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Abstract
Many physical and social phenomena are embedded within networks of interdependencies,

the so-called ‘context’ of these phenomena. In network analysis, this type of process is typically
modeled as a network autocorrelation model. Parameter estimates and inferences based on
autocorrelation models, hinge upon the chosen specification of weight matrix , the elements
of which represent the influence pattern present in the network In this paper I discuss how social
influence processes can be incorporated in the specification of . Theories of social influence
center around ‘communication’ and ‘comparison’; it is discussed how these can be
operationalized in a network analysis context. Starting from that, a series of operationalizations
of W is discussed. Finally, statistical tests are presented that allow an analyst to test various
specifications against one another or pick the best fitting model from a set of models. 
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The Specification of Weight Structures in Network 
Autocorrelation Models of Social Influence

1. Introduction

Many physical and social phenomena are embedded within networks of

interdependencies, the so-called ‘context’ of these phenomena. In determining their

opinions and behavior, in accordance with the constraints and possibilities imposed by

the network, actors are assumed to be responsive to the contextual cues provided by the

opinions and behavior of significant others. By appropriately taking into account the

opinions and behaviors displayed by their significant others, actors thus establish their

own behavior. In the literature, this influence process has been labeled ‘contagion’ (cf.

Leenders, 1995, 1997).

Of course, opinions and behavior are not solely determined by those of others

(interaction), but also by reaction to various other constraints and opportunities granted

by the social system (local effects). In sociology, this type of process is typically

modeled as an autocorrelation model1 of the form

or

, .

Parameter estimates and inferences based on such autocorrelation models hinge

upon the chosen specification of weight matrix W. This matrix represents the influence

process assumed to be present in the network and can be operationalized in many

different ways. W is supposed to represent the theory a researcher has about the

structure of the influence processes in the network. Since any conclusion drawn on the

1. Autocorrelation of either a variable (or error term) is the situation where the
observations of variables (or error terms) for different actors are not independent
over time, through space, or across a network. 
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basis of autocorrelation models is conditional upon the specification of W, the scarcity

of attention and justification researchers pay to the chosen operationalization of W is

striking and alarming. This is especially so, since different specifications of W

typically lead to different empirical results.

In this paper, I attempt to provide researchers with an understanding of various

specifications of influence structure W. When specifying W, four steps need to be

taken. First, the researcher has to decide whether social influence occurs through the

autocorrelation of the dependent variable, through the autocorrelation of disturbances,

or through a combination of the two. In Section 2 I describe the substantive difference

between these two approaches and present the models that accompany them. Second,

the researcher decides on which mechanism governs social influence: communication

or comparison (Section 4). Third, a choice is made about which alters exert influence

on ego and which alters don’t. In other words, this is a choice about which elements of

W are zero and which are non-zero. In the fourth step, for the non-zero elements of W,

the researcher determines how much influence is exerted. These last two steps are

discussed in Sections 5 and 6. Finally, in Section 7 I present some statistical tests that

can help a researcher make a choice between rival models.

2. Network autocorrelation models

Let  be a -vector of values of an endogenous variable for  actors making

up a network and let  denote a -matrix of values for the  actors on 

covariates (including an optional row of 1’s for the constant term). I will refer to  as

the dependent variable. In determining his opinion, ego takes into account the opinions

of his significant others. These significant others make up i’s frame of reference. The

opinion of some alters carry more weight to ego than those of others. This is denoted by

‘nearness,’ referring to the extent to which alter’s opinions and beliefs are emulated by

ego. In mathematical terms,  is related to a weighted combination of the  of other

actors. If these weights are given in the -matrix , then  is related to . An

entry  of  denotes the influence actor2 j has on actor i; the nearer j is to i, the

larger . So  is written as3

.
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The strength of the influence if i’s alters on i is thus determined by the weights in

the ith row of W. In matrix notation:

(1)

where  and  is a scalar (Anselin, 1982; Doreian, 1981;

Griffith, 1976; Haining, 1978; Mead, 1967; Whittle, 1954). This model represents

contagion in a straightforward fashion: ego’s opinion is a weighted version of the

opinions of his alters. 

In most cases both interaction and local effects play a role in the influence process.

For example, two organizations may compete for market share, thus revealing

between-organization effects (interaction); but they will also react to the general

availability of demand, revealing local effects to exogenous factors. Similarly, ego’s

voting behavior may be influenced by discussing matters with friends (interaction), but

will often also depend on ego’s status, income, education, and so forth (local effects).

Here, (1) is of limited utility and is extended by including covariates:

(2)

where it is assumed that the error terms are normally distributed with zero means and

equal variances; so . The difference between interaction and local effects

is reflected by the difference between the autocorrelation part in the equations

(containing ) and the exogenous part (containing ). Ord (1975) terms model (2)

the regressive-autoregressive model; Doreian (1989b) calls it the network effects model.

The model has been studied by, among others, Doreian (1981; Doreian et al., 1984).

When  the model reduces to the standard regression equation ,

while for  the purely spatial model (1) is obtained. 

2. In some parts of the literature,  is used to denote the influence of i on j. In order

to preclude confusion, I will systematically transform W, so that all ’s in this

paper can unambiguously be interpreted as j’s influence on i. Also, see Section 6.
3. In social network analysis, standard usage is to exclude the relation from an actor to

himself (loops), thus =0. However, the inclusion of loops can be theoretically

meaningful. The effect of actor i on   should then be included.

wi j

wi j
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An alternative way to incorporate both local and interaction effects is the network

disturbances model:

(3)

This model has been studied by, among others, Doreian (1980), Dow et al. (1982),

Loftin and Ward (1983), Ord (1975), and White et al. (1981). Due to their similarity to

time series models, (2) has also been labeled a SAR (spatial autoregressive) model, and

(3) an SMA (spatial moving average) model (e.g., Mur 1999).

Sometimes one may expect two regimes  to be present. Such a model is

(Doreian, 1989a,b)

.

Analogously this can be done in the case of disturbance autocorrelation:

See Brandsma and Ketellapper (1979) and Dow (1984) for a discussion of this model.

A natural generalization combining network effects and network disturbances is

(Doreian, 1982; Rietveld and Wintershaven, 1998):

(4)

Of course,  is allowed. Anselin (1988: 34-35) studies (4) as a general family

of autocorrelation models.4 An overview of some network autocorrelation models is

given by Doreian (1989b) and Leenders (1995, 1997). An overview and discussion of

related network models is given in Marsden and Friedkin (1993).

The substantive choice between modeling contagion through either autocorrelating

the dependent term or the disturbance term reflects a theoretical difference of how

4. In fact, Anselin’s approach is more general, as he allows , where 
may be heteroskedastic and is allowed to depend on covariates.
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contagion is supposed to take place.5 The opinion an actor would display in the absence

of social influence is an actor’s intrinsic opinion (Leenders, 1995). In both (2) and (3)

an actor’s intrinsic opinion is represented by , when  is equal to zero. In

specification (2), ego builds his own opinion both on his intrinsic opinion and on the

opinion of his alters. For instance, ego’s political preference would be a function of

both ego’s socio-economic status, education, and income (intrinsic opinion) and the

political views expressed by his family, neigbors, and colleagues (contagion).

