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Abstract. A multi-scale, moving-window method for local thresholding
based on Robust Automatic Threshold Selection (RATS) is developed.
Using a model for the noise response of the optimal edge detector in this
context, the reliability of thresholds computed at di�erent scales is de-
termined. The threshold computed at the smallest scale at which the re-
liability is su�cient is used. The performance on 2-D images is evaluated
on synthetic an natural images in the presence of varying background
and noise. Results show the method deals better with these problems
than earlier versions of RATS at most noise levels.

1 Introduction

In all applications of thresholding, correct selection of the threshold is the key
issue, and many methods for automatic selection of optimal thresholds have
been published[1�4, 8]. Ideally, thresholds should be computed locally, adapting
to the local image statistics, to deal properly with a locally varying background,
or variations in the grey level of objects, both of which may occur in a single
image [8]. An example is shown in Fig. 1, in which a local variations in object
intensity are compensated through local threshold selection.

In this paper I will extend a local thresholding method, called Robust Au-
tomatic Threshold Selection (RATS) [1]. A new, moving-window version of the
algorithm using Gaussian convolution will be developed. This versions will be
extended to a multi-scale method, in which the smallest scale at which reliable
thresholds can be computed is �nally used. To do this, the e�ect of Gaussian
noise on the computed threshold is derived. Finally, the method is evaluated �rst
on synthetic images with varying noise levels, and later on natural ones.

The applications for the method include 2-D microscopic images of microor-
ganisms, and 3-D angiograms.

2 Robust Automatic Threshold Selection

RATS [1] is a method for bilevel thresholding of grey scale images, which has
been applied to images of bacteria [5, 6]. It is based on a simple image statistic,
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(a) (b) (c) (d)

Fig. 1. Local thresholding: (a) �uorescence image of bacteria; (b) global thresholding
using original RATS algorithm without noise correction; (c) global thresholding using
RATS algorithm with square Sobel gradient �lter and noise correction; (d) locally
thresholded result using RATS with the quad-tree approach from [5].

which is the average of grey levels weighted by the edge strength at each point.
Kittler et al. [1] show that the optimal threshold in a noise-free image T is

T =
∑
e(x, y)p(x, y)∑

e(x, y)
, (1)

in which p(x, y) is the grey level at (x, y) and the edge strength e is given by

e(x, y) = max(|gx(x, y)|, |gy(x, y))|, (2)

with

gx(x, y) = p(x−1, y)−p(x+1, y) and gy(x, y) = p(x, y−1)−p(x, y+1). (3)

Initially the optimality of T was proved only for gradient operator in (2), and
for straight edges. It has since been shown that any edge detector with an even
response to a step edge at the origin will yield the same optimal result [7]. In
particular, the gradient detector

g2(x, y) = g2
x(x, y) + g2

y(x, y) (4)

shows no curvature bias, is rotation invariant, and has reduced noise bias. How-
ever, the reduced noise bias comes at the expense of increased variance, which
can be countered by using Sobel �lter kernels to compute x and y derivatives
[7]. The method readily extends to 3-D images, by replacing the edge detectors
to their 3-D counterparts.

In the presence of noise T is biased towards the most common category in
the image (usually background) [1]. This noise bias is counteracted by using a
threshold on the edge strength below which the pixels receive zero weight. The
statistic now becomes

Tλ =
∑
wλ(x, y)p(x, y)∑

w(x, y)
, (5)
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with

wλ(x, y) =

{
g2(x, y) if g2(x, y) > λ2η2

0 otherwise,
(6)

in which η is the standard deviation of the image noise, and λ is an adjustable pa-
rameter, which depends on the actual edge strength used. For the edge strength
de�ned in (2) it was shown empirically that λ = 5 is a good choice for Gaussian
noise [7].

