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6 Gröbner bases and Standard bases

This chapter explains how to compute the codimension of the tangent
spaces used in chapters 2 and 3: ideals, and left-right tangent spaces of the
form (3.7), both as subsets of the ring of formal power series. For ideals,
this can be done by calculating the formal power series equivalent of a
Gröbner basis. This idea is generalized and applied to left-right tangent
spaces.

6.1 Introduction

A Gröbner basis of an ideal in a polynomial ring is a set of generators with
certain additional properties. One implication of these is that a normal form
algorithm exists, equivalent to a ‘division’: Given an arbitrary polynomial, the
algorithm expresses it as an ideal element, plus a unique remainder term in a
certain minimal vector space. The dimension of this vector space is called the
codimension of the ideal, which is finite for our application.

That application is Kas and Schlessinger’s algorithm, constructing a right
transformation inducing an arbitrary unfolding from a versal one. The ideal is
related to the versal unfolding’s tangent space, whereas the remainder terms
are related to the (finitely many) deformation terms. Kas and Schlessinger’s
algorithm is the subject of Chap. 7.

These ideas need to be generalized somewhat, first of all because the tangent
space we consider is not a polynomial ideal, but an ideal in the formal power
series ring; see Chap. 5. Secondly, in the case of left-right transformations, the
tangent space is no longer an ideal. For both of these cases, this chapter develops
an appropriate normal form or ‘division’ algorithm.

Overview The problem of computing the codimension of an arbitrary poly-
nomial ideal I in a polynomial ring R was solved by Bruno Buchberger in his
1965 thesis [Buc65]. His idea was to introduce an ordering on the monomials.
The largest monomial occurring in a polynomial, with respect to this ordering,
is called its leading monomial, and the ideal generated by the leading monomials
of ideal members he called the leading monomial ideal, written as LM I. The
number of monomials not in LM I is precisely the codimension of I, i.e., the
dimension of R/I as an R-vector-space.
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98 6.1. Introduction

We now briefly sketch the main idea. Assume we have generators hi of
I, then clearly multiples of leading monomials of the hi are in LM I, but
the converse is not generally true. Buchberger developed an algorithm com-
puting a basis h′

i generating the same ideal I, but with the additional prop-
erty that their leading monomials do generate LM I. Such bases are called
Gröbner bases. Gröbner bases are used to systematically solve a number of
questions involving polynomial ideals. For some problems occurring in alge-
braic geometry, see [CLO98, GP88, MR88] and also [CLO92] which gives a
good introduction to Gröbner basis theory. Many generalizations have been de-
veloped, for example for submodules (see [GP88]), for ideals in power series
rings [Bec90a, Bec90b, Hir64, Mor88], and for subalgebras of polynomial rings
[AHLM99, KM89, Mil96, RS90, Stu96, Vas98].

One problem in polynomial ideal theory which Gröbner bases solve, and
which once was the main problem of the field (see van der Waerden [Wae60],
and [Win96]), is the ideal membership problem: for a given f , decide whether it
is an element of an ideal I. If a Gröbner basis of I is known, there is a normal
form algorithm, which, for any equivalence class f+I defined by a representative
f ∈ R, returns a unique representative of that class. It is clear that this solves the
ideal membership problem. A suitably modified version of the algorithm works
in the ring of truncated formal power series, and is used in Chap. 7 to obtain
reparametrizations and coordinate transformations related to versal unfoldings;
see also [BHLV98, Lun99b].

In this chapter those generalizations are brought under a common umbrella.
An abstraction is made both of of the base vector space (e.g. the ring of poly-
nomials, truncated formal power series, or rational functions), and the algebraic
structure of the set T of interest (ideal, submodule, subalgebra, left-right tangent
space). Also the concept of ‘monomial’ is generalized: For our purposes the key
property is not that monomials form an algebra, but that they form a basis of
the base vector space (ring, module, algebra).

The algebraic structure is described by a map Ψ whose image is T , and we
investigate its monomial structure. If this map satisfies certain properties, it
is called a standard map. The main implication is that for such maps, the set
LM ImΨ can be described explicitly, and using this, T ’s codimension can be
computed.

The idea for this approach is based on the presentation of Greuel [GP88] for
standard bases of submodules. More precisely, the proof of the standard map
theorem 6.10 follows Greuel’s proof of Schreyer’s method for computing the
module of syzygies of an ideal, stripped of the algebraic details unnecessary in
the general setting. We also use the Schreyer order [Sch91] of monomials, which
we call the induced order in the general context.

The algorithms for computing standard subalgebra bases, also known as
SAGBI 1 or canonical bases, were taken from Sturmfels [Stu96]. The problems
one encounters here are related to integer linear programming. Interestingly,
1 Subalgebra Analogue of Gröbner Bases for Ideals, see e.g. [Vas98]
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these can be solved using Gröbner bases again (see [CLO98, Ch. 8] and [Sch86,
§16.4]). The algorithms to compute standard basis for left-right tangent spaces
were based on these techniques, and also involve Gröbner basis calculations.