Together, these effects then simultaneously determine ego’s political stance.

Alternatively, there may be situations in which ego initially only bases his stance on his

intrinsic opinion; his status, education, and income initially determine ego’s political

views. As ego then observes his significant others to deviate from their intrinsic

opinions, ego decides to adapt to their deviation. For instance, ego may find his alters

to be more on the left-hand or right-hand side of the political spectrum than their status,

education, and income would prescribe. With his alters leaning more towards the left

(right) than expected, ego also is inclined to alter his view towards the left (right). In

this case, ego does not take the absolute value of the opinion of his alters as a

benchmark, but the deviation from their supposed (intrinsic) opinion. The mechanism

of adaptation to deviation from the intrinsic opinion, rather than to opinions themselves

is, in a statistical context, reflected by autocorrelation of residuals. The residuals 

capture latent forces that push an actor’s opinion away from his intrinsic standpoint; it

is this type of process that is captured by specification (3). 

A model of contagion of deviations is appropriate in at least three situations. First,

the deviation may represent insecurity, uncertainty, or risk. When uncertainty is high,

making it difficult for actors to assess the ‘right’ opinion or ‘right’ behavior, actors are

expected to watch others and observe how others deal with this uncertainty and mimic

their adaptive action. Similarly, if actors cannot observe all variables thought to be

relevant to the formation of their opinion, ego will adapt to this lack of information by

considering how his significant others adapt to this lack.6 Finally, when actors do know

all the relevant factors, but are not sure as to the relative and behavioral importance of

5. Anselin and Bera (1998: 247) discuss the substantive basis for the choice between
the two approaches in a geographical setting.

Xβ ρ

εi
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them, they can take the educated guesses of significant others into account.

Autocorrelation model (1) is highly stylized, representing an extreme form of

contagion. It supposes behavior to be fully dependent on interaction, void of any effects

intrinsic to the actors in the network. It can caricaturingly be termed a ‘lemming’

model. It is hard to think of situations in which this model would be substantively

appropriate. One case would be when modeling the behavior of members of a sect,

where people are stripped of their individuality and are forced into group behavior.

Alternatively, this model could be appropriate for modeling situations so unfamiliar to

actors, that they can not (or will or dare not) rely on their own experiences,

background, or routines for behavioral direction, but fully rely on the behavior of

others in determining their own best behavior. 

3. Why the specification of W is important

When working with any autocorrelation model, the chosen specification of W is of

vital importance. The first reason network autocorrelation models are used is for

estimating  or . Many researches aim at estimating  in the situation of (possibly)

interdependent variables. In this fashion, the autocorrelation model is used to remove

bias due to the interdependence of units from OLS estimates of . Various procedures

exist, an overview of which can be found in Anselin (1988) and Leenders (1995). The

estimation procedure with the best overall performance undoubtedly is the Maximum

Likelihood estimation procedure. This procedure has been the prefered method of

estimation for over two decades and is the default procedure in the available

commercial software packages for network (or spatial) autocorrelation models. The

Maximum Likelihood (ML) estimators (as do almost all alternative estimators)

explicitly incorporate weight matrix W. Change W, and get different estimates. The

difference can be substantial.

A second reason autocorrelation models are employed is for testing purposes. One

may want to test the statistical significance of particular parameters or simply test for

6. Likewise, from a statistical point of view, when important variables are not included
in X, disturbance term autocorrelation may arise. Also, autocorrelation in
disturbance terms may also arise when linear relationships between the variables are
assumed, but when in fact they are nonlinear.

ρ β β

β
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the presence of autocorrelation. In the latter case, there are two classes of tests. The

first class of tests is used when the underlying distribution of the autocorrelated

phenomenon is unknown, or when observations are measured on a nominal or ordinal

scale. This class consists of statistics such as Moran’s I, Geary’s c, and the join-count

statistic. These do not involve weight matrix W at all, and are therefore unaffected by

any specific form chosen for W. The downside to these tests is that, although their null

hypothesis is that of absence of autocorrelation, their alternative hypothesis is left

vague. It is therefore unclear what the rejection of the null hypothesis really means. The

second class consists of tests that involve distributional information and includes,

among others, the Lagrange Multiplier (LM) test, the Likelihood Ratio test (LR), the

Wald test (Wald), and Moran’s I as reformulated by Cliff and Ord (1973; Tiefelsdorf,

1998). In modern literature on autocorrelation models, the LM, LR, and Wald tests are

the most commonly used. Since these tests explicitly incorporate W, any inference is

conditional upon the chosen W. A parameter may lose or attain statistical significance

when inference is based on an alternative specification of W, while still using the same

dataset. Change W and draw a different conclusion.

The last reason to use an autocorrelation model is to test theories of social

influence in a particular dataset. In this situation, the specification of W should follow

naturally from the theory at hand. Change one’s theory, change W. 

In conclusion, regardless of the purpose served by applying a network

autocorrelation model, virtually any conclusion depends on the specification of W. It is

therefore of vital importance to have justification for the W applied in the research. 

4. Theories of social influence

Social influence occurs when an actor adapts his behavior, attitude, or belief, to the

behaviors, attitudes, or beliefs of other actors in the social system. It does not matter

whether alter’s influence on ego’s behavior is intentional or unintentional and is not

restricted to direct communication. A precondition for social influence to occur is the

availability to ego of information about the attitudes or behavior of other actors. In this

paper, social influence is viewed as a dyadic process: ego adapts his behavior to that of

alter, leading them to behave similarly.7 In the literature, different terms are used to



9

describe the same thing. In particular, the term contagion is often used to describe the

social influence processes dealt with in this paper (e.g., Leenders, 1995, 1997).

Therefore, in the remainder of this paper, I will use the terms contagion, social

influence, and influence interchangeably, each is taken to mean the same thing.

Sociological literature contains many different theories of social influence. Most of

these are couched in terms of the idea that the attitudes and opinions of significant

others influence the way in which a person comes to view a situation. The opinions of

alters are seen as an appropriate standard against which ego evaluates his own opinion.

In other words, when forming his own opinion, ego uses other actors as his frame of

reference and takes their opinions into account. In the remainder of the paper, I will use

both the terms alter or significant other to refer to a member of an actor’s frame of

reference.

Within the realm of social influence theory, the notion of a frame of reference has

crystalized around two processes (Figure 1).

• Communication: actors use actors with whom they are directly tied as their

frame of reference.

• Comparison: actors use actors they feel similar to as their frame of reference.

** Figure 1**

4.1. Communication

Communication refers to social influence through direct contact between ego and

alter. The more frequent and vivid the communication between ego and alter, the more

likely it is that ego will adopt alter’s ideas and beliefs. Through discussing matters with

7. Consequently, if ego and alter express similar opinions after both watching the
same television program, this is not a result of social influence between them.
However, if alter’s opinion changes after watching a TV program, this could cause
alter to adhere to and express an opinion that deviates from his intrinsic opinion.
The network disturbances model then allows i to adapt his opinion as well.
Although the direct influence of the TV show on j does not fall within my definition
of a network social influence process, the adaptation of i’s opinion based on j’s
adaptation does.
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alter, ego comes to an understanding of an issue and adds new information to his own.