2.1 Local Application of RATS

RATS lends itself well to local application [1] for two reasons: (i) the statistic in
(5) is robust against noise, and (ii) it is easy to check whether a region contains
an edge by checking whether the denominator in (5) is above some threshold
[1, 7]. Ideally, we want to compute the threshold in an isotropic surroundings of
each pixel. This can be done using a moving-window version of RATS, which
can be written as the ratio of two convolutions

Th(x, y) =
(Πh ∗ (w · p))(x, y)

(Πh ∗ w)(x, y)
, (7)

in which ∗ denotes convolution and Πh(x, y) is given by

Πh(x) =

{
1 if |x| ≤ h and |y| ≤ h,
0 otherwise.

(8)

One problem with (7) is that Th is unde�ned for all pixels where (Πh∗w)(x, y) =
0. Thus wherever the distance between edges is greater than the width of the
window, no threshold is computed. Besides, the square convolution kernels are
not isotropic. However, the convolution formalism allows generalization of the
algorithm to other convolution kernels, e.g. Gaussian. Gaussian kernels are sep-
arable, and have in�nite impulse response (IIR), and so will contribute over the
entire image. Besides, can be computed quickly using a recursive implementation
which has an IIR [9]. We arrive at

Tσ(x, y) =
(Gσ ∗ (w · p))(x, y)

(Gσ ∗ w)(x, y)
, (9)

with Gσ a Gaussian with zero mean and standard deviation of σ. A further
advantage (9) over (7) is that edges close to the current pixel are given higher
weights than distant edge. However, despite their in�nite impulse response, Gσ
falls o� so rapidly that at large distances from edges thresholds may become
unreliable, because a few remaining nearby noise edges may outweigh distant
true edges. To counter this, multi-scale approach can be used, by computing
Tσ with σ = σ0, 2σ0, 4σ0, . . . , σmax, and using the lowest σ for which Tσ can be
computed reliably.
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2.2 Selecting the Correct Scale

To select the correct scale we need to understand how the noise in�uences the
statistic Tσ. Let us assume that the noise in an image is Gaussian with zero
mean and standard deviation η. Its distribution is simply

p(x)dx =
1

η
√

2π
e−x

2/2η2
(10)

This means that the probability distribution pgx of gx (or gy or gz) is

pgx(x)dx =
1

2η
√
π
e−x

2/4η2
. (11)

The probability distribution p1 of g2
x is

p1(x)dx = pgx(
√
x)d
√
x =

1
2η
√

2πx
e−x/4η

2
. (12)

In 2-D, the probability distribution p2 of g2 in (4) is

p2(x)dx = (p1 ∗ p1)(x)dx =
1

4η2
e−x/4η

2
, (13)

The 3-D counterpart of g2 has a probability distribution p3 given by

p3(x)dx = (p2 ∗ p1)(x)dx =
√
x

4η3
√

2π
e−x/4η

2
. (14)

To select the lowest scale at which the denominator in (9) becomes signif-
icantly di�erent from the value expected from noise, we need both the mean
value 〈wλ〉 and the variance σ2

w of wλ. Using (6) and (13) the distribution pw of
wλ is

pw(x) =

{
δ(x)

∫ λ2η2

0
p2(x′)dx′ if x < λ2η2,

p2(x) otherwise.
(15)

It can be seen from (13) that the probability pλ that x > λ2η2 is e−λ
2/4. There-

fore, the expected value 〈wλ〉 is

〈wλ〉 =
∫ ∞
λ2η2

x

4η2
e−x/4η

2
dx = e−

λ2
4

(
1 +

λ2

4

)
4η2 (16)

and the variance σ2
w is

σ2
w = e−

λ2
4

(
(1− e−λ

2
4 )
(

1 +
λ2

4

)2

+ 1
)

16η4 ≈ e−λ
2
4

(
1 +

λ2

4

)2

16η4 (17)

in the 2-D case. Thus, the standard deviation σw is approximately

σw ≈ e−
λ2
8

(
1 +

λ2

4

)
4η2. (18)
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For λ ≥ 5 the approximation is accurate to within 6%. The mean noise response
in the Gaussian-convolved edge image is just 〈wλ〉, whereas the variance of the
noise response σ2