There are other possibilities for generalizations that are not mentioned yet,
see e.g. [CCS99, Ch. 1]. In particular, we shall always assume that the coefficients
are elements of a field, which avoids a number of complications that are encoun-
tered in the case of a base ring. For this topic we refer to e.g. [AHLM99, Mil96].

Organization of the chapter First we present the theory of Gröbner bases,
without proofs, so as to suggest a generalization. In Sect. 6.3 the abstract setup
is given, with the standard map theorem 6.10 underlying the subsequent re-
sults. Section 6.4 deals with several instances of standard bases, starting from
Gröbner bases, and culminating in standard bases for left-right tangent spaces.
The final section is about the differences encountered when these spaces live in
the ring of (truncated) formal power series, instead of the polynomial ring.

6.1.1 Algorithms and real numbers

This chapter describes algorithms performing various computations. We here
make some remarks how these algorithms are idealizations of their actual com-
puter implementation. More down to earth, it can be regarded an attempt at
justifying the use of real and complex numbers in the algorithm descriptions.

Mathematical models of computers, for example Turing machines (see e.g.
[Dav65]), are usually discrete. This is reasonable, since modern computers are
digital, and have well-defined discrete states. On the other hand, in mathematics
we often use the fields R or C for computations, and their elements cannot be
represented by a discrete model. So, when a mathematician wants to model algo-
rithms performing ‘real’ calculations on a digital computer, there is a problem.

One solution would be to restrict to so-called computable fields, for instance
finite fields, see e.g. [BW93]. However, one could also argue that the discreteness
of digital computers is a detail, which should not, in this case, receive much
emphasis. The numbers used by actual computers form a finite subset of the
rationals, which however for most practical computations form a sufficiently
dense subset of R to be a useful approximation of ‘real’ reals. A useful idealization
of actual computers would then be a machine whose basic actions are conditional
branches, and evaluation of formulas involving real (or complex) numbers. This
is, very briefly, the point of view taken in [BSS89]; see also [Shu94, BCSS96] and
the references there. With this in mind, we in this book present algorithms acting
on ordinary real numbers, and consider this to be a reasonable idealization of
the actual implementation.

6.2 Motivation: Gröbner bases

In this section we develop, without proofs, the notion of Gröbner bases for ideals.
In the next section a generalization is given, which is presented along the same
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lines. This section will step over many details, with the intention of suggestion a
slightly different point of view towards Gröbner bases, rather than to prove the
main theorems once more. An attempt at rigor will again be made from section
6.3 onwards.

6.2.1 Term orders for Gröbner bases

An important ingredient for Gröbner bases is the term order, an ordering of the
monomials. To any polynomial f �= 0, a monomial LM f is associated. It is called
the leading monomial, and it is the largest monomial occurring in the polynomial,
with respect to the term order. The coefficient associated to this monomial is
called the leading coefficient (a real number, for now), and is denoted by LC f .
The product of these is the leading term: LT f = LC(f) LM(f).

The term orders that are used in this context, and the associated leading-
monomial functions, have the following properties: (f, g, h nonzero polynomials)

a) The term order ≤ is a linear (or total) order, i.e., (1) it is transitive, (2) for
any pair of monomials m,m′ we have m ≤ m′ or m′ ≤ m, and (3) if both
hold then m = m′.

b) The term order ≤ is a well-order, i.e., every nonempty set of monomials has
a smallest element.

c) LM f ≤ LM g ⇔ LM(hf) ≤ LM(hg).
d) The set {LM f |f a polynomial} forms a basis of the polynomial ring.
e) LM(f − LT f) < LM f .
f) LM(f − g) ≤ max(LM f, LM g), and equality holds unless LT f = LT g.

These properties are not independent. Later we shall extend the notion of ‘mono-
mial’ and ‘monomial order’, and require only some of the properties above to
hold. For convenience later on, we set LM 0 = LT 0 = 0, and also 0 < m, for all
monomials m.

Examples For one variable there is only one term-order: 1 < x < x2 < · · · .
With more variables it becomes more interesting. The lexicographic order, or
lex-order for short, symbolically <lex, is defined by xα <lex xβ iff the left-
most nonzero entry in α − β ∈ Zn is negative;2 for example x2

1x
10
2 <lex x

3
1, but

x3
1x

10
2 >lex x3

1. This order is an example of an elimination order (for xn): A
Gröbner basis of an ideal with respect to this term order contains a polynomial
from which the variables x1, . . . , xn−1 are eliminated, if the ideal contains such
elements at all.

A direct Gröbner basis calculation using the lexicographic order can take
much time. Graded term orders perform much better. This is especially true
for the graded reverse lexicographic order, or grevlex for friends. It is defined by
xα <grevlex x

β iff deg(xα) < deg(xβ), or deg(xα) = deg(xβ) and the right-most
nonzero entry in α− β is positive. (Here deg(xα) = α1 + · · ·+ αn.)
2 Here we use the multi-index notation xα = xα1

1 xα2
2 · · ·xαn

n .
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There exist n! variants of the lex- and grevlex-orders, obtained by permuting
the variables. Many more term orders satisfying the properties (a) to (f) above
exist, and a full classification is given in appendix A.1.