Homans’ work (Homans, 1950, 1961) provides a theoretical foundation for

contagion through communication. Classical early empirical work was performed by

Festinger (Festinger et al., 1950; Festinger and Kelly, 1951) and Lazersfeld (Lazersfeld

et al., 1948; Berelson et al., 1954). Lazarsfeld et al. (1948) for instance argue that

people rely on personal contacts to help them select relevant arguments in political

affairs. Ego trusts the judgement and evaluation of those who are respected around him.

Personal obligations and trust are more powerful influences than radio or newspapers.

Berelson et al. (1954) show that political preferences of friends and co-workers

strongly determine ego’s preference and that these alters also affect the strength of

conviction with which actor’s vote preference is held. Accordingly, they show that

young voters have a very strong tendency to vote like their fathers. Baerveldt and

Snijders (1994), studying network effects on cultural behavior, find petty crime

offences amongst pupils to be correlated with the number of offences committed by

their friends. Most studies of social influence assume communication to be the

underlying process.

4.2. Comparison

The other process of contagion is social comparison. In searching for a social

identity, ego ascribes to himself those characteristics or feelings that alters would

ascribe to him if they would have the same information at their disposal (cf. Bem,

1972; Tajfel, 1972). Putting it differently, ego compares himself to those alters whom

he considers similar to him in relevant respects, asking himself ‘what would another

person do if he were in my shoes?.’ Ego perceives (or assesses) alter’s behavior and

assumes that behavior to be the ‘correct’ behavior for ‘a-person-like-me’ or for ‘a-

person-in-a-position-like-mine.’ Burt (1987) argues that comparison is triggered if

actors are in competition with one another. By comparison they evaluate their relative

adequacy.8

Role playing and imitation are similar to comparison; comparison establishes a

role-playing frame as alters are imitated or roles are emulated. 
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4.3. Attitudes vs. behavior

In studies on organizations, and in political science in particular, much interest

exists in contagion processes. The argument is that if contagion is strong within a

group, the likelihood of similar behavior increases, leading to an increase in the group’s

power. However, there is an important difference between similarity of beliefs and

interests and similarity of behavior (Mizruchi, 1989, 1990; Wickes, 1969). Behavior is

not solely determined by a set of attitudes and beliefs, but also by restrictions with

which the actor is confronted. A change in some of the attitudes and beliefs does not

automatically lead to changes in behavior. Similarity in beliefs, therefore, does not

necessarily lead to similarity in behavior. Moreover, actors with different beliefs might

well behave similarly (Merton, 1936).

In the communication approach to contagion, information is exchanged about an

issue at hand, uncertainty is expressed, past experiences are shared, and actors learn

from each others’ mistakes, leading to a unison of opinions, attitudes, and beliefs, but

not necessarily to conformity in behavior. Comparison, on the other hand, which may

take place among non-adjacent actors, is explictly based on role playing and the

copying of behavior. Moreover, actors who are not directly tied to one another can rely

only on observed behavior, as they cannot discuss with alter which attitudes underly his

behavior. 

In short, communication yields similarity of beliefs, but not necessarily of

behavior, whereas comparison leads to similarity in behavior, but not necessarily in

underlying beliefs. 

The consequence of this difference is important because similarity of behavior are

easily observed by a researcher, but similarity of beliefs and attitudes are not. The

methodological problems related to this will not further be discussed in this paper.

8. Burt’s argument is that comparison is used by actors in order to gain strategic
advantage. By comparing himself to alter, ego can invent and adopt innovations that
would make ego more attractive than alter as the object or source of relations (Burt,
1987: 1291). Naturally, this only makes sense for actors who occupy similar
positions in the social system.
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5. Operationalizing social influence

5.1. Operationalizing communication

The common approach to operationalizing a communication process in social

network analysis is through cohesion. Cohesion incorporates the number, length, and

strength of the paths connecting actors, leading to concepts such as cliques (Mokken,

1979), k-plexes (Seidman and Foster, 1978), and k-cores (Doreian and Woodard, 1994,

Seidman, 1983). It is then tested whether actors who belong to the same subgroup,

clique, k-plex, or k-core are more alike than actors in different groups. If they are, this

is attributed to communication. However, when  there is no guarantee that actors,

belonging to the same cohesive subgroup, are in communication with each other. In

this paper I therefore restrict cohesion to actors who are directly tied. Cohesion then

assumes actors who are directly linked to be(come) more similar than actors who are

not linked directly.

5.2. Operationalizing comparison

Comparison is most often operationalized by the concept of equivalence.

Equivalent actors are similarly embedded in the network. The most widespread

conceptualization of equivalence in autocorrelation models is structural equivalence9

(Lorrain and White, 1971). Actors are structurally equivalent if they have exactly the

same ties to and from all actors. Actors need not be directly tied in order to be

structurally equivalent. They may never communicate and may not even know of each

other’s existence. 

In practice, actors are seldom exactly structurally equivalent and the equivalence

criterion is relaxed to measure the extent to which actors are structurally equivalent. A

common measure is as follows. Construct vector  by stacking the ith row and column

9. There are many alternative types of equivalence, some of them substantively being
better suited to capture processes of comparison. However, as I discuss elsewhere
(Leenders, 1995), structural equivalence is the most practical measure for the
purpose. Moreover, with respect to capturing influence processes, structural
equivalence measures correlate highly with alternative conceptualizations of
equivalence. A related discussion is found in a highly recommended paper by
Borgatti and Everett (1992).

k 2≥

i
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of adjacency matrix A, and  by stacking the jth row and column of A. Euclidean

distance  is a measure of structural equivalence,

equaling 0 for exactly equivalent actors and  for completely nonequivalent actors

(  being the number of actors in the network). This number is then standardized by

dividing by . For use in network autocorrelation models, I propose a slightly

different approach. Define  and  as before and define , where 1 is a

 vector of ones. The Euclidean distance  now is a measure of structural

similarity or proximity rather than distance. Again this measure is standardized by

dividing by . A value of 0 represents exact non-equivalence, a value of 1 exact

structural equivalence. I will come back to this in 5.5. 

Since the comparison argument states that actors involve in copying each other’s

behavior, actors should be able to observe each other. One can not derive from a

network structure alone whether actors, who are not directly tied, know or can observe

each other. It is likely that the shorter the path between two actors, the higher the

probability that they know of each other and can observe each other’s behavior. It

therefore makes sense to restrict equivalence to actors who are proximate, say at a

sociometric distance less then or equal to three.10

In analyses of empirical data, cohesion and structural equivalence often yield

similar results since, in order to establish whether actors are structurally equivalent, one

only needs to consider to whom they are directly tied. A change in network structure at

a sociometric distance of at least two from both actors does not affect their structural

equivalence. Thus, two actors cannot be structurally equivalent if they have a

sociometric distance of more than two between them.11 Thus, structural equivalence

and cohesion are often strongly correlated. 