Gw is

σ2
Gw = σ2

w

∫ ∞
−∞

∫ ∞
−∞

G2
σi(x, y)dxdy =

1
4πσ2

i

σ2
w. (19)

We can select the lowest scale σi for which the denominator of (9) is larger than
a threshold TGw = 〈wλ〉+ 3σGw, or

(Gσi ∗ w)(x, y) ≥ TGw = e−
λ2
8

(
1 +

λ2

4

)(
e−

λ2
8 +

3
2σi
√
π

)
4η2 (20)

Note that as σi →∞, the variance σ2
Gw → 0, and so TGw → 〈wλ〉. When using

the Sobel kernels in our initial edge detector, the only thing that needs to be
changed in this calculation is to replace η with

√
5η/4 [7].

3 Algorithm

Let array p contain the original image, array w store the weights, array wp the
product wλp, array T the threshold, and a boolean array q the binary output
image. All arrays are of the same size as the original image. Let the value Inv
denote an invalid threshold (e.g., some value > maxx,y(p(x, y))). Finally, we have
Tλ to store the global threshold according to (5).

The multi-scale, Gaussian-weighted, moving-window RATS algorithm is sum-
marized in Fig. 2. The only input the algorithm needs is the original image, the
desired value of λ, and the image noise η. After computing of wλ and storing
in in w, we compute the product image wλp, and the global threshold Tλ. We
initialize all elements of T to Inv, and convolve both w and wp with Gσ0 at
the lowest scale. After this initial phase, we loop through all scales but the last.
During each loop we �rst compute TGw at that scale, and then compute Tσi
for all pixels (x, y) which have not yet been assigned a valid threshold (i.e.,
T (x, y) = Inv), and for which w(x, y) ≥ TGw. We then compute Gσi+1 ∗w from
Gσi ∗ w by convolving Gσi ∗ w with G√3σi

, and likewise for Gσi+1 ∗ wp. At the
largest scale, a similar operation is performed, but here T (x, y) is set to the
global threshold Tλ if no threshold can be computed at that scale. Finally, for
each pixel q(x, y) is set to true if p(x, y) > T (x, y) and to false otherwise.

4 Results

The algorithm was implemented, using the Sobel gradient, λ = 7, and four scales
ranging from σ = 2 to σ = 16, and tested on synthetic 2-D images of 256× 256
pixels containing objects of di�erent sizes and di�erent or constant contrast
with respect to the local background. The constant object-intensity images (see
Fig. 3(b)) served as reference segmentation for themselves and the correspond-
ing variable object-intensity images as in Fig. 3(a).A background slope running
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1. For all pixels (x, y) compute wλ(x, y) from input image p and store in w.
2. Compute product image wλp and store in wp.
3. Compute Tλ from wp and w.
4. Set all values in T to Inv.
5. Convolve w and wp with Gσ0 and store in w and wp respectively.
6. For all scales i = 0, 1, . . . ,max−1 do
7. Compute TGw for this scale
8. For all pixels (x, y) with T (x, y) 6= Inv
9. if w(x, y) ≥ TGw then
10. T (x, y)← wp(x, y)/w(x, y).
11. Convolve w and wp with G√3σi

and store in w and wp respectively.
12. Compute TGw for σmax

13. For all pixels (x, y) with T (x, y) 6= Inv
14. if w(x, y) ≥ TGw then
15. T (x, y)← wp(x, y)/w(x, y).
16. else
17. T (x, y)← Tλ
18. For all pixels (x, y)
19. q(x, y)← p(x, y) > T (x, y)

Fig. 2. The multi-scale, Gaussian-weighted, moving-window RATS algorithm. Note
that ← denotes assignment.