6.2.2 Basic question

The defining property of a Gröbner basis can be expressed using the leading-
monomial function LM. Let hi be some polynomials, and let I = 〈hi〉 be the
associated ideal. Let LM I := spanR{LM f |f ∈ I} be the linear span of all leading
monomials of ideal members. The set LM I is in general difficult to describe. On
the other hand, the ideal 〈LMh1, . . . , LMhk〉 is a monomial ideal with explicit
generators. This ideal is easy to work with, for example the membership problem
is trivial.

In general 〈LMh1, . . . , LMhk〉 ⊆ LM 〈h1, . . . , hk〉. We are interested in the
following question: Given a set of generators {h1, . . . , hk} of an ideal, under
what conditions is it true that

(6.1) LM 〈h1, . . . , hk〉 = 〈LMh1, . . . , LMhk〉 ?

Bases for which equality holds are called Gröbner bases. It is not difficult to prove
that Gröbner bases exist for any ideal (of a Noetherian ring, to be precise). A
very natural question to ask is: Given a set of generators {h1, . . . , hm} for an
ideal I, how can one modify this set of generators such that they still generate
I but at the same time also satisfy (6.1)? The algorithm accomplishing this is
the Buchberger algorithm.

6.2.3 Rephrasing the basic question

We now put the basic question (6.1) in a different form. At this point it is
convenient to introduce some notation. Let R be the base ring. For Gröbner bases
we use R = R[x] = R[x1, . . . , xn], the polynomial ring over R in n variables.

Consider the diagram of Fig. 6.1. In this diagram M is the free module
Rk = ⊕ki=1Rei, and ei = (0, . . . , 1, . . . , 0) denotes the i-th basis vector in Rk.
The map Ψ is an R-module homomorphism mapping ei to hi, so that the image of
Ψ is the ideal I = 〈h1, . . . , hk〉. The map Ψ̃ is also an R-module homomorphism,
but this one maps ei to LThi. By construction, therefore, the image of Ψ̃ is
contained in LM I = LT I. The basic question posed in the previous section can
now be rephrased as: Under what conditions do we have that

(6.2) Im Ψ̃ = LM ImΨ ?

Note that LM ImΨ �= Im(LTΨ): The map LTΨ is not a linear map, and the
diagram of Fig. 6.1 never commutes.
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Fig. 6.1 Gröbner basis diagram

6.2.4 A criterion for Gröbner bases

In order to formulate the criterion implying equality in (6.2), we need a few more
definitions.

Monomials First of all we extend the notion of monomial to M . A monomial
in M is an element of the form xβei for some β ∈ Nn and 1 ≤ i ≤ k. A term is
a monomial multiplied by a coefficient.

Standard representations Assume that {h1, . . . , hk} is not a Gröbner basis
and hence that equality fails in (6.2). In other words, for a certain α ∈ M we
have LMΨα /∈ Im Ψ̃ . Consider the set {LMψt} where t runs over the terms of
α. The highest monomial of these is not equal to LMΨα, as otherwise the latter
would be an element of Im Ψ̃ . In other words, summing all Ψt cancels this highest
monomial.

We say that an α ∈ M is a standard representation (of Ψα) if such can-
cellation of the leading monomial does not occur. This can be expressed as:
LMΨt ≤ LMΨα for all terms t of α. It is easy to see that every f ∈ I = ImΨ
has a standard representation, if and only if {h1, . . . , hk} is a Gröbner basis.

Remark 6.1. Our notion of standard representation is the natural translation
to the current set-up of a similar notion in [BW93, Def. 5.59].

Division; normal form Consider the following algorithm. It is a generalization
of the polynomial division algorithm to the case of multiple polynomials. Given
an input element f , it expresses f as a member of the ideal 〈h1, . . . , hk〉 plus a
remainder term r, subject to some conditions:

Algorithm 6.2. (Normal form)
Input: f, h1, . . . , hk ∈ R
Output: α ∈M, r ∈ R such that

1. f = r + Ψα
2. r = 0 or LM r /∈ Im Ψ̃
3. α is a standard representation.
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Algorithm:

α← 0
r ← f
While r �= 0 and LT r = cxβ LT(hi) for some c, β, i, do:

α← α+ cxβei
r ← r − cxβhi

EndWhile

Proof: The equality f = r + Ψα is an invariant of the While-loop: The
condition of the While-body implies the second statement, and α is a standard
representation because if α = t1 + t2 + . . ., where the ti denote the terms of α
in the order in which they were added, then LMΨti, i = 1, 2, . . . is a strictly
decreasing sequence of monomials. Termination, finally, is guaranteed because
LM r is strictly decreasing, and the term order is a well-order.

Now if f ∈ I and {h1, . . . , hk} is a Gröbner basis, the algorithm will ter-
minate with r = 0 because at each stage r ∈ I and therefore LM r ∈ Im Ψ̃ =
〈LMh1, . . . , LMhk〉. In other words, if {h1, . . . , hk} is a Gröbner basis the algo-
rithm yields a standard representation for any ideal element. Conversely, if r = 0
for any f ∈ I then {h1, . . . , hk} must be a Gröbner basis.