10.Sociometric distance 3 (friend-of-a-friend-of-a-friend) intuitively seems a useful
threshold for approximating awareness. As a practical test, the reader might
consider of how many friends-of-a-friend-of-a-friend-of-a-friend (sociometric
distance 4) (s)he can really assess opinions, attitudes or behavior. A researcher may
also consider setting the threshold at distance 2 (friend-of-a-friend).

11.There is one exception to this rule: isolates (nodes that have no ties to and from
other actors) are also mutually structurally equivalent.

j

dij i j– i j–( )′ i j–( )[ ]1 2/= =

2g

g

2g

i j j̃ 1 j–=

2g 1×( ) i j̃–

2g
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5.3. Communication or comparison?

Although communication and comparison reflect theoretically fundamentally

different mechanisms of social influence, they are not easily separable empirically.

They are different, but not disjoint. The communication argument relates similarity to

the direct ties between actors: if adjacent actors are observed to be(come) alike, this is

attributed to communication. The comparison argument, on the other hand, relates

similarity to the fact that actors are correspondingly embedded in the social structure: if

equivalent actors are observed to be(come) alike, this is attributed to comparison.

However, contrasting the similarity of adjacent actors with the similarity of structurally

equivalent pairs does not establish whether similarity is a result of either

communication or comparison. Actors  who are directly tied can become alike by both

communication and comparison. Besides this, they can become alike by

communicating with a mutual friend (indirect communication) or by comparing

themselves to the same alter (indirect comparison).12 It is usually not possible to

empirically distinguish among these four processes (communication, comparison,

indirect communication, indirect comparison) when it is only observed that adjacent

actors are or become alike. Even though in some cases it may be possible to

theoretically rule out one or two of them, it will hardly ever be possible to discard all

but one. 

Actors who are equivalently located in the network may become alike through

comparison, indirect communication or indirect comparison. Equivalent actors can be

adjacent and become alike through communication. Again, these effects can usually

not be distinguished. 

The problem of distinguishing between communication and comparison has led

several researchers to arbitrarily discard either communication or comparison as a

contagion mechanism and strictly adhere to the other.13 It is more interesting, however,

to ask whether it is possible to determine in advance whether communication or

12.Indirect communication and indirect comparison are not contagion, but a
consequence of contagion. However, it appears to be impossible to formulate
practical measures of contagion that exclude all indirect flows of contagion. 

13.Indirect communication and indirect comparison are seldom addressed.
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comparison is driving contagion. Unfortunately, in the literature not much is known

about the relative prominence of either of the two processes in various situations. Burt

and Doreian (1982) find support for both the communication and comparison

arguments in separate analyses of the same dataset. Galaskiewicz and Wasserman

(1989) also find proof of comparison, as they find that organizational decision makers

mimic the behavior of other decision makers. However, they also report that managers

are especially likely to mimic behavior of the organizations they are directly linked to.

Comparison or communication? 

An interesting empirical debate centers around the diffusion of innovations study

of Coleman et al. (1957, 1966) who show that communication was driving the adoption

of a new drug among physicians in the Midwest. Burt (1987) reanalyzes the data and

concludes comparison rather than communication to be the source of contagion. In

turn, Marsden and Podolny (1990) find hardly any evidence of contagion at all, neither

communication nor comparison. Finally, Strang and Tuma (1993) show effects of both

communication and comparison! This sequence of contradictory results on the same

dataset certainly highlights that the empirical distinction between the two processes is

not straightforward and that they may be strongly interrelated. Although, to my

knowledge, this is the only dataset that has evoked such major controversy, it is not

likely an exceptional one.

Sometimes an attempt is made to test communication against comparison by

testing for equivalence after first controlling for cohesion, the idea being that cohesion

has already picked up communication effects, so equivalence will only estimate

comparison. This, however, is not correct. Cohesion will still summarize direct and

indirect communication and comparison effects between adjacent actors, and

equivalence will then summarize comparison and indirect communication among non-

adjacent actors. In some cases, it may be possible to argue on theoretical grounds

whether communication or comparison is driving contagion, but even then it will most

often still be impossible to empirically test one against the other. 

5.4. An alternative distinction: adjacency versus non-adjacency

Only in rare cases is it possible to strictly (theoretically or empirically) distinguish
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between the two types of processes, attempting to do so in other cases only yields

spurious results. Therefore, I will not make the empirical distinction between

communication and comparison, but make a distinction between contagion among

directly tied actors and contagion among actors who are not directly tied (Figure 2).

** Figure 2**

Contagion among directly tied actors picks up both direct and indirect

communication and comparison effects. Contagion among actors who are not directly

tied summarizes direct and indirect comparison and indirect communication effects.

The greater the sociometric distance between the actors, the smaller the effect of

indirect communication and comparison, thus the stronger the direct comparison

component. 

The distinction between contagion through direct and indirect ties does not resolve

the issue of communication versus comparison entirely. It does, however, isolate the

effects of contagion through direct communication,14 which is one of the two major

theoretical explanations of contagion. Table 1 summarizes the argument.

** Table 1 **

Contagion among adjacent actors is simply operationalized by investigating

whether adjacent actors tend to share similar opinions or behavior. I propose two

different operationalizations for contagion among non-adjacent actors. In the first,

equivalence between untied actors is considered; the second considers the number of

paths of various lengths between actors.

5.5. Effects between non-adjacent actors

Structural equivalence between non-adjacent actors can be defined following

Section 5.2. Define equivalence proximity  by

14.Note, however, that it will never be possible, using only relational data, to
distinguish between influence through direct communication and influence by
comparison between adjacent actors.

epi j
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. (5)

Non-adjacent actors who are exactly equivalent have proximity 1, other non-adjacent

pairs of actors have equivalence proximity between zero and one. Adjacent actors

always have proximity zero. The reasoning behind the inclusion of  in (5), is

that this term prevents equivalence being blended with adjacency. When equivalence

proximate actors are found to be similar in opinions, this is not an effect of direct

communication. Note that (5) takes into account the directionality of the tie, which is

lost in the standard formulae for structural equivalence. This means that if , but

, then the influence of i on j by direct communication is filtered out, but j can

still influence i by equivalence. Definition (5) shifts the focus to the zero relations in the

network.

An alternative approach starts from the paths between i and j. When i and j are not

directly tied but many short paths exist between them, there are many possibilities for

indirect communication. When there are relatively many long shortest paths between

actors, comparison is predominant. Again, i and j should be able to observe one

another, I therefore suggest considering only non-adjacent actors i and j who are at a

sociometric distance less than or equal to two or three. With , the number of

(shortest) paths15 of length two from i to j is given by entry  of . Similarly, the

number of (shortest) paths of length three from i to j is given by . The number of

(shortest) paths of length two or three is found by simply adding  and . After

having constructed the matrix with shortest path lengths, the matrix is multiplied

element-wise by , in order to set the path length between adjacent actors equal

to zero. 

