ and Á have been chosen to
small. Figure 3 presents the simulation results for the
method III under the same circumstances. In this case,
the single switching gain of the method II controller is
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Figure 1. Non-zero desired states, all other desired state vari-
ables are zero.
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Figure 2. Simulation results for the method II adaption
method with ® ˆ 5e¡3, ¯ ˆ 1e¡2, and Á ˆ 1

2 ¯.



replaced by four independent switching gains, each as-
sociated with one component of the switching function

¼. As can be seen in ®gure 3, the switching gains remain
bounded and the desired state is tracked with high accu-
racy. Finally, ®gure 4 presents the simulation results for
the extended method III, where the discontinuous con-
trol part is changed as presented in } 4.3, equation (27).
In this case, the switching gains are again stable. The
main di� erence between the (regular) method III and the
extended method III can be seen by plotting the input
signals, which is done in ®gure 5. The advantage of the
extended method III is obvious, the high frequency com-
ponent of the input signal for the regular method III has
largely been suppressed.

6. Conclusions

In this paper, a new adaption law for the switching
gain was introduced. It has been speci®cally designed for
discrete-time sliding mode controllers. This new method
proved to have an important advantage over the discre-
tized version of the adaptive gain introduced in Lentz et
al. (1998), namely that there is no danger of instability of
the adaption procedure because of a bad choice of adap-
tion parameters. With the latter method a boundary
region (quasi-sliding mode band) within which (dis-
crete-time) sliding mode will take place has to be
selected. This region can be chosen smaller than achiev-
able in which case the adaptive gain can grow
unbounded. With the new adaption law this can no
longer happen. Simulation results visualize the above
statements.
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Appendix

Lemma 2: Consider the system …21† subject to the con-
stant disturbance fi‰kŠ ˆ ¡Fi with adaption law …24† and
0 µ ¿i < 1. If ¼i‰k ¡ 1Š < 0, ¼i‰kŠ > 0 and ®i ½ Fi, then
¼i‰k ‡ 1Š < 0.

Proof: By assumption ¼i‰k ¡ 1Š < 0, leading with (21)
to

¼i‰kŠ ˆ ¿i¼i‰k ¡ 1Š ‡ »̂»i‰k ¡ 1Š ¡ Fi
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Figure 3. Simulation results for the method III adaption
method with ® ˆ 5e¡3 and  ˆ 0:1®.
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Figure 4. Simulation results for the extended method III
adaption method (® ˆ 5e¡3 and  ˆ 0:1®).
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Since ¼i‰kŠ > 0 we know that »̂»i‰k ¡ 1Š > Fi ¡ ¿i¼i‰k ¡ 1Š.
Using this lower bound for »̂»i‰k ¡ 1Š we can determine

¼i‰k ‡ 1Š to be

¼i‰k ‡ 1Š < ¿2
i ¼i‰k ¡ 1Š ¡ 2Fi ‡ ®i

from which it follows that ¼i‰k ‡ 1Š < 0 if ®i < 2Fi‡
j¿2

i ¼i‰k ¡ 1Šj. Since ® ½ Fi the latter condition is always
met. &

The following lemma relates the value of the switch-
ing gain to length of the p-cycle.

Lemma 3: Consider the system …21† subject to the con-
stant disturbance fi‰kŠ ˆ ¡Fi with adaption law …24†,
0 µ ¿i < 1 and ®i ½ Fi. If ¼i‰k ¡ 1Š < 0 and ¼i‰kŠ > 0
then ¼i‰k ‡ p¤Š > 0 where the smallest p¤ can be found
from:

. p¤ ˆ 2 if

»̂»i‰kŠ >
¡¿2

i ¼i‰kŠ ‡ …1 ‡ ¿i†Fi ‡ ®i

1 ¡ ¿i

…29†

. p¤ is the smallest p satisfying

»̂»i‰kŠ >

¡¿
p
i ¼i‰kŠ ‡

Xp¡1

jˆ0

¿ j
iFi ‡ …¿ p¡2

i ¡
Xp¡2

jˆ1

¿ j¡1
i …p ¡ j ¡ 1†®i

Xp¡2

jˆ0

¿ j
i ¡ ¿ p¡1

i

…30†

Proof: According to Lemma 2 ¼i‰k ‡ 1Š is always nega-
tive, so p ¶ 2. For ¼i‰k ‡ 2Š we can write

¼i‰k ‡ 2Š ˆ ¿2
i ¼i‰kŠ ¡ …1 ‡ ¿i†Fi ‡ …1 ¡ ¿i†»̂»‰kŠ ¡ ®i

which leads to condition (29). The subsequent values for

¼i‰k ‡ pŠ (while ¼i‰k ‡ jŠ < 0; 8j ˆ 1p ¡ 1 and p > 2) can
be found from

¼i‰k ‡ pŠ ˆ ¿
p
i ¼i‰kŠ ¡

Xp¡1

jˆ0

¿
j
iFi ¡ ¿

p¡1
i ¡

Xp¡2

jˆ0

¿
j
i

Á !

»̂»i‰kŠ

¡ ¿ p¡2
i ¡

Xp¡2

jˆ1

¿ j¡1
i …p ¡ j ¡ 1†

Á !

®i

which leads to condition (30). &

From the above lemma it can be concluded that for
smaller switching gains »̂»i‰kŠ the system will be in a
longer p-cycle than for larger switching gains.
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