S-polynomials The conclusion of the previous section can be rephrased as: If
for any α ∈ M which is not a standard representation, there exists a standard
representation β such that Ψα = Ψβ, then {h1, . . . , hk} is a Gröbner basis.

So how do we find those α ∈ M which are not standard representations?
For such α we have “cancellation of leading monomials”. More precisely, let
α = t1 + t2 + · · · , let m = maxi LM(Ψti) = Ψ̃ tp, and assume the ti form a
non-increasing sequence: Ψ̃ ti = m for i ≤ p, and Ψ̃ ti < m for i > p. Since α
is not a standard representation, LMΨα < m. As t1, . . . , tp are the only terms
involving m this implies LMΨ(t1 + · · · + tp) < m, that is, Ψ̃(t1 + · · · + tp) = 0.
This gives some motivation as to why ker Ψ̃ might be of interest. (Note however
that α itself need not be an element of ker Ψ̃ .)

Generators sij of ker Ψ̃ as a module over R are easy to give explicitly:

(6.3) sij =
LThj

gcd(LMhi, LMhj)
ei − LThi

gcd(LMhi, LMhj)
ej , (1 ≤ i < j ≤ k)

and the images Ψsij are the well-known S-polynomials, see e.g. [CLO92].

Remark 6.3. (Binomial kernel) Note that the sij are binomials. This is re-
lated to the fact that Ψ̃ is a monomial mapping : a mapping that maps monomials
to monomials. See also Definition 6.8.

Remark 6.4. (Buchberger’s criteria) The set of generators (6.3) is not a
minimal set. Buchberger’s first and second criterion (see e.g. [BW93, CLO92])
may be interpreted as sufficient conditions for generators to be superfluous.
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Gröbner bases and Buchberger’s algorithm Recall the basic question:
Under which condition is Im Ψ̃ = LM ImΨ . The answer is now easy to give:

Theorem 6.5. (Gröbner basis) If algorithm 6.2 gives output r = 0 on input
f = Ψ(sij) for all generators sij in (6.3), then {h1, . . . , hk} is a Gröbner basis.

Buchberger’s algorithm consists of checking the criterion, and adding the nonzero
r, which lies in the ideal ImΨ by definition of algorithm 6.2, to the ideal gener-
ators until the criterion holds. At each step the ideal Im Ψ̃ increases. Since the
polynomial ring is Noetherian, an increasing chain of ideals stabilizes, implying
termination of this algorithm.

6.3 Standard bases

6.3.1 Overview

In this section we put the previous discussion in a more abstract setting. One
advantage is that this makes the proof of the Gröbner basis case more transpar-
ent. A more important advantage is that it allows for generalizations, in various
directions.

One direction is changing the base ring, from the polynomial ring to the
ring of formal power series, and later to truncated formal power series. This is
of interest to us because formal power series arise naturally from the Birkhoff
normal form procedure. Related to the change of base ring is the introduction of
non-well-orders for the term orders. The notion of ‘leading term’ is undefined for
formal power series if the term order regards monomials with large exponents
as large. The solution is to ‘flip’ the term order and to regard 1 as the highest
monomial. This destroys the well-orderedness however.

A second direction to generalize in is to allow other algebraic structures
than ideals, the objects ordinary Gröbner bases deal with. A generalization to
modules is well-known, see e.g. [GP88]. Another generalization, for subalgebras,
is known as a SAGBI basis [Vas98], or canonical subalgebra basis as Sturmfels
[Stu93, Stu96] calls it. For our purposes we need the analogous basis for still
different vector spaces. This section gives the basic set-up for all these cases. We
formulate the standard map theorem, which lies at the heart of all generalizations
of Gröbner basis mentioned. In later sections we specialize to several cases of
interest.

6.3.2 Definitions

A few details in the definition of term order we use, is different from the usual
definition for Gröbner bases; some others, like the Schreyer ordering, need to be
generalized. Here we collect the necessary definitions.
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Base field The field of coefficients is denoted by R; see also Sect. 6.1.1 for
remarks. Note that it is sometimes useful to compute over a coefficient ring, see
e.g. [AHLM99, Mil96]; we shall not use this.

Term order and monomials Let M be some vector space over R. Already in
the previous section we used the name ‘monomial’ also for elements of the form
xβei, which formed a basis of the free module Rk. Presently we want to be even
more general. It is not possible to be very specific about the term ‘monomial’
here, because we do not want to be specific about the vector space M . For
example, for Gröbner bases M is a module, but for canonical subalgebra bases
M would be a ring. So instead, we just suppose a set of monomials has been
defined, together with a term order. Also we suppose the functions LM and LC,
for leading monomial and leading coefficient are defined on M .

