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1. Introduction

This book chapter is an eccentric view of the present state of time-dependent
density functional theory (TDDFT). It is not intended as a comprehensive
overview of the field, but merely raises some issues that face the field at
the present time, and we hope it makes enjoyable reading. The opening
question of Sec. 2.1 is particularly eccentric, mirroring the style of our old
friend, Bob Parr.
A time-dependent N-electron system satisfies the time-dependent Schrod-

inger equation :

HU(ry...ryt) =i¥(r,...ra0), (1)

where we have (for simplicity) ignored spin indices, and used atomic units
(€2 = h = m = 1), and introduced a dot for time-derivatives. Here the
Hamiltonian consists of three contributions

H:T+‘7ee+‘>:ext: (2)

the kinetic energy, the Coulomb repulsion, and the external potential, due
to the nuclei and any external fields. Note Eq. (1) is first-order in time, and
solutions depend on the initial wavefunction, ¥(0).

Rigorous modern TDDFT begins with the Runge-Gross (RG) theorem?,
although the first modern TDDFT calculations were done by Ando 23
for semiconductor surfaces and by Zangwill and Soven *° for atoms. The
RG theorem generalizes the Hohenberg-Kohn theorem ° to time-dependent
external potentials, and states that, for a given initial state, there is a unique
mapping between the evolving density and the time-dependent potential.
We can then consider a system of non-interacting electrons in a Slater
determinant of orbitals, satisfying:

{—%V2 + vg (rt)} oi(rt) = iq.ﬁi(rt), (3)

and beginning in Slater determinant ®(0). Their time-dependent density is

N
n(rt) = 3 [t @
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We can require this density to match that of an interacting electronic
system, by the RG theorem, and define the time-dependent exchange-
correlation potential:

vxc[n; ¥(0), 2(0)](rt) = vs[n; @(0)](rt) — vexs[n; ¥(0)](rt) — valn](rt), (5)

where the Hartree potential is

vu[n](rt) = /d3r' (6)

Note that the exchange-correlation potential is a functional of the initial
states of both the interacting system and the Kohn-Sham reference system.
It would be very nice to derive Eq. (3) as a stationary point of an action,
but this is more subtle than first appears, and is the subject of Sec. 2.2. As
in the ground-state case, for many electrons, Eq. (3) is much faster to solve
than Eq. (1). It explicitly yields the time-dependent density n(rt), and, in
principle, yields everything else we might want to know about the interact-
ing problem. However, only the density itself is guaranteed to be the same
in both systems, and even the current, whose gradient is determined by the
time-derivative of the density via continuity, could differ in the two sys-
tems, as discussed in Sec. 2.3. Another example is the probability of double
ionization of an atom in an intense laser field, where the KS expectation
value differs greatly from the exact value, as shown in Sec. 2.6. Moreover,
in general, properties of the interacting system are functionals of both the
density and the initial state, as discussed in Sec. 2.8.

In practice, we must make approximations for the exchange-correlation
potential. The most popular in use today is the adiabatic local density
approximation (ALDA), which employs the potential for a uniform gas of
electrons of density n(rt):

e DA (rt) = Wi (n(rt)), (7)

n(r't

o —r'|’

~—

v

as was used in the historic calculation of Ando 2. This approximation
should work well for a system beginning in its ground state which varies
slowly in time and space, but most of the systems that it is used for do not
fit this description. The time-dependent Kohn-Sham equations, Eq. (3),
with the exchange-correlation potential approximated by ALDA, Eq. (7),
have become increasingly popular for calculations of atoms and molecules
in strong laser fields, some of which are discussed in Sec. 2.6. How accurate
such ALDA calculations are has rarely been investigated, but is studied
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in Sec. 2.7. Note that this approximation is utterly forgetful. The ALDA
exchange-correlation potential cares nothing for the past history of the den-
sity or the initial state, and is completely determined by the density at a
given instant in time. The consequences of this are discussed in Sec. 2.9.

Most of the applications of TDDFT at present are for the special case
of an infinitely weak perturbing field applied to a system in its ground
state. Analysis of this case leads to predictions for electronic transition
frequencies, oscillator strengths, polarizabilities etc., i.e., the full optical
response. We define the susceptibility x[no](rr'w) as the response of the
ground state of the interacting system to a small change in the external
potential:

dn(rw) = /d3r'x[n0](rr'w)&vext(r'w) (8)

= /d3TIXs [no](rr'w)dvs (r'w). 9)

The second line follows since the density change is the same for the interact-
ing system and the non-interacting system; xs[no](rr'w) is the Kohn-Sham
susceptibility. Applying Eq. (5) to a slightly perturbed system, we find

s (Tw) = Gvexe(Tw) + /d3r' ( + fxc[ng](rr'w)> dn(r'w) (10)

1
v —r'|
where fxo[no](rr'w) is known as the exchange-correlation kernel. In the
time-domain,

fxc[no](xr',t — t') = duxc[no](rt) /on(x't'). (11)

These equations lead to the Dyson-type response equation 7

x(rr'w) = xs(rr'w) +/d37'1 /d37'2 Xs (rr1w) faxc (riraw) X (rar'w), (12)

where fuxc = 1/|r — 1’| + fxc, and all objects are functionals of the ground-
state density.

Poles of the susceptibility occur at transition frequencies, while oscilla-
tor strengths are related to pole strengths. Thus solution of Eq. (12) yields
all optical response information. Casida ® showed how to solve these equa-
tions in a finite basis, analogously to the solution of time-dependent Hartree
equations. Note that explicit calculation requires two separate approxima-
tions. The first is for the ground-state Kohn Sham system, which yields the
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ground-state potential, from which is constructed the Kohn-Sham suscep-
tibility, xs. The second is an approximation for the exchange-correlation
kernel, which in principle is frequency-dependent. Sometimes, for vxc a
standard ground-state functional, such as a generalized gradient approxi-
mation or a hybrid with exact exchange, is employed, and fxc is approxi-
mated by the ALDA, i.e., by inserting Eq. (7) in Eq. (11). Other times, both
are approximated by the same ground-state functional employing, e.g., the
LDA for vy and the ALDA for fxc. In this way, the condition
2

fim 0, )y = T (13)
is satisfied.

Applications and development of TDDFT is a rapidly expanding field,
and we next review recent developments. We refer the reader to an earlier
review® and references therein for earlier applications of TDDFT.

In quantum chemistry, the largest use of TDDFT has been to extract
the excitation energies and optical response of molecules, using the linear
response formalism outlined above. Section 2.4 discusses some of the errors
inherent in such calculations, due to limitations of our present functionals.
On the other hand, Sec. 2.5 explains how TDDFT can be quite successful
despite these limitations.

Most quantum chemical codes, such as Gaussian'® and ADF!!:!2 per-
form TDDFT response calculations, allowing experimentalists to imme-
diately compare with theory'®'4. Surveys of mean polarizabilities of or-
ganic molecules have been performed!®. Many molecular calculations, such
as excitations in small organic molecules'®, in tertiophene!”, in transi-
19,20,21,22 y15ing non-empirical hybrid
functionals?®, have been tested. Closed-shell polycyclic aromatic hydrocar-

tion metal molecules'® and complexes

bon cations?* have been studied, as have been open-shell molecules?®, lin-
ear polyene oligimers2®, radical cations with N-N bonds?’, and s-tetrazine
in both gas-phase and solvated®®. The optical response of organic dyes??
has been calculated, and explanations given of the color of 1,2-dithiins®°,
and of the spectra of sulfines®', cromone??
matic radical cations®* have been studied; also conjugated molecules®®
and of course fullerenes®. Weakly hydrogen-bonded species have also been
studied3”. Tests of various functionals for excitation energies on training
sets of molecules are ongoing3®, just as in the ground state. One consider-
able benefit is to combine spectral information with structural and thermo-

, and pyrazine®>. Even aro-
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chemical data as a more thorough test of DFT calculations, as in the case
of trans-stilbene3?.