It is also possible to calculate all paths between actors i and j, by determining entry

 of  and  after setting  before multiplication. This calculation needs

to be performed separately for each pair of adjacent actors. In this fashion, adjacent

15.Mathematically, the kth power of A gives k-sequences and not k-paths. However,
the paths between non-adjacent actors of length smaller than or equal to three are
exactly equal to the corresponding 2-sequences and 3-sequences. Also, for these
lengths the paths are equal to the shortest paths.

epi j i j̃–( )′ i j̃–( )[ ]1 2/ 1 ai j–( ) 2g⁄=

1 ai j–( )

aij 1=

aji 0=

aii 0=

i j,( ) A2

A3
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1 aij–( )
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actors are allowed to influence each other through indirect paths, but the influence

flowing through paths involving a direct link between them is filtered out.

A situation in which these approaches are especially useful is when both a factor

based on adjacency and a factor based on equivalence proximity/shortest paths is

incorporated in a model of attitudinal actor similarity. Equivalence proximity will not

absorb any of the social influence based on direct adjacency. 

6. Operationalization of weight matrix W

Social influence enters network autocorrelation models through the weight matrix

W, also called the structure matrix. Entry  represents the extent to which  is

dependent on , thus to what extent actor  influences . 

All operationalizations that follow below are ultimately based upon adjacency

matrix , with  meaning that j influences i. Different specifications of W can

represent different theoretical mechanisms of social influence. In addition, also from a

technical point of view it is important how W is specified since estimates of and tests

for the various parameters of the models all depend on the specification of W and their

properties are conditional on W.

With regard to an operationalization of W, two components play a role: the choice

for an operationalization of nearness and the choice for a particular normalization

which, given a definition of nearness, allocates influence over the network. In other

words, nearness defines which alters constitute ego’s frame of reference (zero and non-

zero cells in W), whereas the chosen normalization determines how social influence is

allocated among these alters. For instance, cohesion suggests that actors are influenced

by adjacent actors, normalization then decreases the individual strength of influence

with the number of influencers. I will first discuss the difference between row and

column normalization. Then the focus will advance to discussing ways to

operationalize nearness, since many of these were developed with a particular

normalization already in mind. 

6.1. Row versus column normalization

The influence structure in a network is represented by a weight matrix where each

row displays the influence exerted on an actor and the column displays the influence

wi j yi

yj j i

A ai j 1=
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exerted by an actor. The normalizations discussed below do not pose restrictions on the

value of the diagonal of A.

Row normalization of adjacency matrix  gives

with , the th row sum of . Thus  denotes the number of actors to

whom  has a tie. With row normalization the same weight is attached to every outgoing

tie of , proportional to the outdegree of . If actor  has three outgoing ties, each of his

alters will have weight . An actor with only one outgoing tie will be fully

influenced by this one alter.

A straightforward, but less common variation to  is the column normalization

of :

with  representing the th column sum of . The strength of influence actor  has

over actor  now depends on the number of actors influenced by , instead of on the

amount of actors influencing . In row normalization every actor undergoes the same

total amount of influence from all actors: accepted influence of  by  decreases with

the number of actors influencing . In column normalization every actor exerts the same

total amount of influence on all actors: exerted influence of  on  decreases with the

number of actors  influences. The important differences between row- and column-

normalization are presented in Table 2.

** Table 2 **

Note that the weight matrix resulting from either row or column normalization is likely

to become asymmetric since , even though the original matrix may have

been symmetric.

A
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6.2. Influence between adjacent actors: Cohesion

A non-normalized weight matrix alternative to  was introduced by French

(1956) as

.

By adding a one to the numerator the effect an actor has on his own position, termed

resistance, is taken into account. When four actors try to influence i, each of them only

has weight 1/5.

So far I have not made a distinction in the power or abilities of actors in influencing

others. These abilities, indicated by the resources available to actors, can be

incorporated into a weight matrix by allowing actors to have different resources (Hoede

1979):

If every actor has the same resources, , the Hoede matrix

equals French’s weight matrix. One difficulty with  is the assumption that the

resources of the actors are known a priori, requiring the researcher to find a way of

measuring/postulating the values of . Applying  with  yields the control

matrix as used by Stokman and Van den Bos (1992). An alternative to  is

.
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6.3. Influence between non-adjacent actors: Equivalence

Two actors are structurally equivalent to the extent that their structural distance is

small. These distances, denoted here by , can be used to construct W matrices. An

example of this is given in Burt and Doreian (1982: 117, 125) by

where

with v a constant,16  is set to zero and . Burt and Doreian employ

 to model how interests expressed by scientists in a scientific journal are converted

into a journal norm. The journal norm is defined as the level of interest in the journal

expected of scientists because of their structural position in ‘invisible colleges.’ Weight

 represents the extent to which actor j is the only other member of the college that

i perceives to be his structural peer (Burt and Doreian, 1982: 125).

In 5.5, I proposed an alternative approach to equivalence, termed equivalence

proximity. The operationalization of equivalence proximity excludes effects of direct

communication, by assigning zero proximity to adjacent actors. This measure can be

transformed into a weight matrix by normalizing the matrix with equivalence

proximities. Since the matrix is asymmetric for an asymmetric , the device of

asymmetrizing it by  is unnecessary.

6.4. Influence between non-adjacent actors: indirect paths

16.The magnitude of  represents the extent to which ego is conservative in adjusting

his interests to those held by his significant others. Values of  much larger than 1
indicate that ego takes into account only the interests of his closest alters. Values
near zero indicate that ego’s interests are affected by nearly everyone in the

network. See Stevens (1957, 1962) for the theory behind .
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A second route into modeling influence between non-adjacent actors starts from

the indirect paths between them. Contagion is then considered to flow from alter to ego

through ties with third actors. In 5.5 two ways of measuring these paths were discussed.

In the first, the adjacency matrix is squared or cubed and entries for adjacent actors are

set to zero afterwards. In the second, entries  of  and  for adjacent actors are

determined separately after setting  (for only this particular pair ) in the

original adjacency matrix. After calculating , , and , these can be

transformed into weight matrices employing any of the transformations  - .

6.5. Other specifications

Numerous other specifications of nearness exist, many of them emanating from the

geography literature. A straightforward measure is the actual geographic distance

between two actors, e.g., measured in miles. For a taste of geographic approaches, try

Cliff and Ord (1973, 1981), Loftin and Ward (1983), and Bavaud (1998).

Unfortunately, many of the specifications in the geography literature are hard to

translate into a social network context. Other specifications, within the realm of social

network analysis, can be built upon the numerous (social) distance measures, status

scores, prominence measures, and so forth, that have been developed in the social

network literature over the years.17 Many of these can be seen as special cases of

cohesion or equivalence.