The functions LM : M → M and LC : M → R are required to have the
following basic properties, for all f ∈M and a ∈ R:

1. LM LM f = LM f (provided f �= 0)
2. LC LM f = 1 (provided f �= 0)
3. LM af = LM f (provided a �= 0)
4. LC af = a LC f

The leading term, denoted by LT, is defined as LT f = LC f · LM f . The ordering
of the monomials is extended to the terms by simply ignoring the coefficient.
(However, if we write t = t′ we mean that t − t′ = 0, instead of just t ≤ t′ and
t′ ≤ t with respect to the term order.) The other properties we require of the
leading-monomial function (and the related term order) are:

a) The set spanR{LM f |f ∈M} is dense in M .
b) The term order ≤ is a linear (or total) order: For any pair of monomials

m,m′ we have m ≤ m′ or m′ ≤ m, and if both hold then m = m′, and the
term order is transitive.

c) LM(f − g) ≤ max(LM f, LM g), and equality holds unless LT f = LT g �= 0.

For convenience we also set LM 0 = 0. A few remarks are in order:

– Generally, M is an infinite dimensional R-vector space.
– Property (c), (1) and (3) together imply that

(6.4) LM(f − LT f) < LM f, (f �= 0)

– From (4) and (c) it follows that LT 0 = 0, and 0 < m for all (nonzero) mono-
mials m.

– The term order is not required to be a well-order.
– The leading-monomial function is not required to be multiplicative.

In relation to the last remark, note that M need not be a ring, or even a module
over some ring, so that it is not clear what ‘multiplicative’ should mean. This
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level of generality is only needed here, and is enough to formulate the main result
of this section, the standard map theorem. In the applications of Sect. 6.4 we
always require the term order to be multiplicative, in some appropriate sense.

For a linear subspace L ofM , we write LML for the closure of spanR{LM f |f ∈
L}. For example, we have M = LMM . Another example, if M is a ring and L
an ideal, then LML is the leading monomial ideal, also called the initial ideal.

Refined term orders Suppose we have a (linear) map Ψ : L → M , and term
orders on L and M . For clarity we write LML and LMM for the leading-monomial
functions on L andM respectively. The term order on L is said to be a refinement
of the one on M (via Ψ , if we want to be precise), if

(6.5) LMM Ψα ≤M LMM Ψ LML α

for all α ∈ L. Using the basic properties, this implies that for all monomials
m,m′ ∈ L we have

LMM Ψm <M LMM Ψm′ ⇒ m <L m
′,(6.6)

m <L m
′ ⇒ LMM Ψm ≤M LMM Ψm′,(6.7)

which motivates the name refinement. If L is a free module over M , the refined
term order on L is called the Schreyer order, see [GP88, Sch91].

Assumption From here on, it will be assumed that whenever there is a map
Ψ : L → M and a term order on M , there is also a term order on L which is a
refinement, via Ψ , of the order on M . Moreover we will just write LM instead of
LML or LMM ; which one is intended will be clear from the context.

Standard representations Using the refined term orders, it is possible to give
an elegant definition of a standard representation (see Sect. 6.2.4). Again assume
we have a map Ψ : M → R, then an element α ∈ M is said to be a standard
representation if cancellation of leading monomials does not occur:

Definition 6.6. An element α ∈M is called a standard representation (of Ψα)
if

LMΨα = LMΨ LMα.

6.3.3 Setup

Now we formulate the analogue of the basic question posed in section 6.2.2 in
the current context. Assume we have a linear map Ψ : M → R, and we wish to
know its image. In particular, we are interested in the set of leading monomials
that occur in the image of Ψ .

Related to Ψ is a map Ψ̃ (see Fig. 6.2). On monomials m ∈ M it is defined
as Ψ̃m := LTΨm, and it is extended to all of M by linear combinations and
closure. Ψ̃ is a monomial map, and it is easy to describe its range. Moreover
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Fig. 6.2 Standard maps and bases

it is clear that Im Ψ̃ ⊂ LM ImΨ . The problem is to determine whether in fact
Im Ψ̃ = LM ImΨ . When this is true, Ψ is called a standard map. (Usually Ψ is
defined in terms of some basis, which is then called a standard basis.)

A related problem is to find the kernel of Ψ . In the case where ImΨ is the
ideal 〈h1, . . . , hk〉, this is the question of finding the so-called syzygies for the
ordered set of polynomials {h1, . . . , hk}, i.e., k-tuples of polynomials (a1, . . . , ak)
such that

a1h1 + · · ·+ akhk = 0.

It is easy to see that the set of these k-tuples indeed forms an R-module. The
standard map theorem below gives a relation between the kernel of Ψ and the
kernel of Ψ̃ , which in the case of ideals boils down to a relation between syzygies of
the set {h1, . . . , hk} and those of the set {LMh1, . . . , LMhk}. The latter module
is generated by the (pre-images of the) S-polynomials (6.3).

Remark 6.7. (Syzygies) Below we shall use the word syzygy to refer to syzy-
gies on leading monomials of generators, i.e., elements of ker Ψ̃ instead of ele-
ments of kerΨ .