Higher order response has also been calculated. TDDFT is now used for
hyperpolarizabilities®, such as in chiral molecules*'. Both linear and mag-
netic circular dichroism have been calculated*?4344, The Rydberg states of
propyne have also been calculated in conjunction with resonant-energy mul-
tiphoton ionization experiments*®. Recently TDDFT calculations showed
that a candidate for strong non-linear optical response was less promising
than experiment suggested®. Raman intensities have also been calculated*7.
Not yet understood is the ability of TDDFT to perform well, even for some
states with significant double-excitation character®®.

Calculations are appearing with real biological significance, such as on
chlorophyll A%® and free-base porphrin®%:>!
opment is the attempt to study charge transfer in biological molecules
Fluorescence of 2-aminopurine has been calculated®*. Algorithmic develop-
ments are also occurring. Under many circumstances, the Tamm-Dancoff
approximation is sufficient® for excitation energies. Fast algorithms for
solving TDHF equations can be immediately applied to adiabatic TDDFT
calculations®®>7. Geometric derivatives for excited-states have been coded®®.

Much of the earliest work on TDDFT response was performed on metal-
lic clusters®®. Clusters of ZnS have also been studied®.

In atomic and molecular physics, TDDFT is being applied to problems of
(mostly) atoms in intense laser fields, including stabilization phenomenaS®,
and nonsequential multiple ionization®?%3. Even the more demanding time-
dependent optimized effective potential (TDOEP)® has been coded and
applied to high harmonic generation®-%¢, Some of these calculations ap-
ply the basic formalism within Floquet theory®”-%%. Also, the original pho-
toionization problem has been recently been revisited using more accurate

. A very important recent devel-
52,53

ground-state potentials®®, while calculations for molecules have also been
done™. Clusters can now also be handled”'. Energetic collisions between
atoms and ions are also being tackled”> 7374,

For extremely large calculations, involving thousands of electrons, even
the TDKS equations are too expensive to solve, and time-dependent Thomas-
Fermi approaches are used” 76,

In mesoscopic physics, TDDFT has been used for quite a while to study
the optical response of quantum dots””.

The applications mentioned above have all been to finite systems. The
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extension to extended systems will be a major effort of itself, for the simple
reason that our present day functionals, such as LDA and GGA, do not
provide useful approximations to the exchange-correlation kernel fxc in
this case. To see this, simply consider the Fourier transform of fyxc. The
direct Coulomb interaction behaves as 47 /q?, where ¢ is the wavevector
corresponding to r — r’. The optical response is the long-wavelength limit,
dominated by ¢ — 0. The LDA kernel is local in space, so its Fourier
transform is a constant, becoming negligible as ¢ — 0. Similar reasoning
applies to GGAs. The ultra non-locality in space of the exchange-correlation
kernel in extended systems has recently been emphasized”.

There have been a few attempts to perform calculations on extended sys-
tems, such as in polymers”®80:8! and the optical response of solids?2:83:84,
but these difficulties have not been fully understood or overcome.

On the other hand, other interesting properties of solids have been
calculated. For many years TDDFT has been used to calculate the di-
electric response of metals®®, in attempts to disentangle band-structure
effects from correlation, especially in the dispersion of the bulk plasmon®C.
Recently, spin-response of magnetic metals®”-%8 has been calculated using
TDDFT. Also electronic damping at surfaces has recently been calculated
using TDDFT89:90,

At a conceptual level, the links between TDDFT and traditional many-
body approaches for extended systems, such as GW, are only now being
explored?!, as are extensions of ground-state theorems®?, and the descrip-
tion of potentials in terms of wavefunction quantities®® as opposed to func-
tional derivatives.

2. Nine questions and some answers

2.1. Parr question: Do the density and potential determine
the energy?

As this volume is dedicated to Bob Parr on his eightieth birthday, we open
with a question he originally raised for ground-state density functional the-
ory. The question is: if someone gives you both the external potential for
a system and it’s exact density, can you recover the exact ground-state en-
ergy, without solving a many-body problem? Note that this differs from the
usual practical question of DFT, in which you are given only the potential,
and must find the corresponding density and energy.
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For two (spin-unpolarized) electrons, the answer is yes. For example,
one could deduce the ionization energy I from the tail of the density and
also solve the one-electron problem for the external potential, yielding E;.
Then the two-electron ground-state energy is just Ey — I.

More generally, using a technique invented by Bob and others
can, for any given density, construct the corresponding Kohn-Sham poten-
tial, vs(r), i.e., find that single-particle potential for which that density is
a ground-state density (if it exists). Then one can deduce the exchange-
correlation potential vxc(r) by inverting its definition in Eq. (5). But note
that this is not yet enough to determine the exchange-correlation energy,
just the potential.

To extract the ground-state energy, we write

94,95 one

E=T,+U+ /d3r n(r) Vext(r) + Exc, (14)

where Tg is the Kohn-Sham kinetic energy, U is the Hartree energy, and
E is the exchange-correlation energy. All these pieces can be extracted
from what we now have, except the last. To go a step further, one can use
the virial theorem applied to the exchange-correlation potential to find

Exc+T. = /d3r n(r) r - vxc(r), (15)

where T is the kinetic contribution to the correlation energy. Thus the
virial of the exchange-correlation potential yields the sum of energies above,
but not Exc alone, which would finish our problem.

Several years ago, one of the authors and Bob (with collaborators)
published back-to-back articles in Phys. Rev. A on this point, noting that
the remaining piece of correlation energy, e.g., Exc — T, is more amenable
to approximation by standard density functional methods, so that use of
the virial above on the exact density reduces errors significantly.

But, returning to the logical question, note that for high-density sys-
tems, correlation becomes negligible relative to exchange, so that the answer
is once again yes. Interestingly, for low-density systems, in which correla-
tion is dominated by potential contributions, so that T, << |E|, one can
use the virial once again to extract Exc, and get the ground-state energy.

What has this to do with TDDFT? Suppose a system begins in its
ground-state, and then is disturbed by a time-dependent external potential.

96,97
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The Heisenberg equation of motion for the Hamiltonian is very simple®?
E = (0H/dt) = / d®r n(rt) Dy (rt) (16)

i-e., the time-evolution of the energy is given entirely by the time-evolution
of the one-body perturbation. Integrating with respect to time shows that
knowledge of vext (rt) and n(rt) is sufficient to determine the entire evolution
of the energy, once the initial value is known, i.e.,

E(t) = E(0) + /t dt' E(t). (17)

So, rather amusingly, the Parr question is trivially answered yes in TDDFT,
except for the initial ground-state value.

So, the Parr question has a positive answer for the ground state of two
electrons, in the high-density limit, in the low-density limit, and (up to a
constant) for all time-dependent problems. Is it true in general?

2.2. What is the simplest definition of the action?

Time-independent quantum mechanics is armed with a variational principle
which is very useful for ground-state DFT. By approximating the exchange-
correlation energy functional, we obtain approximations for its functional
derivative, the exchange-correlation potential vxc[n](r) to be used in Kohn-
Sham calculations.