from 0 at the left and height hs at the right, and Gaussian noise with standard
deviation η were added. The fraction of misclassi�ed pixels was computed as a
function of η and hs. The results are shown in Fig. 3(c)-(h). Using all four scales
the performance is generally good up to an η of about 8 (corresponding to an
S/N-ratio of about 8 for the faintest objects) for objects of varying intensity
(Fig. 3(c), (d) and (f)). Fig. 3(d) shows how omission of the lowest scale results
in segmentation errors where faint objects lie close to bright. Fig. 3(f) shows a
comparison of the new method with global thresholding by Otsu's method [2].
The latter performs badly at all noise levels, because it classi�es fainter fore-
ground objects as background. For the former method the error fraction rises
sharply beyond η = 8 to about 7% at η = 32. An example is shown in Fig. 3(e).
The slope hs has no impact on segmentation quality (not shown). Segmentation
of Fig. 3(b) is easier, the errors never exceeding 0.5 % (not shown). Using just
a single scale σ results in rather poor segmentation, unless the smallest scales
are used Fig. 3(g). Apparently, the lowest values of σ have a high impact on
the quality of segmentation. Finally, Fig 3(h) shows a comparison between the
earlier quad-tree method and the new algorithm for hs = 16. Only at η = 16
does the old method perform better, suggesting that the way noise is dealt with
using (20) could be improved, perhaps by giving less weight to the lowest scale.
The results in Fig. 3(g) also suggest that using σ = 4 at η = 16 is better than
the multi-scale approach.
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Fig. 3. Segmentation of synthetic images of ellipses: (a) synthetic image of ellipses of
di�ering intensities; (b) same as (a) but with constant intensities; (c) segmentation
result of (a) with noise η = 1 and slope hs = 0 added; (d) as (c) but without using
scale σ = 2; (e) as (c) but η = 32 and hs = 32; (f) fraction of correctly classi�ed pixels
of (a) as a function of η, for multi-scale RATS with hs = 0, using 4 scales plus global
threshold Tλ, compared to global thresholding according to Otsu [2]; (g) same as (f)
but using just a single scale σ and Tλ; (h) same as (f) but comparing the new method
to the quad-tree method [5] for di�erent numbers of levels in the quad-tree.

The method was also tested on images of bacteria, with σ0 ranging from 2
to 8. As can be seen in Fig. 4, when three scales are used, the method detects a
faint object skipped by the quad-tree approach shown in Fig. 1. If σ0 = 2, the
method detects parts of the di�raction halos around the brighter objects.

5 Discussion

A new, multi-scale version of RATS has been developed which can adapt well to
variations in both background and object intensity. A framework to select the
appropriate scale has been developed. The experiments show that the method
works with a modest number of scales, and with therefore a modest computa-
tional cost. A 512× 512 image takes just 0.16 s if four scales are used, whereas a
2483× 3508 image takes 6.03 s on a Pentium 4 at 1.9 GHz. At a single scale the
timings are 0.06 s and 1.83 s, respectively. Extensions to 3-D should be straight-
forward, provided a 3-D equivalent of (20) is derived. The selection of the lowest
scale may need more work. The experiment with synthetic images yielded the
best results with σ0 = 2, whereas the experiment using images of bacteria yielded
the best results with σ0 = 4. It might well be that the Gaussian assumptions
used in (20) do not hold for small σ. Solving this problem requires analytical
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(a) (b) (c) (d)

Fig. 4. Segmentation of image of bacteria from Fig. 1(a) with σmax = 16, λ = 5 and
η = 2.3: (a) σ0 = 8; (b) σ0 = 4; (c) σ0 = 2; (d) contrast stretched original showing
faint object and di�raction halo around brighter objects.

solutions or numerical approximations of the distribution of the denominator of
(9). This will be studied in future work.

One drawback of this and many other implementations of RATS is that we
need an estimate of the image noise. Ideally, we would like to be able to determine
the noise from the image itself, rather than rely on external calibration data,
which might be absent. If we assume that the lowest gradient pixels (or voxels)
are attributable to noise only, we could estimate η by �tting the histogram of
the edge �ltered image at these values to the distribution in (13) in 2-D or (14)
in 3-D. Work is in progress for just such an extension.
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