6.3.4 Normal form property

In the case of Gröbner bases, that is, a well-order and a polynomial ring, we
used algorithm 6.2 to bring an arbitrary element of the polynomial ring into a
normal form. The analogue of the algorithm can be written down in the current
general context, but will in general not terminate. So instead of writing down
a normal form algorithm, we assume existence of a normal form map with the
necessary properties. The normal form map that we use here is very similar to
the one used by Greuel [GP88], with the difference that he does not consider the
α–part – see below.

Assume we have the situation of Fig. 6.2. A normal form map for Ψ : M → R
is a map

NFΨ : R→M ⊕R : f �→ NFΨ (f) =
(
NFΨα(f),NFΨr (f)

)
with the following properties (we write r = NFΨr (f), α = NFΨα(f)):
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a) f = Ψα+ r,
b) r = 0 or LM r /∈ Im Ψ̃ ,
c) α is a standard representation.

Heuristically, the map NFΨ performs a division, with α the ‘quotient’ and r the
‘remainder’. The map Ψ is said to have the normal form property if a normal
form map NFΨ exists. This normal form property holds under very general
(topological) conditions; for example it always exists in polynomial rings with a
well-order as term order.

6.3.5 The standard map theorem

The following theorem is inspired on the proof of the standard basis theorem
(for ideals in the local polynomial ring, with non-well-orders) by Greuel [GP88],
which he in turn attributes partly to Schreyer [Sch91].

Definition 6.8. A linear map Ψ̃ is called a monomial map if Ψ̃m is a monomial
for every monomial m.

Given a map Ψ , its associated monomial map Ψ̃ is defined on the set of monomials
m by Ψ̃m := LTΨm, and extended linearly for other elements. This is a good
definition if Ψm �= 0 for all monomials m, which will be assumed. Now recall the
definition of standard map:

Definition 6.9. Let Ψ̃ be the monomial map associated to Ψ . The map Ψ is
called a standard map if

LM ImΨ = Im Ψ̃ .

Theorem 6.10. (Standard map theorem) Let L, M , R be vector spaces, and
Φ : L → M and Ψ : M → R linear maps, having associated monomial maps Φ̃
and Ψ̃ , and assume they have the following properties:

a) ImΦ ⊆ kerΨ ,
b) Im Φ̃ ⊇ LM ker Ψ̃ ,
c) Φ : L→M has the normal form property.

Then:

1. ImΦ = kerΨ ,
2. Im Ψ̃ = LM ImΨ ,
3. Im Φ̃ = LM ImΦ.

In other words, the conclusion of the theorem is that L Φ→ M
Ψ→ R is an exact

sequence, and Φ and Ψ are standard maps. When applying the theorem, one
constructs Φ such that condition (a) is satisfied. Condition (b) is easy to check,
as it involves only monomial maps. It corresponds to the Gröbner basis criterion
(Theorem 6.5) in the case of polynomial ideals.
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Fig. 6.3 Diagram for the standard map theorem

Proof: Choose any β ∈M , and let f := Ψβ be its image in R. Let NFΦ be a
normal form for Φ (which exists by assumption (c)), and set A := NFΦα(β) and
ρ := NFΦr (β). Then we have:

(6.8) β = ΦA+ ρ, ρ = 0 or LM ρ /∈ Im Φ̃.

By assumption (a) we have ΦA ∈ kerΨ . Therefore

f = Ψβ = Ψ(ΦA+ ρ) = Ψρ.

We now claim: Either f �= 0 and LM f = LMΨ LM ρ, or ρ = 0. To prove this,
assume ρ �= 0 and define

t1 := LT ρ,

ρ′ := ρ− t1,

t2 := LT ρ′.

Then LM t1 > LM t2 = LM ρ′, and using (6.5) and (6.7) we get LMΨt1 ≥
LMΨt2 ≥ LMΨρ′. Now if LMΨt1 > LMΨt2, then LMΨρ = LM(Ψt1 + Ψρ′) =
LMΨt1 = LMΨ LM ρ, proving our claim. So assume on the contrary that
LMΨt1 = LMΨt2. In particular LCΨt2 �= 0, hence also LC Ψ̃ t2 �= 0. Define

t′2 :=
LC Ψ̃ t1
LC Ψ̃ t2

t2.

Then Ψ̃ t1 = Ψ̃ t′2, that is, t1 − t′2 ∈ ker Ψ̃ . Taking the LM on both sides yields
LM t1 ∈ LM ker Ψ̃ . Since LM t1 = LM ρ and LM ker Ψ̃ ⊆ Im Φ̃ (assumption (b)),
this implies LM ρ ∈ Im Φ̃, contradicting (6.8).

So indeed f �= 0 and LM f = LMΨ LM ρ = Ψ̃ LM ρ, or ρ = 0. The first part
proves that LM ImΨ ⊆ Im Ψ̄ . As the other inclusion is trivial, this proves (2).
The second part says that if β ∈ kerΨ then ρ = NFΦr (β) = 0, that is, β = ΦA. In
other words kerΨ ⊆ ImΦ. Together with (a) this proves (1). Finally, using (1)
we get that NFΦr (β) = 0 for all β ∈ ImΦ, so that every such β has a standard
representation, implying (3).