What is the analog in the time-dependent case? In time-dependent quan-
tum mechanics, the role of the energy is taken by the quantum mechanical
action:

t1 N

A[¥] :/ dt(¥(t)|i0; — H(t)|T(t)). (18)
to

Stationary points of 4, with initial wavefunction ¥(ty), yield solutions to

the time-dependent Schrédinger equation. Translating this into TDDFT is

however much more subtle than in the ground-state case. The simplest, and

perhaps most natural step would be to define

Aln; o] = / A Wo)(B)i0s — B (0|2 o), (19)

where W[n; ¥o] is a functional of the density and the initial state ¥q .
The potential vp in the Hamiltonian H,, is given and fixed. The Euler
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equation 6.4/6n(rt) = 0 would then supposedly yield the correct density.
98,9 and a part that
explicitly depends on the external potential. One can define a similar object
for the Kohn-Sham action %% and, comparing the two, extract an exchange-
correlation action Axc[n; %o, ®o].

There are, however, a number of problems with this definition of the
action. First of all the density n and the initial state determine |¥[n; ¥o](t))
only up to an arbitrary phase factor. This means that the wavefunction
W (1)) = exp(ia(t))|¥[n; ¥o](t)) with a(ty) = 0 but otherwise arbitrary,
also gives the density n and the initial state |¥(ty)) = |¥o). This makes the
action ill-defined since

One can extract out a universal part of the action

(T[n; To(1)]idy — H ()| T[n; Lol () = (P()[id, — H(1)|¥(2)) + dra(?). (20)

It is easily seen that the effect of «(t) is to add a purely time-dependent
shift d;c(t) to the potential that |¥(£)) evolves in. To make the action well-
defined we have to specify a(t), which means that we have to fix a gauge for
the potential. One choice would be that we choose as an argument of the
action functional the wavefunction |¥[n; ¥o](¢)) that evolves in a potential
v(rt) that vanishes at infinity. This defines the potential uniquely in terms of
the density and the initial state. If we make this choice then we can express
the action explicitly in terms of the density n, the potential vn; ¥o](rt)
and the potential vg(rt) of the Hamiltonian that defines the action:

Aln; o] = / ([ Bo)(0)[i0) — Ho (0] 2 [1; T)(1)
_ [ dt(W[n; Wo](t)]i0 — Hy(t) + Vn; Wo) () — Vo ()| ¥[n; o] ())

= /d3r/t 1 ditn(rt)(v[n; ¥ol(rt) — vo(rt)), (21)

where we used that |¥[n; ¥o](t)) satisfies the time-dependent Schrodinger
equation (TDSE) with potential v[n, ¥o](rt). If we calculate the functional
derivative of this action with respect to n we obtain

6'/4 — 3,/ h ! Iyl 6v(r’t,)
(el v[n, ol(rt) — vo(rt) +/d r /to dt'n(r't") o)

This is however not what one at first sight would have expected. One might

(22)
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have expected that

Sn(ed) = v[n, ¥ol(rt) — vo(rt) (23)
which makes the action stationary for v[n, ¥y](rt) = vo(rt); then the wave-
function |¥[n; ¥o](t)) which makes the action stationary is the one that
satisfies the TDSE with Hamiltonian H,,. This is, however, not the case.
So what has happened? To understand this point we must go back to the
original action Eq.(18) as a functional of the wavefunction, rather than the
density, and see under which conditions we can derive the TDSE from the
action. In fact, only under certain types of variations do the stationary
points of the action yield the TDSE (i@, — H)|¥) = 0. We refer the reader
to the recent review % for details, and here just state the results. Suppose
the action A is stationary for variations ¥ around a certain ¥. Then ¥
satisfies the TDSE if the variations 6 ¥ are such that

(1) 0%(tp) = 6P¥(t1) = 0 and the real and imaginary part can be varied
independently,

(2) or, alternatively, both §¥; = §® and §¥> = i6® are allowed variations
for any §@ 100,

Let us now go back to our TDDFT action of Eq.(19). This action is obvi-
ously defined on a restricted set of wavefunctions, namely all wavefunctions
that can be parameterized by densities on the basis of the Runge-Gross
theorem together with the gauge condition v — 0 for |r| — oo on the corre-
sponding potential. We will call this set of wavefunctions V. To see if we can
derive the TDSE from the restricted TDDFT action we must check that
within the restricted set of wavefunctions ¥V we can make the variations
mentioned in points (1) and (2) above. We will see that this is not possible
which is then consistent with Eq.(22). The variations ¥ within the set V
must always be generated by potential variations, i.e. if some ¥ in this set
satisfies a TDSE with Hamiltonian H then ¥ + ¥ satisfies

(i8; — Hy — V)| ¥ 4+ 00) =0 (24)

for some potential variation 6V . If we collect the first order terms we see
that ¥ must satisfy

(i0; — H,)[0%) = V| ) (25)
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with the boundary condition 6¥(#p) = 0 since we evolve all wavefunctions
in the set V from a fixed initial state ¥y. Now it is clear that the real and
imaginary part of 0¥ are not independent, they are both determined by
the potential 5V, Moreover, we see that Eq.(25) is first order in time and
therefore d¥(¢) is completely determined by the initial condition 0¥ (¢y) =
0. We are therefore not allowed to put a second constraint ¥(¢;) = 0 on
the variation ¥. Therefore we can not do the variations mentioned in point
(1) above and are therefore not able to derive the TDSE from the TDDFT
action in this way. What about the variations mentioned in point (2)?
We see immediately that if 0¥; = d® is a variation that satisfies Eq.(25)
then the variation ¥, = id® is produced by the potential i5‘7, which
is imaginary and therefore not allowed as a potential. We can therefore
not make the variations mentioned in point (2) and we see that we can
not derive the TDSE from the TDDFT action in this way either. We thus
conclude that the action can not be used as a basis of time-dependent
density functional theory.

The obvious question is then, can we define some other action functional as
the basis of a time-dependent density functional theory? For instance, can
we find some action A that satisfies Eq.(23)? If we can find such an action
then we can construct the Legendre transform

Alv] = —A[n] + /d3rdtn(rt)(v(rt) — vo(rt)), (26)

where the density n on the right hand side must now be regarded as a
functional of the potential v. The functional Afv] satisfies

5A 5A on on
5o - E%WL/(U—%)%WL"—"; (27)

where for convenience we used a shortened notation and left out the argu-
ments. We see that if we can find a functional A[v] of the external potential
such that
5 A
- t 28

dv(rt) n(rt) (28)
then the functional A[n] with property Eq.(23) can be constructed from
the inverse Legendre transform:

Amz—ﬂﬂ+/fmmmmmn—wm» (29)
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where v must now be regarded as a functional of n. The question therefore
is: Is there a functional A such that Eq.(28) is satisfied? We therefore ask
the question whether or not the fundamental variable of TDDFT, namely
the time-dependent density n, can be obtained as the functional derivative
of some functional A of the external potential. The answer is no if A is
twice differentiable because then we could differentiate Eq.(28) again and
obtain

5 A _ On(rt)
Sv(rt)dv(r't')  Sv(r't')’

(30)

The left hand side of this equation is symmetric in the space-time arguments
since we assumed that A was twice differentiable, whereas the right hand
side of this equation is the density response function which has a causal
structure, i.e. it is zero for ¢ > t'. Therefore the causality and symmetry
requirements contradict each other. We conclude that there is no differ-
entiable functional of the external field with the property Eq.(28). Con-
sequently there is no functional of the density with the property Eq.(23).
We therefore conclude that the external potential v[n, ¥y] of a many-body
system with initial state ¥y and density n can not be obtained as the deriva-
tive of a density functional. The same is of course true for a noninteracting
system and in particular the Kohn-Sham system. We must conclude that
the time-dependent Kohn-Sham potential is not a density derivative. To
be more precise, there is no functional of the v-representable density n(rt)
that has the Kohn-Sham potential as its derivative.