A useful measure for the study of policy and power networks is formulated as

follows. Define  as (political) resources available to actor . These might include

resources  can draw from the political organization he is part of. Part of ’s resources

might also be available to , for instance through j’s membership of the same

organization, denote these shared resources by  (note that  does not necessarily

17.Social distances are typically calculated from the presence or absence of links
among actors or from the difference between a profile of characteristics of an actor
and his perception of other actors’ profiles on the same characteristics. Distances
can be calculated from status scores or prominence scores by viewing the status or
prominence of an actor (however derived) as an actor attribute. Differences in these
scores can then be used as the basis of the weights in a weight matrix. 
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equal ). Next, introduce a measure of nearness between  and , , representing

how difficult it is for j to claim i’s resources. This measure may be based on adjacency,

social distance, role equivalence, and so forth. An appropriate weight matrix is

where  and  are parameters. Weight  may be interpreted as the extent to which

’s resources can be ‘claimed’18 by . The weight matrix is normalized

straightforwardly. The measure is based on an object-oriented approach to network

analysis, that has become increasingly popular over the recent years (among others

Snijders, 1996; Stokman and Van Oosten, 1994; Zeggelink, 1993, 1994). It also fits well

within the theory of core/adjoint networks (Leenders, 1995: 33-36). An adjoint network

typically represents an interest group or corporate actor. A member of this network

‘inherits’ part of his resources from the resources of this corporate actor; the rest of his

resources are ‘private.’ As an example, imagine an actor from an interest group who

becomes a member of the political decision taking core, perhaps a leader of a labor union

who is also affiliated with a political party. This leader now can exert more influence on

both the party and the union by drawing on the resources offered to him by his

membership to both.

An entire network consisting of core and adjoint networks should be modeled by

using different weighting mechanisms in one weight matrix, by employing multiple

weight matrices, or by a weight matrix consisting of partitions that reflect the influence

pattern within and between subgroups (Doreian, 1989a: 377-380; Leenders, 1995: 84-

91). For instance, the influence process may be driven by  in adjoint networks and

by  in the core network.

A specification known as a ‘gravity model’ can be used to incorporate the ‘size’ of

actors. For example, some organizations in an organization network, by means of their

size, power, visibility, marketing budgets, or status may be able to systematically exert

more influence on their alters than can others of smaller size, less power, or lower

18.It is assumed that i cannot use these resources as long as they are in use by j.
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status. Their weight of influence on others should thus be larger. Similarly, some

organizations, such as governmental or other politically representative organizations

may be required to systematically be more open to societal influence than others. This

can be modeled by

where  is the ‘size’ of influencer j,  is the ‘size’ of influencee i, and  captures

the facility with which j can influence i. This measure traces back to Carey (1858) and

is still in popular use (Nijkamp, 1997; De Vries et al., 2000) and varied upon (e.g., Boyle

and Flowerdew, 1997).

An alternative influence structure reflects a discontinuous pattern where

connectedness ‘skips over’ the first connected actor. In this sense,  and  are

connected if  has a relationship to  and  has a relationship to . This model yields a

new adjacency matrix  with elements

, for (6)

and a weight matrix can be constructed according to any of the methods discussed above

(e.g., Brandsma and Ketellapper, 1979). This type of adjacency matrix may be useful for

the study of kinship or heredity networks. Mathematically (6) is equal to dichotomizing

, if , . A row normalized weight matrix is

A different way of specifying influence incorporates the concept of ‘thresholds of

influence.’ Let  denote some metric representing the nearness between i and j. In

modeling inter-municipal influences in labor market-policies, Van Dam and Weesie

(1991) use the following specification, employing only two levels of influence

separated by a nearness-threshold 
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Getis (1984) follows a similar approach. An alternative is to allow  to be a

continuous function of . An example is

Weights can also be taken as an exponential function of distance (Fotheringham et al.,

1998; Talen and Anselin, 1998; White et al., 1981). In fact, any non-increasing function

of distance can be applied. 

In this section, many different operationalizations for the weight of the relation

between two actors have been discussed. Yet other specifications are discussed by

Friedkin (1998), starting from a social psychological point of view.

It is clear that in empirical situations the choice for a certain matrix W is not at all

obvious. There are an infinity of possible representations. The choice for a certain

weight matrix is often debatable. Weight matrix W allows a researcher to choose a set

of weights that are appropriate from prior considerations. This allows great flexibility

in defining the structure of influence in networks. Further, if different hypotheses are

proposed about the degree of influence between units, alternative sets of weights might

be used to investigate these hypotheses. This will depend on the study at hand. The

generally correct weight-matrix does not exist. Only substantive knowledge can lend

guidance to possible appropriate specifications.

7. Statistical tests on the weight structure

Sometimes the story ends here. In that case, the researcher has been able to

construct an appropriate W-matrix, consistent with his or her theoretical beliefs, and

can proceed to the host of analyses that have been developed for working with network

autocorrelation models. However, in two cases, an additional step is needed. In the

first, the researcher was able to narrow down the large set of potential weight matrices
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to only a few, but not to one single one, and is not able to distinguish between them on

theoretical grounds. In the second case, the researcher has narrowed down the possible

influence structures to one and wants to test his theory, as embodied by a specific

weight matrix, against alternative influence structures, represented by alternative W’s.

In both cases, statistical procedures are required to test various specifications against

one another. Yet another approach is to try to estimate directly the elements of W.

However, if theoretical considerations have not enabled the researcher to make a

justified choice of W-matrix, they will certainly unlikely provide the researcher with

enough guidance for specifying an estimation model for the ’s sensibly. In addition,

the statistical issues connected to such an estimation are still largely unsolved, so the

researcher has to make too many assumptions to make the likelihood functions

tractable. 

In Section 7.1 I will consider the situation in which the researcher considers one

structure as his null hypothesis and wants to test that against alternative structures. In

Section 7.2 the situation is considered in which in series of influence structures are

equally likely from a theoretical point of view, and the final choice between them has

to be made on statistical grounds.

7.1. When a null hypothesis is available

For ease of presentation, I will focus on the network effects model (2). The

competing hypotheses  and , which can represent different influence structures

(in terms of a W matrix) as well as different explanatory variables (the ’s) can be

expressed as:

(7)

where  and  are two -weight matrices, and  and  represent

 and -matrices of explanatory variables, some of which may be

included in both  and ;  need not be equal to . 

Classical testing procedures are invalid here. Usually, the competing formulations

in (7) cannot be considered as limited forms of a more general expression, or as

wij
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restrictions on a general model (conditional upon the latter being true). Therefore,

traditional tests do not fully apply in this situation (Anselin, 1984). 

The test of one formulation against one or more alternatives, used to falsify the

original specification, is performed by using tests for non-nested hypotheses. After a

brief discussion of two approaches to testing non-nested hypotheses, I will focus more

closely on a third approach.

A first approach is the so-called modified likelihood ratio test. For this test,

Maximum Likelihood estimation of both models under their respective null hypotheses

(  and ) is performed and compared to its expected value under the null

hypothesis, . In other words, it involves the estimation of the alternative model,

with the null hypothesis assumed correct, using pseudo maximum likelihood

estimation. Anselin (1984) provided the appropriate Cox-statistic for (7) and concluded

that its variance is mathematically intractable. As a result, this approach is not

recommended for network autocorrelation. A second approach, popular in spatial

sciences, involves the use of instrumental variable (IV) estimators. This approach is

sensitive to the choice of instruments. The disadvantage of applying IV-estimators for

the testing purpose at hand, is that, in order for the competing formulations to be fully

comparable, the same set of instruments should be used for all. However, as is obvious

in the formulation of (7), one wants to allow for the inclusion of (possibly totally)

different covariates with different W-matrices. In that case, using the same set of

instruments for all specifications may be far from optimal, both theoretically and

statistically. Therefore, I will limit myself here to simply refering to the appropriate

literature (Anselin, 1984, 1988; Ericsson, 1983; Godfrey, 1983).