The following two lemmas will be helpful in applying the standard map
theorem 6.10.
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Binomial lemma In the case of Gröbner bases, the kernel of Ψ̃ is generated by
binomials, which correspond to the S-polynomials. This holds more generally.
The following lemma is a generalization of Lemma 4.1 of [Stu96]. The proof
is different, since we cannot use the well-ordering property of the term order.
(Recall that a term is a monomial multiplied by a constant.)

Lemma 6.11. (Binomial generators) Let Ψ̃ be a monomial map. Then ker Ψ̃ is
the closure of

(6.9) spanR{t− t′|t, t′ terms, and Ψ̃ t = Ψ̃ t′}.
Proof: First define R̂ := {LM f |f ∈ R}, and M̂ := {LM f |f ∈ M}. For
every r ∈ R̂ select an mr ∈ M̂ such that Ψ̃mr = c · r (if one exists), for some
c ∈ R. Now let α ∈ ker Ψ̃ . Using that M is the closure of spanRM , we may
write α =

∑
m∈M̂ cmm. Define

α′ :=
∑
m∈M̂

(
cmm− cm

LC Ψ̃m

LC Ψ̃mLM Ψ̃m

mLM Ψ̃m

)
.

Write r = LM Ψ̃m, then

Ψ̃

(
cm

LC Ψ̃m

LC Ψ̃mr

mr

)
= cm

LC Ψ̃m

LC Ψ̃mr

LC(Ψ̃mr) LM(Ψ̃mr) = cmLC(Ψ̃m)r = Ψ̃(cmm),

since LM Ψ̃mr = r. This shows that α′ is in the closure of (6.9). For any r ∈ R̂,
the sum of the coefficients cm LC Ψ̃m over allm such thatmLM Ψ̃m = mr vanishes,
since this is precisely the coefficient of r in Ψ̃α. But this means that α′ = α,
which completes the proof.

Standard representations of syzygies The following lemma asserts that
syzygies cannot be standard representations:

Lemma 6.12. Let t1 − t2 be a binomial in the kernel of Ψ̃ , and let α be a
standard representation of Ψ(t1 − t2). Then t1 > LMα.

Proof: Since t1 − t2 ∈ ker Ψ̃ we have LTΨt1 = LTΨt2. By (6.4) it follows that
LMΨt1 > LMΨ(t1 − t2) = LMΨα = LMΨ LMα, the last equality holding since
α is a standard representation. By (6.6), this implies t1 > LMα.

6.3.6 Normal form algorithm

It often happens that a map Ψ not only has the normal form property (see Sect.
6.3.4), but there even exists an algorithm that computes this normal form. Often
this algorithm is the following. Note that when hi are polynomials and Ψ is the
module homomorphism (f1, . . . , fr) �→ ∑i hifi into the polynomial ring, then
the algorithm below is just algorithm 6.2.
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Algorithm 6.13. (Normal form)
Input: Map Ψ : M → R and associated monomial map Ψ̃ .
Output: α ∈M, r ∈ R such that

1. f = r + Ψα,
2. r = 0 or LM r /∈ Im Ψ̃ ,
3. α is a standard representation.

Algorithm:

α← 0
r ← f
While LT r ∈ Im Ψ̃ , say LT r = Ψ̃ t, t a term, do:

α← α+ t,
r ← r − Ψt

EndWhile

In general it may be nontrivial to decide whether a term LT r is in the image of
Ψ̃ or not, and to find a term t in the pre-image.

Correctness of algorithm 6.13 is straightforward, but termination less so. If
algorithm 6.13 does not terminate, there may exist other algorithms that do.
One example is Mora’s normal form for the rational function ring; see [GP88,
Mor82, Mor85].

6.3.7 Reduced normal forms

For computations it is sometimes useful to use a more restricted notion of normal
form, the reduced normal form. Indeed, the algorithm of this section will find
application in Chap. 7. Whereas the ‘remainder’ r = NFΨr of an ordinary normal
form need only satisfy LM r /∈ Im Ψ̃ , for a reduced normal form this is required,
not only of the leading monomial, but of all terms of r. In practice this means
that computing such reduced normal forms is less efficient compared to ordinary
normal forms. The big asset of reduced normal forms is that the r-part of their
output is unique, when computed relative to a standard basis.

It is not true that the normal form property also implies the existence of a
reduced normal form: in the rational function ring the Mora normal form exists,
which cannot be extended to a reduced normal form. However, in many cases a
reduced normal form does exist, and the algorithm below usually suffices:

Algorithm 6.14. (Reduced normal form)
Input: Map Ψ : M → R and associated monomial map Ψ̃ .
Output: α ∈M, r ∈ R such that

1. f = r + Ψα
2. r =

∑
i∈I ti with ti terms such that ti /∈ Im Ψ̃

3. α is a standard representation.
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Algorithm:

α← 0
r ← 0
g ← f
While g �= 0 do the following:

If LT g ∈ Im Ψ̃ , say LT g = Ψ̃ t, t a term, then:
α← α+ t,
g ← g − Ψt

Else:
r ← r + LT g
g ← g − LT g

EndIf
EndWhile

6.4 Instances of standard bases

In this section we apply the previous theory to some known cases, such as
Gröbner bases and canonical subalgebra bases. This shows how the current ap-
proach unifies some other approaches. The standard map theorem is also used
to define the concept of standard basis for a left-right tangent space.