Is there some action functional defined on a larger class of densities that is
capable of providing a derivation of the time-dependent Kohn-Sham equa-
tions? The answer to this question is yes. It turns out that that one can
define a functional on a set of so-called time contour densities from which we
can derive the Kohn-Sham equations. The corresponding action functional
is called the Keldysh action. For further details on this functional we refer
to the literature 19199, Let us finally answer the topical question asked in
the title of this section. What is the simplest definition of the action? At the
moment this is certainly the Keldysh action, as this is currently the only
action functional that leads to a derivation of the Kohn-Sham equations
that is free of paradoxes.
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2.3. Is the Kohn-Sham current equal to the true current?

In TDDFT a noninteracting Kohn-Sham system is introduced with the
same density as the true interacting system. Since the density and the
current are closely related by the continuity equation we may wonder what
the relation is between the Kohn-Sham current and the true current. In
order to avoid confusion we stress that we will always be dealing with
systems in time-dependent external fields that can always be transformed
to a pure scalar potential by a gauge transformation. We therefore exclude
magnetic fields. We start by describing some properties of the current. The
current is defined as

3) = 3V = V(o1 Dl ()

where 7 is the one-particle density matrix of the system. The expectation
value of the momentum P can be directly calculated from the current as
follows

P(t) = / dri(rt). (32)

Finally, if we calculate the commutator of the density operator with the
Hamiltonian we obtain the continuity equation

on(rt) = =V - j(rt). (33)

Let us now turn to the Kohn-Sham system which has a current

N
. 1 * *
Js(rt) = o= > (Pk(rt)Vipr (rt) — (Vg (rt)) o (rt)) (34)
k=1
and where p are the Kohn-Sham orbitals. The Kohn-Sham current is not
necessarily equal to the true current. We therefore define the exchange-
correlation part j,. of the current by

J(rt) =js(rt) + joc(rt). (33)

Let us now investigate what the equations we defined at the beginning of
this section can tell us about j,.. We start by considering the continuity
equation Eq.(33). Since the true system and the Kohn-Sham system by
definition have the same density we obtain

V jee(rt) = V- j(rt) — V- js(rt) = 0. (36)
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We see that j,. is a divergenceless or tranverse vector field which can there-
fore be written in the form j,. = V x C for some vector field C. The con-
tinuity equation has another consequence. If we consider finite system for
which densities and currents vanish at infinity then using Eq.(33) we can
write the expectation value of the momentum as

P(l) = / P ri(rt) = / Eredpn(et). (37)

From this equation we see that the Kohn-Sham system and the true system
have the same momentum and so

/d3rjzc(rt) =0. (38)

The continuity equation has therefore told us that j,. is a transverse vector
field whose spatial average is zero. So far we have discussed some general
relations which must be satisfied by j... We now turn to some more specific
cases. For one-dimensional systems in which there are no transverse vector
fields j,. vanishes. For such systems the current is uniquely determined by
the density from

e = [ " dyon(yt) (39)

if the current vanishes at infinity. This equation immediately implies that
for one-dimensional systems j = j, and j,. = 0. It was conjectured ?® that
this holds true in general. The argument was based on the fact that systems
with two different time-dependent scalar potentials v # v’ + C(t) differing
by more than a purely time-dependent function, yield two different currents
j #j'. This follows immediately from the proof of the Runge-Gross theo-
rem. Therefore the external potential is a well-defined functional v[j] on
the set of v-representable currents. However, it was implicitly assumed that
every current j produced by a scalar potential v in an interacting system
can also be produced by a scalar potential vs in a noninteracting system,
i-e. the proof was based on an unproven noninteracting v-representability
assumption. One may object that such an assumption is also made for the
density in constructing the Kohn-Sham system in the first place. However,
the density n and the scalar potential v are conjugate variables in the sense
that the contribution of the external potential to the total energy is of the
form of an integral over n times v. It is exactly this property that is used in
the proof of the Hohenberg-Kohn theorem. The conjugate variable of the
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current, on the other hand, is the vector potential. On the basis of this one
would expect that to reproduce an interacting current in an noninteract-
ing system one needs an exchange-correlation vector potential A,.. Such
a vector potential is indeed introduced in time-dependent current-density
functional theory. On the basis of these arguments it seems unlikely that
the noninteracting v-representability assumption for the current can be jus-
tified.

Another argument which suggests that j,. is nonzero in general is provided
by the following example. Consider a Kohn-Sham system with two particles
in a singlet state, doubly occupying one spatial orbital:

i0pp(rt) = <—%V2 + Us(rt)> o(rt)

n(rt) = 2|p(rt)|*.

The Kohn-Sham orbital can then always be written in the form

o(rt) = @ew(”). (40)
With this expression we obtain the following equation for the Kohn-Sham
current
Js(rt) = n(rt)Vo(rt) (41)
and we see that
X % =0. (42)

If we assume that j = js then this implies that for any interacting two-
electron system

« 3T (43)
n(rt)

This seems an unlikely property for an arbitrary two-electron system with
rotating currents, such as an Helium atom in an intense laser pulse of circu-
larly polarized light. If the property Eq.(43) would be a general feature of
two-electron systems then it must follow from some special property of the
two-particle Hamiltonian. The question would of course be settled with one
counterexample for which the vorticity of Eq.(43) does not vanish. How-
ever, it is not easy to give a simple example. The solvable model systems
are separable and have the special feature that they decouple relative from
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the center-of-mass motion which leads to currents for which Eq.(43) seems
to be true. For instance the separable harmonic atom has a rigid mode
with current j(rt) = n(rt)dR/dt where R(t) is the expectation value of
the center-of-mass of the two-electron wavefunction. We therefore have to
wait for numerical counterexamples of nonseparable systems, which must
at least be two-dimensional. If such an example of nonvanishing vorticity
can be found it would imply that, generally, the true current density of
an interacting two-electron system cannot be reproduced by the current
density of a spin restricted Kohn-Sham system. However, if we relaxed the
restriction that the Kohn-Sham system is in a doubly-occupied spatial or-
bital, and instead considered singlet states with two distinct orbitals, then
Eq. (42) does not necessarily hold. We may ask, for a given time-dependent
density and current, can we find a Kohn-Sham system which reproduces
both the interacting density and interacting current? If so, is this Kohn-
Sham system unique? In one-dimension, the answer to the latter question
is, in many cases, no, but what about in more than one dimension?

2.4. What errors does my TDDFT calculation of electronic
transitions make?

As mentioned in the introduction, there are two approximations in any prac-
tical TDDFT calculation of transitions: the approximation for the ground-
state potential and that for the XC kernel.

To study the first source of error, we begin with atoms, and then move
on to molecules and solids. Interestingly, most of our presently used ground-
state XC energy functionals have potentials that do not resemble the exact
XC potential very closely, especially for the He atom. In Fig. 1, we plot the
XC potential for LDA, the PW91 GGA, and the exact potential. In the
asymptotic region, the exact exchange potential decays as —1/r, whereas
the LDA and GGA decay exponentially. (How such functionals still yield
good ground-state energies is an interesting question in itself'°?). This is
not a difficulty for the ground-state theory, as the potential in the region
where bound orbitals (in this case, just one) live is well-approximated. But
excited states, especially Rydberg states, are badly described. In fact, most
of them are unbound.