Considering the problems associated with the first two approaches, I suggest using

the approach of augmented regressions. Consider again the case of testing  against

, as in (7). Null hypothesis  is not nested within , and  is not nested

within . Thus, the truth of  implies the falsity of , and vice versa. Now

consider the augmented equation

(8)

where  and  are ML estimates calculated from separate estimation of . If 
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is true, then the true value of nesting parameter  is equal to 0. It is easily shown that

 is independent of . Therefore, one can simply test whether  in

(8) by means of a conventional t-test or related tests. Test (8) is known as the J-test, since

it involves estimating nesting parameter  and model parameters  jointly. A

number of variations to (8) have been proposed, but the J-test is the easiest to use.

Although all variations are asymptotically equivalent, they tend to differ in finite

samples. From Monte Carlo simulation results, the J-test seems to be preferable with

regard to its finite sample properties (e.g., Anselin, 1986).

Three remarks are important here. First, since my focus here is on the statistical

testing of one specification against one or more alternatives, individual measures of fit

are not appropriate, as they compare the fit of a model to the fit of a null model, rather

than to the fit of a specific alternative. Second, the approach of specifying one model as

the null hypothesis and an alternative model as an alternative hypothesis is

fundamentally different from testing for the presence of network autocorrelation (i.e.

the significance of  for a given structure W). In the latter case, the null hypothesis is

that  is equal to zero, and the alternative states that  is not. Failure to reject that null

hypothesis does not necessarily mean that autocorrelation is absent, it simply means

that the presence of autocorrelation is rejected for this W-structure. In the non-nested

test, the W-matrices are not considered in isolation, but in direct relation to the specific

alternative structures for W. Similarly, rejection or non-rejection of  in (7) does not

say anything about the presence of autocorrelation in the data. It may very well be that

 and  are ‘accepted,’ but  is found to not significantly differ from zero.

Third, formulation (7) only includes two model specifications, one of which is

considered as the null hypothesis. In practical cases, one may have several alternative

hypotheses that should be tested against . In that case, one essentially has a situation

of multiple comparisons and the usual adjustments to significance levels apply. One

can also extend (8) to test  against  alternatives through

and test the hypothesis that all ’s are zero.
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7.2. When no null hypothesis is available

I now consider the situation where there is a fixed number of equally plausible

models and the analyst has no reason to prefer any of them. A test then is needed to

choose between these alternative specifications. None of the available specifications is

taken as a null hypothesis.

Initially, one may be tempted to apply J-test (8) to this problem. After all, if  is

true, then  in (8) will asymptotically converge to one. Although it might seem that

that would enable one to test the truth of  directly from (8), this is not correct. The t-

statistics for (8) are conditional on the truth of , not on the truth of . The

alternative is to then simply reverse the roles of  and  and carry out the test

again. It is possible that one of the two specifications is rejected in favor of the other

one. It, however, is also possible that both hypotheses may be rejected, or that neither

may be rejected. The reason for this is that the tests of 7.1 are tests on model

specification, and not model discrimination tests. This may not be a problem when

testing two specifications against one another, but when more specifications are

available, drawing conclusions may become very complicated and unclear. Still, this

approach is advocated by Anselin (Anselin and Can, 1986), who also devised a

qualitative approach for choosing between alternatives. 

Since no null hypothesis and alternative hypotheses are specified, it makes sense to

base the model choice upon goodness-of-fit measures. The properties of traditional

measures of fit, such as , do not directly carry over to the situation of network

autocorrelation. It therefore seems reasonable to select that model that minimizes a

quantity such as the Kullback-Leibler information criterion. This approach is

applicable to nested and non-nested hypotheses and avoids the need to carry out

multiple pairwise comparisons. Information theoretic approaches deal with measuring

the closeness of the assumed model to the true, but unknown, model, while taking into

account the trade-off between fit and parsimony of parameters. In contrast to the tests

discussed in Section 7.1, which are based on testing models against given alternative

specifications, information theoretic measures are associated with each model by itself.

Since the true model is unknown, an estimate is needed. The Akaike information

criterion (AIC), has been shown to be a useful estimate (Akaike, 1974, 1981; Judge et
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al., 1985; Sawa, 1978):

AIC = (9)

where  is the loglikelihood at the maximum and  is a penalty function of

the number of unknown parameters in the model. The function  varies among

different versions of AIC, the most commonly specifications being  or

, with  being the number of actors in the network. Comparing the

values of AIC for all models, the minimum AIC represents the model with maximum fit.

Thus, selecting one specification from a set of specifications on a statistical basis is

really easy. First estimate all of the models separately. Take the value of the

loglikelihood (as reported by the software used for estimating the autocorrelation

models), choose a penalty function and calculate the AIC. Then pick that specification

that minimizes it. 

8. Empirical example

In this section I will provide a brief example of the statistical issues dealt with in

this paper. First I will show that the choice for an alternative specification of W, or the

choice of a network effect model versus a network disturbances model, can lead to

different statistical results. I will also show how the specification tests dicussed above

can be applied. For these purposes I reanalyze the Louisiana voting data from Doreian

(1980), in which it is argued that a spatial analysis of the data is appropriate. The

example is for illustrative purposes only. The dependent variable y is the proportion of

support in a parish for Democratic presidential candidate Kennedy at the 1960

elections. The covariates are B (percentage black in a parish), C (percentage Catholic),

U (percentage urban), and BPE (a measure of black political equality). Each of these

can be seen as predictors of electoral turnout and partisan electoralbehavior in

presidential elections. The spatial model describes the extent to which electoral

behavior is contagious between adjacent parishes. Adjacency matrix A is a simple

binary matrix describing adajcency among 64 parishes (counties).

Table 3 contains the results of four autocorrelation analyses, all containing the

same covariates (B, C, U, and BPE) and differing only in the chosen W. The OLS
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column contains the results for the non-spatial model . When applying the

network effects model, only weighting scheme  yields a statistically significant

autocorrelation parameter. When the adjacency matrix is column normalized, is based

on structural equivalence, or mimics a heredity structure, the autocorrelation parameter

loses statistical significance. Note that the parameter estimates for the covariates and,

more importantly, their statistical significance, only vary slightly over the various

influence structures.19 

**** Table 3 ***

The results for the network disturbances model are very different. Here, three out

of four influence regimes yield statistically significant autocorrelation parameters,

including  and . Again, the results for the covariates do not vary much.

**** Table 4 ***

Next, suppose the researcher has decided on substantive grounds that the network

effects is the appropriate model and wants to test the situation in which exerted

influence decreases with the number of actors influenced (row normalization) against

the situation in which accepted influence decreases with the number of actors

influencing (column normalization). Now (7) can be used to test :  against :

. Estimating (8) with  and  and  yields =.14

(.92). So,  is not rejected and the appropriateness of  can not be rejected in

favor of . 