How can we avoid this problem? The least expensive approach is to fix
up the potential by hand, by adding the known —1/r tail in the asymp-
totic region. Several prescriptions for doing this have been suggested in
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Fig. 1. The exchange-correlation potential for helium: exact (solid), exact exchange-
only approximation(dotted), local density approximation (dashed) and the PW91 gen-
eralized gradient approximation (dashed-dotted).

the literature!9104:105 A statistical average of orbitals also produces an
excellent potential in this regard!?6-197. Alternatively, the technology for
including exact exchange in DFT calculations has been greatly developed
over the last decade due to the advent of the KLI approximation, so that
it has become possible for molecules. The exact exchange potential cannot
be distinguished from the exchange-correlation potential in Fig. 1 and the
differences in unoccupied orbital energies and matrix elements over these
orbitals are tiny!%®109:110 These problems have recently been reviewed by
Tozer and Handy'!!. There is a noticeable error still in the occupied orbital
energy, since the correlation potential is more significant near the nucleus.
Hybrid functionals, which mix in only a fraction of exact exchange with
GGA, only partially cure the problem!!2.

These problems are most dramatic in the long-range decay of the po-
tential, which dominates all unoccupied states for the He atom. As we
consider larger systems, the problem gets less. Even for the Be atom, the
first transition from 2s to 2p is reasonable in LDA or GGA, but higher lev-
els are bad. For many molecules and reactions of photochemical interest, it
is only excitations to the first few low-lying states that are important, and
so these asymptotic difficulties are irrelevant. In the limit of bulk solids,
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these difficulties do not exist.

Of course, if the underlying ground-state problem is not weakly cor-
related, then errors in the ground-state approximation become large, and
difficulties arise for excitations. The Hy molecule, stretched beyond the
Coulson-Fisher point, so that an LDA or GGA ground-state calculation
spontaneously breaks symmetry, is a very demanding case for TDDFT,
being based on the KS determinant, and has been recently studied from
several different angles!!?-114:115,

Assuming the ground-state potential is accurate, how about approxi-
mations to fxc? In almost all applications at present, fxc is approximated
adiabatically, by the second derivative of a ground-state XC energy func-
k 116, some of us investigated the effect of different
approximations. Using the single-pole approximation (discussed in the next
section), we analyzed the results, finding that they could be understood on
the basis of trends already known for ground-state functionals. We found
that the mean of the singlet and triplet levels of the He atom differed from
the exact KS transition by only an expectation value of the parallel-spin
correlation contribution in fxc, typically a very small part of Ex.. This

tional. In recent wor

gives a functional explanation of why KS values are often good zero-order
approximations (see the next section for more detail). We also found that
the splitting depended on a cancellation between exact exchange and an-
tiparallel correlation. Thus a hybrid of exact exchange for the mean and
ALDA for splitting led to very good agreement with experiment for the
spectrum of the He atom. This hybrid was designed simply to illustrate
how insight into functionals could be used to improve accuracy in TDDFT
calculations. Its construction depended on the system being weakly corre-
lated and having few electrons. It worked for Be, but less well, and has been
shown to yield no improvement for stretched HHe™, or for the dispersion
of the plasmon in the uniform electron gas.

Very little exact information is known about the kernel. Even for exact
exchange, relatively little practical is known''”, beyond the two-electron
unpolarized case. The frequency-dependence of fxc for the uniform gas has
been under constant study!18119,120,121,122,123

As for the question of which approximation - the one for vxc or the one
for fxc - has a stronger influence on the calculated spectra, generally the
effect of vxc is much stronger for higher-lying excitations. A typical picture
is shown in Fig. 2, where we compare the errors of the singlet excitation
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Fig. 2. Errors of singlet excitation energies from the ground state of Be, calculated
using the exact exchange-correlation potential obtained from an accurate wavefunction
calculation, the OEP-SIC approximation and the X-only KLI approximation and with
different approximations for the exchange-correlation kernel. The errors are given in
mHartrees. To guide the eye, the errors of the discrete excitation energies were connected
with lines. Taken from Ref.!16

energies of the Be atom resulting from various approximations for vy and
fxc- For low-lying excitations, and especially for larger systems, often it
is fxc which has the larger effect, as is seen in the 2s2p transition in the
figure. These lower lying excitations are often the ones of photo-chemical
interest.

2.5. When are Kohn-Sham transitions good
approximations?

Early on, Casida® showed how to recast Eq. (12) into common quantum
chemical notation

KF=QF. (44)
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The eigenvalues are the squares of the physical excitation energies (2, and
the eigenvectors F determine the true oscillator strength of the correspond-

ing transitions 8. Alternatively, these equations may be written!%8:

Z(qu’ () + webq ) By =By (45)
”
Here the matrix elements M,y (w) = [ d®r [ d®r'®}(r) faxc(r, ', w) @4 (r')
are expressed in terms of Kohn-Sham orbitals ®4(r) = @, (r)¢;(r). The w,
denote Kohn-Sham transitions ¢ = ¢, a from an occupied KS orbital ¢ to an
unoccupied KS orbital a.

To gain more insight into the structure of the solutions to Egs. (45) and
(44), we first notice that, if fxc is zero, the matrix is diagonal, and both
eigenvalues and eigenvectors will equal their KS counterparts. For weakly
correlated systems, we expect fxc to be, in some sense, small, so that the
KS values should be good approximations. But, small compared to what,
i-e., when will the corrections to KS values be accurate?

To analyze these corrections, we assume for simplicity that fxc is frequen-
cy-independent, as is the case in most currently used approximations. We
then use the method of continued fractions (CF) 12

linear equations are given in the form of a continued fraction expansion.

, where solutions of

Truncating the continued fraction at a given order corresponds to perform-
ing perturbation theory in the distance from the diagonal of the matrix.
This is very different from the traditional Gorling-Levy (GL) perturbation
theory 125126

constant A. The CF expansion does not assume fxc is small, and can be

, which is an expansion in powers of the adiabatic coupling

valid even when there are large corrections to KS results. Starting from a
continued fraction expression the conventional perturbation expansion may
be recovered by a consistent Taylor expansion in the coupling parameter
up to the desired order. Using such a low order truncated CF expansion we
find for the excitation energies in our eigenvalue problem

* M,.M.
Q=w,+ M, gr2rg
ot Mo z,; (wg + Myq) — (wr + M,yy)
* M,.M. .M,
+ gri¥lrsiMsq +oeen 46
2 )=o) (46)

The asterisk on the sums indicates that the summation is only performed
over terms having distinct indices. (At this point we should note that our
result (46) remains valid even for frequency dependent matrix elements. In
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this case a truncated version of (46) becomes a nonlinear equation in .)
Looking at the result, we see that the CF method produces a power series
in a (hopefully) small parameter, which is a matrix element divided by a
transition frequency difference. Thus, truncation of this series is accurate
when this ratio is small, i.e, when the shift away from KS transition fre-
quencies is small relative to the separation. It is an approximation of weakly
coupled transitions, rather than of weakly correlated systems.

The zeroth order result was dubbed the single-pole approximation (SPA)
7. and was used in early calculations of transition frequencies. It has also
been used to relate TDDFT results to GL perturbation theory results for
excitations?!. But the expression in Eq. (46) tells us more. Clearly, the SPA
will be a good approximation to the full excitation energies only if higher
order terms like the sums in (Eq. 46) contribute little. We can expect the
SPA to be valid if the SPA shift of a transition is small relative to the
separation between that transition and its neighbors. By expanding fxc
to second-order in A, it also yields an exact expression for the transition
frequency to second-order in GL perturbation theory.

Let us now take a look at the eigenvectors. For this purpose we use the
second version of the eigenvalue problem Eq. (44). Applying the CF method
to Casida’s formalism, we find the oscillator strength expansion to be

AM g weWyr fhq b
f= qu+ Z qZ)zq_Z) L e (47)
q#a ¢

Here wy and 1, denote KS excitation energies and dipole matrix elements
respectively. The leading term is the SPA result, and is simply the KS oscil-
lator strength. Thus, contrary to the transition frequency, there is no cor-
rection to oscillator strengths in SPA. This can be easily seen from Eq. (46).
If only diagonal matrix elements are retained, the eigenvectors remain unit
vectors and don’t change. But once again, with correction terms, we un-
derstand much more. Corrections to KS oscillator strengths remain small
if transitions are well-separated, even for strongly correlated systems. Also,
Eq. (47) is the exact GL expansion for oscillator strengths, if fx is used for
the matrix elements.

We end this section by studying the effect of approximate ground-state
potentials on oscillator strengths. As in orbital energies, the potential must
have a long-range decay to bind Rydberg states. Once that is so, the KS
oscillator strengths depend on both transition frequencies and dipole matrix
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elements. In numerical studies on the He atom, we find that the dipole
matrix elements in exact X or LDA-SIC potentials are extremely close to
the values in the exact XC potential'>7, and that the main source of error in
such approximate calculations is then in the orbital energies, as discussed
in the previous section.

2.6. What happens to atoms in strong laser fields?

TDDFT really takes off (as do the dynamics) when atoms and molecules are
subjected to strong laser fields. Many new phenomena such as multiphoton
ionization (MPT),!28:129:130,131 ahove-threshold ionization (ATIT) 132,133,134
or high-harmonic generation (HHG) 132136 are observed when the electric
field amplitude of the laser is comparable to or even exceeds the static nu-
clear Coulomb field experienced by the electrons. TDDFT is perhaps the
only feasible method to calculate the time-dynamics of interacting many-
body systems in this regime. In spite of the fact that the electron-electron
interaction is much weaker than the strong external driving field, electron
correlation effects can be important 137-138:139,140 For any time-dependent
calculation within TDDFT there is, however, one important point to note: it
is not sufficient to know a good approximation for the exchange-correlation
potential (and thus a good approximation for the time evolution of the den-
sity). It is in addition necessary to know density-functionals for the observ-
ables. Usually the quantities of interest in a time-dependent calculation are
some generalized cross sections like S or 7 matrices in scattering processes,
ionization yields, branching ratios for chemical reactions or dissociation
probabilities, to mention just a few. By virtue of the Runge-Gross theorem
all of these observables are functionals of the time-dependent density and
the initial-state. Consequently, a calculation within TDDFT involves two
steps

(i) The TDKS equations are solved using some approximate form for the
exchange-correlation potential. The density is calculated from the time-
dependent orbitals.

(ii) The (approximate) time-dependent density from step (i) is then in-
serted in the functionals for the physical observables of interest.

In some cases we know the exact functional dependence of such generalized
cross sections on the time-dependent density, but in most cases we do not.
One prominent example where the exact form of the functional is known is
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the case of harmonic spectra for atoms or molecules. Neglecting propaga-
tion effects in the medium, as well as the fact that the focal volume has an
intensity profile exposing different atoms to different intensities, these spec-
tra are given by |d(w)|?. Here d(w) is the Fourier transform of the induced
time-dependent dipole moment of the system

d(t) = /d3rzn(rt). (48)

Tonization yields and photoelectron spectra are much harder to express as
functionals of the density. For the ionization yields of the Helium atom
some approximate functionals are known!. The construction of function-
als yielding probabilities PT* and P12 for singly and doubly ionized Helium
rests on a geometrical concept. Consider the spatial partitioning of the norm
of the true time-dependent two-particle wavefunction in the following form

1:/d3’l“1/d37'2|‘:[1(1‘1,l‘2,t)|2+2/d3T1/ d37“2|‘11(1‘171‘2,t)|2
A A A B
-|—/ d37'1/ d37'2|‘11(1‘1,l‘2,t)|2. (49)
B B

Here the analyzing volume A describes an appropriately chosen region
which encloses the nucleus and B is its complement B = R?® \ A. The
factor of two in front of the second integral appears because of the anti-
symmetry of the wavefunction. Due to the probability interpretation of the
wavefunction the second integral (AB) in Eq. (49) is equal to the probabil-
ity of finding one electron inside the volume A and simultaneously finding
a second electron outside the volume A. This can be viewed as single-
ionization P*!. Similarly the integral (BB) corresponds to the probability
of double-ionization P2, Introducing the pair-correlation function

F(I‘l,l‘z,t)
n(rla t) n(r27 t) ’
where T'(ry,rs,t) is the time-dependent two particle density matrix (in
the case of Helium simply ['(ri,r2,t) = 2|¥(r;,r2,t)|?) the expressions
for single- and double-ionization of Helium can be written as

PH(p) :/Ad3rn(r,t)—/Ad3r1/Ad3r2n(rl,t)n(r2,t)g[n](r1,r2,t)

g(ry,ra,t) = (50)

P2 (t) = 1—/ d3rn(r,t)+%/ d3r1/ d*ron(ry,t) n(re,t) g[n](ry, re, ).
A A A
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(51)

Note, since the time propagations are started in the ground state, both ion-
ization yields P*!,P+2 are functionals of the density only. For Helium, the
simplest approximation for the pair-correlation function is the exchange-
only expression

gelnl(r,ra.t) = 5. 62)

In this case the ionization probabilities PT, P2 reduce to

PHH(t) = 2p(t) (1 — p(t))
P2 (1) = (1 - p(t))?, (53)

where p(t) = 3 [, d*rn(r,t). Note, that exactly the same result (53) is
recovered when a product wavefunction is inserted in Eqgs. (51).

To assess the quality of the approximation (52) involved in the function-
als P!, P2 Lappas and van Leeuwen'%* have performed numerically exact
time propagations for a 1D soft-core model of Helium in a laser field'4®. In
the length gauge the Hamiltonian for their model system reads

1 d? 1 d?
+(z1 + x2) Ey f(t) sin(wt). (54)

Here f(t) describes the envelope of the laser pulse and V(z) = 1/v/22 + 1is
the soft-core model potential. From the time-evolution of the two-electron
d 6, numerically exact ref-
erence data for the ionization yields were obtained from expressions (51).

wavefunction, using the split-operator metho

This was then compared to ionization yields from Eq. (53) using the exact
density calculated from the correlated wavefunction. In this way approxima-
tions in the first step (i) of the computational procedure were circumvented
and the accuracy of the functionals for the cross sections can be tested
directly.

The results of Lappas and van Leeuwen are shown in Fig. 3 where the
ion yield for single (triangles) and double (squares) ionization is plotted
as function of the laser intensity. Although the double-ionization evaluated
from the approximate functional (53) still does not agree with the exact
yield, the famous knee structure!4”-**® is reproduced. This is in contrast to
TD x-only calculations where the knee structure cannot be recovered at all.
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Fig. 3. Single- and double-ionization yields of He from the fully correlated exact model
(full triangles and squares), and the yields based on Egs. (53) in the text evaluated with
the ’exact’ electron densities (open triangles and squares). Taken from Ref. 144

In our context this situation would amount to the evaluation of (53) with
the approximate TD x-only density.

In summary we conclude that the two step procedure (i),(ii) is necessary
for any time-dependent calculation in TDDFT. Both an approximation
for the exchange-correlation potential and a functional approximation for
the generalized cross section of interest, have to be known. The relative
importance of these different types of approximations has to be investigated
for any particular case of interest.