If the researcher had narrowed down on substantive grounds the set of probable

weight structures to , , , and , but had absolutely no substantive

reason to prefer one of the others, Akaike information criterion (9) would be

appropriate. For both the network effects the network disturbances models, the

resulting order of weight matrices is , , ,  (see Table 5). The AIC

criterion can also be used to choose between competing models. In total, nine models

19.This result can not be generalized. Neither is it warranted to generalize the present
result that the statistical significance of the covariates is similar for the network
effects models and the network disturbances model. For instance, in the analyses in
Doreian (1980) statistical significance does vary over both models.

y Xβ ε+=

wi j
1[ ]

wi j
2[ ] wi j

9[ ]

H0 wij
1[ ] H1

wi j
2[ ] W1 W 1[ ]= W2 W 2[ ]= X1 X2= α̂

H0 wi j
1[ ]

wij
2[ ]

wij
1[ ] wij

2[ ] wi j
6[ ] wij

9[ ]

wij
1[ ] wi j

2[ ] wi j
9[ ] wi j
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were estimated (four network effects models, four network disturbances models, and

one non-spatial OLS model), the AIC values of which are reported in Table 5. The

penalty function used is . The four regimes with statistically

significant autocorrelation parameters achieve the best scores, the OLS model comes in

last (although the differences between the last models is only minor). 

**** Table 5***

9. Conclusions

In this paper I have attempted to structure the thought that goes into specifying a

weight structure for network autocorrelation models. Several steps need to be taken in

the specification of an appropriate weight structure. First, the researcher has to choose

what mechanism is driving social influence: communication or comparison and/or

adjacency or non-adjacency. The choice between adjacency and non-adjacency is

especially important, because it is very difficult to empirically distinguish between

communication or comparison as the drivers of social influence. A connected choice is

related to the source of influence: do actors mimic alter’s behavior or opinion itself, or

do they mimic the adaptation of alter’s behavior or opinion? The first source is

captured by the network effects model, the second source by the network disturbances

model. 

Since actors usually have a limited influencing capacity (for instance, because the

resources required for exerting influence are limited) or a limited readiness for

accepting influence, a model choice is often made to normalize either the rows or

columns of W. Normalizing the rows decreases the influence each alter has on ego with

each additional alter. Normalizing the columns decreases the influence alter has on ego

with the number of actors influenced by alter. An additional effect of normalizing W is

that it may asymmetrize the influence structure, even though the original structure was

symmetric. 

Finally, for each mechanism of influence, each source of influence, and each

normalization, a large set of potential weight structures remains. In this paper I have

presented several of them, but many more are possible. I do not generically prefer one

of them, the choice has to be made on substantive grounds. If substantive

q k( ) gk( )ln=
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considerations fail to limit the number of weight matrices to only one, or when

alternative models can not be discarded on substantive grounds, several statistical

techniques can assist the researcher in making a final choice or in testing models or

specifications against alternatives. 

Of course, it is impossible to present a complete overview. Hopefully the present

overview will incite analysts to put more thought into the specification of W, since the

usefulness of the entire approach of network autocorrelation models hinges upon it. In

this paper, I have tried to provide the researcher with the tools and the thought that go

into the specification of an appropriate weight structure. The analysis of social

influence through network autocorrelation models is promising and has proved its

potential over the years. The sensitivity of the results to the specification of weight

matrix W, the key element of these models, dictates that careful thought be used in its

construction. Unfortunately, the effort devoted by researchers to the appropriate choice

of W pales in comparison to the efforts devoted to the development of statistical and

mathematical procedures. I certainly do not question the usefulness of statistical

progress in this area (e.g., Leenders 1995, 1997), but with this paper I do want to stress

that these useful procedures lose their usefulness when applied to a model with an ill-

specified weight matrix W. Many approaches to estimating parameters in network

autocorrelation models have been devised over the years. Simulation studies have

investigated their behavior in a wide range of situations. Accurate estimates and

inferences of complex network autocorrelation models are no longer problematic with

current computer technology. But, at the end of the day, any autocorrelation model is

useless when W is not specified with explicit attentio and care.
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FIGURE 1       Social influence.

FIGURE 2       Alternative approach to social influence.
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Tables

Table 1
Social influence among adjacent and non-adjacent actors.

Table 2
Row normalization versus column normalization.

ADJACENT ACTORS NON-ADJACENT ACTORS

Communication

Indirect communication Indirect communication

Comparison Comparison

Indirect comparison Indirect comparison

ROW NORMALIZATION COLUMN NORMALIZATION

• each outgoing contact has equal influ-
ence for each actor

• each incoming contact has equal influ-
ence for each actor

• weight proportional to outdegree • weight proportional to indegree

• total amount of accepted influence 
equal for all actors

• total amount of exerted influence equal 
for all actors

• deals with accepted/received influence • deals with exerted/executed influence
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Table 3
Network effects model for the Louisiana voting dataa

a. An asterisk denotes statistical significance at p<.05.

OLS

-- -- .31* (.10) .07 (.06) .12 (.25) .04 (.12)

const. 21.03* (4.40) 13.87* (4.67) 19.83* (4.34) 16.78 (10.06
)

19.80* (5.62)

B .01 (.08) -.00 (.07) .00 (.08) .01 (.08) .01 (.08)

C .30* (.04) .22* (.05) .28* (.04) .29* (.05) .29* (.05)

U -.11* (.04) -.10* (.04) -.11* (.04) -.11* (.04) -.11* (.04)

BPE .39* (.06) .30* (.06) .37* (.06) .38* (.06) .38* (.06)

wi j
1[ ] wi j

2[ ] wij
6[ ] wi j

9[ ]

ρ
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Table 4
Network disturbances model for the Louisiana voting dataa

a. An asterisk denotes statistical significance at p<.05.

.69* (.10) .53* (.13) .22 (.42) .74* (.15)

const. 26.99* (4.50) 24.98* (4.22) 21.52* (4.30) 24.51* (5.06)

B -.11 (.07) -.07 (.07) -.00 (.08) -.09 (.08)

C .37* (.05) .35* (.04) .31* (.04) .38* (.04)

U -.07* (.03) .08* (.03) -.11* (.04) -.10* (.04)

BPE .24* (.06) .30* (0.06) .38* (.06) .29* (.06)

wi j
1[ ] wi j

2[ ] wi j
6[ ] wi j

9[ ]

ρ
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Table 5
Order of W-matrices and autocorrelation models according to AIC

Weight
matrix

AIC Order
within model

Overall
order

Network
effects
model

439.12 1 3

445.52 2 5

446.78 4 8

446.44 3 6

Network
disturbances

model

431.92 1 1

436.33 2 2

446.69 4 7

440.95 3 4

OLS -- 446.82 -- 9

wi j
1[ ]

wi j
2[ ]

wi j
6[ ]

wi j
9[ ]

wi j
1[ ]

wi j
2[ ]

wi j
6[ ]

wi j
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