In the special case of Helium double-ionization it turned out that the
functional approximation for the ion yields (53) recovers the well known
knee structure only when the functionals were evaluated with the exact
densities. Evaluation with approximate TD x-only densities did not repro-
duce the essential physics'*!-'42. Thus more accurate exchange-correlation
potentials, possibly including memory effects'*?, have to be utilized in this
case to obtain better approximations to the true time-evolving density.
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2.7. When does ALDA work beyond the linear response
regime ?

Most of the TDDFT calculations use the simple ALDA approximation
which treats the instantaneous density as if it was a ground-state den-
sity and applies the local density approximation for the exchange correla-
tion potential Eq.(7). LDA is ubiquitous and reliable for most ground-state
systems, but the time-evolving system is certainly not typically a ground-
state, and memory effects are neglected (see Sec. 2.9). How well does such
an approximation work? In the ground-state case, conditions that exact
functionals satisfy are an important guide to understanding why various
approximations work (or fail) as well as they do, and indeed, to their con-
struction 14°. Exact conditions that the time-dependent functionals satisfy
include Newton’s Third Law 19151152 the harmonic potential theorem!>?,
behavior under uniform scaling 92, a virial theorem 2, and the memory for-
mula 154, For example, the violation of the harmonic potential theorem by
the Gross-Kohn approximation '23 for the exchange correlation kernel pro-
vided much of the motivation for a search for other approximations which
do satisfy this theorem °°.

These exact conditions provide only a small number of tools, albeit
important ones, to take in the knapsack when exploring the vast expanse
of possible dynamical behavior. Much has yet to be learnt about properties
of time-dependent functionals in order to obtain accurate approximations.

A large part of the problem is that until two years ago, there were no
exact time-dependent Kohn-Sham calculations done; that is, exact calcula-
tions of an interacting system and of the corresponding Kohn-Sham wave-
function. For this purpose, time-dependent Hooke’s atom, two interacting
electrons in a harmonic well of time-dependent force constant has been ex-
ploited in three recent works 1°6:92:157; these are the first numerically exact
time-dependent Kohn-Sham calculations of any system.

The two electrons in time-dependent Hooke’s atom live in the Hamilto-

nian
H:—l(v2+v2) +1k(t) (ri +73) P (55)
2 1 2 2 1 2 |I_1 _ r2| ?
where the time-dependent force constant is
k(t) = k — e cos(wt). (56)

8

The one-electron version of this is the Mathieu oscillator '°®. The dynam-
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ics is largely classical, because of the quadratic nature of the potential, and
classically evolving a bunch of trajectories with the same initial phase-space
distribution as the initial ground-state, describes the full quantum dynam-
ics well. For € not too large, time-dependent perturbation theory tells us
what frequencies appear in the dynamics. In Fig. 4, we plot the root-mean-
square variance of the distribution as a function of time for one electron,
calculated quantum mechanically, quasi-classically and in perturbation the-
ory. The rough trends in the two-electron density are similar to those of the
one-electron density, and this is also shown here. The difference is due to
interaction.

V<> (t)

T T T T T T T T T

external

Fig. 4. Rms variance: one electron in the Mathieu oscillator, calculated quantum me-
chanically (solid line in bottom panel); time-dependent perturbation theory (dashed line
in bottom panel); quasiclassically (dotted line); two electrons of time-dependent Hooke’s
atom (middle panel); the ground-state corresponding to the external force constant (top
panel). The parameters in Eq.56 are k& = 0.25,w = 0.75 and € = 0.05.

The two electron case may be solved exactly numerically. Transforming
to center-of-mass and relative coordinates renders the Hamiltonian sep-



August 14, 2001 8:1 WSPC/Guidelines n8'13

Ten topical questions in time-dependent density functional theory 29

arable, and thanks to spherical symmetry, one needs only to solve two
uncoupled one-dimensional time-dependent Schriodinger equations numeri-
cally. The calculation begins in the ground-state. Thus the exact evolving
wavefunction and density are obtained.

Since there is just one (complex) occupied orbital in the Kohn-Sham
calculation, a simple inversion of the Kohn-Sham equation yields the Kohn-
Sham potential in terms of the evolving density. Once vs(r, t) is known, the
energy components Ts(t), U(t), Exc(t) may then be extracted with the help
of the equations of motion®?. These energies contain global information
about the potentials vs(rt), vxc(rt). We shall describe a manifestation of
this shortly.

The exact calculation may be compared with that of an exact adiabatic
calculation '57. To this end, we define the ground-state components of the
various energy components as the value of the exact ground-state functional
evaluated on the instantaneous density. The difference between this and
the exact energy is termed the “dynamical component”, e.g. ESY™(t) =
E.(t) — EZ[n(rt)]. The exact ground-state value is obtained by observing
that, for our choice of time-dependent potential, the static potential which
has the ground-state density matching the instantaneous density at time
t is very close to that of a static Hooke’s atom of a certain force constant
keff (t)

Dynamical effects were found to be very large: except when the force
constant is varied slowly enough that the system remains in the instan-
taneous ground-state, the functionals behave qualitatively differently than
the adiabatic approximation. We refer the reader to the paper '*7 for many
interesting results from a variety of runs and here just present a few.

In Fig. 5 we plot the correlation energy and its first time-derivative for a
typical run. A feature which would put a ground-stater out the door is that
E(t) can become positive. No adiabatic approximation can capture this. In
the time-dependent case there is of course no variational principle holding
E. down below zero and we found positivity in all of our runs. One can
prove 157 that E&"(t) > —T"(t), a negative number. In all the runs we
considered we found Egy” > 0, always pulling up the negative ground-state
value, but whether this is generally true, remains to be proven.

This graph also demonstrates the importance of memory effects (and
now our poor ground-stater is really running). In the top panel is a plot of
the value of k.ps(t) described earlier. This parameter completely identifies
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Fig. 5. Non-locality in time: the top panel shows ks r(t), middle panel Eg¢, bottom
panel Ec. The parameters in Eq.56 are k = 0.25,w = 0.75 and € = 0.1.

the density profile. The figure suggests that the correlation potential v.(t)
is a highly non-local functional of the density, meaning that v.(t) depends
not just on the density at and around time ¢, but rather on its entire history.
The density profiles for a time range centered near ¢ = 4.8 and centered
near ¢ = 28.9 are almost the same, yet the values of E (t) near those times
are hugely different. The density at times near ¢ is not enough to specify E:
it depends on the entire history and this is what we mean by non-locality

in time. Now Ec(t) is intimately related to the correlation potential 92

Es(t) = / drve (rt)n(rt) (57)

so that non-locality in E, directly implies non-locality in the correlation
potential vs(t). Clearly, E.(t) will also be a highly non-local functional of
the density and this is also shown in the figure. Any adiabatic approxima-
tion has no memory and will fail to capture this effect. On the other hand,
it may approximate the exchange potential well since, even for more than
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two electrons, this is probably not a strongly non-local in time functional
of the density °7.

We end this section by looking back to the linear response theory of
the previous section. One can prove that although Eély" vanishes in linear

d d d
response, ve’", TY" and USY" do not 197,

2.8. Can we always find a Kohn-Sham potential for an
appropriate initial state?

The Runge-Gross theorem ' proves that there is a 1-1 mapping between
potentials and densities, much like in the ground-state case, but with one
major difference: in the time-dependent case, the mapping is unique only
for a specified initial state. There may be several different initial wave-
functions that evolve with the same time-dependent density in different
time-dependent potentials; the exchange-correlation potential for each of
them will be different. All functionals in use today completely ignore this
initial-state dependence, partly because very little is known about it.

To tackle the problem of how functionals depend on the initial state we
might begin by considering the simplest possible case: one electron. We ask,
can we find two different initial states which evolve with the same density
for all time in two different potentials? In fact, we cannot '®°! There is
no initial-state dependence for one electron. The proof is very simple: the
two candidate wavefunctions must be related to each other by a phase,
¢~)(rt) = e p(rt) in order to have the same density. Imposing equal
n(rt) = =V - j(rt), gives V - [nVa] = 0. This can only be satisfied if a
is a physically irrelevant constant. So in the one electron case, there is at
most one wavefunction which can evolve with a given density: the evolving
density uniquely specifies the potential.

The situation is however quite different for two or more electrons. Given
two initial wavefunctions that have the same density and first-time deriva-
tive of the density 159, and which are well-behaved in that their expectation
values of the momentum-stress tensor are finite!®?, there exist two differ-
ent potentials in which they each evolve with the same density for all time
160 This holds also in the case of two different inter-particle interactions
and so is a statement about non-interacting v-representability. It was also
shown 190 how to construct the difference in the potentials that keeps the
two wavefunctions evolving with the same density. Essentially the proof
follows from requiring the second derivative of the density to be the same
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for each wavefunction, using the continuity equation to write this in terms
of the current and then considering the Heisenberg equation of motion for
the current 0. This gives the first term in a Taylor series in time of the
potential. The higher order terms may be obtained by considering higher
order time-derivatives of the density; one ends up having to evaluate nested
commutators of the momentum-stress tensor with the Hamiltonian.

A simple example of initial-state dependence %9
interacting electrons in one dimension. In Fig. 6 we give another example.
The reference wavefunction is the lowest triplet state of the harmonic os-
cillator, with orbitals shown in the figure. The orbitals of the other wave-
function are also shown in the top panel; these are chosen so that the
two wavefunctions have the same initial density and current. The reference

occurs for two non-

wavefunction evolves with constant density in the harmonic oscillator po-
tential shown below. The initial potential in which the second wavefunction
evolves so that its density also remains constant is also shown. This alter-
native potential will change in the next instant of time in order to keep
the alternate orbitals evolving with the same constant density as the ref-
erence ones. If we consider the density in the top panel to be that of an
interacting two-electron system in some external potential, then the differ-
ence between the two potentials in the lower panel is the difference in the
exchange-correlation potential when the two different initial Kohn-Sham
states of the top panel are chosen.

2.9. What is memory?

One of the first things a budding quantum mechanic learns is that knowl-
edge of the many-electron wavefunction at any instant of time is enough to
completely determine all properties of the system at that time. The Runge-
Gross theorem ! says that this is overkill: knowing just the time-evolving
density and just the initial wavefunction is enough to know everything about
the system. Like in the ground-state case, by trading in the 6 N-variabled
wavefunction for the 3-variabled density as its main player, and having to
solve IV uncoupled 3-variabled Schrédinger’s equations instead of the daunt-
ing coupled Schrédinger equation in 6V variables, TDDFT provides a more
feasible framework for the dynamics. The subtleties of the electron-electron
interplay are hidden in the functionals, which are in practice approximated.

A feature of the time-dependent functionals is memory dependence,
about which much has yet to be understood. Functionals in TDDFT are
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Fig. 6. Initial-state dependence: the solid lines in the top panel are the two orbitals
of one wavefunction, which happens to be stationary state of the harmonic oscillator
shown below as a solid line. The dashed lines are the orbitals of an alternative initial
wavefunction which evolve with the same density (thick solid line in top figure) in the
potential which at time 0 is shown as the dashed line in the bottom figure.

haunted by the past: in general they depend on the density along its entire
history, on the initial state of the interacting system and also on the choice
of Kohn-Sham initial state. Examples of the history dependence and of the
initial-state dependence have been given earlier in this chapter (Secs. 2.7
and 2.8).

How does this memory arise? In any wavefunction theory, no memory is
needed: as our budding quantum mechanic would tell us, the wavefunction
at time ¢ contains all the information. The memory in TDDFT is a price we
have to pay for the trading in of the complicated wavefunction for the much
simpler density. In a sense, what we mean by memory is a consequence of
the underlying (banished) wavefunction at time ¢ not being a ground-state
wavefunction.

Recently it has been shown that the two sources of memory in TDDFT,
history dependence and initial-state dependence, are inextricably inter-
twined '®*. In fact, initial-state dependence can often be completely ab-
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sorbed into a history-dependence. Imagine an interacting time-dependent
calculation, run from ¢t = 0, generating a density n(rt). The exchange-
correlation potential at time ¢ is determined by the density at all previous
times as well as the initial interacting and Kohn-Sham states, ¥y and ®q
respectively. Now, if we knew what these wavefunctions evolved to at time
t' < t, we may equally well think of ¢’ as the initial time, and the inputs to
vxc would be the density at times between ¢’ and ¢ and the states Wy, &y
at time t'. This gives us an exact condition on the functionals:

vxc[ne; Oy, @] (rt) = vxa[n; Yo, ®o(rt) for t > ¢/, (58)
where
ny (rt) = n(rt) for t > t' (59)

and ny (rt) is undefined for ¢ < t'. Eq. (58) is a very difficult condition for
approximate functionals to satisfy. Like other exact conditions, for example,
the harmonic potential theorem '3 and the virial theorem °2, it may be
used as a feasibility test for approximate functionals. Any functional with
history-dependence, and without initial-state dependence, very likely vio-
lates this condition. On the other hand, this condition is trivially satisfied
by any adiabatic approximation, which ignores both the dependence on the
initial-state and on the history.

An important consequence of Eq. (58) is that the initial-state depen-
dence can often be completely expressed as a history effect along a “pseudo-
prehistory”: once a system can be propagated backwards in time to some
non-degenerate ground state, generating a density 7i(rt), then

vxc[n; Yo, Pol(rt) = vxe[n](rt) for t > 0. (60)

Here, the density n(rt) = n(rt) for ¢ > 0 and is defined to be the density
along a pseudo-prehistory which begins in some ground-state ¥, (®4, for
the Kohn-Sham system) at some negative time ¢ = t;; < 0 and evolves
under some many-electron Hamiltonian that carries us to the true ini-
tial states Wo (®g) at ¢ = 0. Initial-state dependence has vanished on the
right-hand side of Eq. (60) since the systems “start” in the non-degenerate
ground-states ¥,s and ®,5 which, by the Hohenberg-Kohn theorem, are
functionals of the ground-state density. Instead it has been absorbed into
a pseudo-prehistory.

When can we find a pseudo-prehistory and thus eliminate initial-state
dependence? It can be shown that an arbitrary initial state cannot be
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evolved back to some ground-state under a many-electron Hamiltonian %4;

but there are plenty of initial states that can be.

3. Conclusions: Dante’s Inferno?

When we begin applying TDDFT to quantum mechanical systems, the
linear-response method looks very appealing, especially employing ALDA
for fxc. We are like Dante at the edge of the woods. But once we study
things a little more closely, we begin our descent through the various circles
of Hell. So long as we stay within linear response, we are always looking at
variations away from a ground state, and so we can consider ourselves in
the outer circle. But once we begin to study fully time-dependent problems,
then the initial-state dependence rears its ugly head (similar to that of
Bertrand de Born) and we know we are in the inner circle.

But, there is more than just the Inferno to Dante’s classic. There follows
the purgatorio and finally paradiso. It is necessary to first pass through Hell,
to achieve the wisdom needed to reach the paradiso. For TDDFT, we are
on our way.
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