6.4.1 Gröbner bases

Let {h1, . . . , hk} be a set of polynomials in R := R[x1, . . . , xn] = R[x]. Let M be
the free R-module Rk := ⊕ki=1Rei. The R-module homomorphism Ψ : M → R
is defined by Ψei = hi, so that ImΨ = 〈h1, . . . , hk〉. See Fig. 6.1.

For monomials in R we take the ordinary monomials, and in Rk we take the
elements of the form eix

β , where ei is the i-th canonical basis vector. For the
term order (on M and R, with the one on M being a refinement via Ψ of term
order on R) we take a general well-order, but one which is multiplicative over
R, that is, m < m′ implies m̃m < m̃m′ for all monomials m,m′, m̃. Then the
map Ψ̃ , defined in the general way by Ψ̃m := LTΨm for monomials m ∈ M , is
in fact an R-module homomorphism.

Algorithm 6.2 implements a normal form NFΨ on R, so that the normal form
property holds in this setting.

Lemma 6.15. ker Ψ̃ is generated, as an R-module, by the syzygies

(6.10) sij :=
LT(hj)

gcd(LMhi, LMhj)
ei − LT(hi)

gcd(LMhi, LMhj)
ej . (i, j = 1 . . .m)

Moreover,
LM 〈sij〉 = 〈LM sij〉.
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Proof: By Lemma 6.11, ker Ψ̃ is generated, as an R-vector space, by bi-
nomials. Let b := axβei − bxδej be a binomial in ker Ψ̃ . Then axβ LThi =
bxγ LThj . This implies that b is a monomial multiple of sij ; indeed, b =
(axβ gcd(LMhi, LMhj)/ LThj)sij , proving the first claim. For the second claim,
let m ∈ LM ker Ψ̃ , then m = LM b for some binomial b ∈ ker Ψ̃ . By the same
argument as before, m is a monomial multiple of some LM sij .

Now we can formulate the result of this section. Recall that {h1, . . . , hk} is
called a Gröbner basis if LM 〈h1, . . . , hk〉 = 〈LMh1, . . . , LMhk〉. (For the defini-
tion of standard submodule basis, see Sect. 6.4.2.)

Theorem 6.16. Let sij be generators (6.10) of ker Ψ̃ as an R-module, and let
NFΨ be a normal form, and assume that

NFΨr (Ψsij) = 0 for all sij .

Then:

a) {h1, . . . , hk} is a Gröbner basis for 〈h1, . . . , hk〉.
b) {sij − NFΨα(Ψsij)|1 ≤ i < j ≤ k} is a standard submodule basis for kerΨ .

Proof: Write αij = NFΨα(Ψsij), and define uij := sij − αij . Let L be the
free R-module generated by vectors vij , and define Φ : L → M by Φvij = uij .
Since NFΨr (Ψsij) = 0 we have Ψsij = Ψαij , that is Ψuij = 0. This shows that
ImΦ ⊆ kerΨ .

The binomial sij lies in ker Ψ̃ , and αij is a standard representation of Ψsij ,
hence by Lemma 6.12 it follows that LM sij > LMαij , in other words LM sij =
LMuij . Since 〈sij〉1≤i<j≤k = ker Ψ̃ , this shows that Im Φ̃ = 〈LM sij〉1≤i<j≤k =

LM(〈sij〉1≤i<j≤k) = LM ker Ψ̃ , the middle equality holding because of Lemma
6.15.

Finally, the map Φ has the normal form property, because the term orders
involved are well-orders. The standard map theorem now applies. The statement
ImΦ = kerΨ means that the uij generate kerΨ . The statement that Im Ψ̃ =
LM ImΨ means that {h1, . . . , hk} is a Gröbner basis. Finally, Im Φ̃ = LM ImΦ
implies that the uij form a standard submodule basis (relative to the induced
order). This completes the proof.

Buchberger’s algorithm Most of the work has now been done. The final
keystone is Buchberger’s algorithm, which actually computes a Gröbner basis
for arbitrary ideals.
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Fig. 6.4 Standard submodule basis diagram

Algorithm 6.17. (Buchberger’s algorithm)
Input: {h1, . . . , hp} ⊂ R[x]
Output: A Gröbner basis {h1, . . . , hk} ⊂ R[x] for 〈h1, . . . , hp〉.
Algorithm:

k ← p
While NFΨr (sij) �= 0 for any 1 ≤ i < j ≤ k, do:

hk+1 ← NFΨr (sij)
k ← k + 1

EndWhile

During execution, Ψ is supposed to be defined on ⊕ki=1R[x]ei, mapping ei to hi
as usual, for the current value of k.
Proof of Algorithm 6.17: Since sij ∈ 〈h1, . . . , hk〉 implies NFΨr (sij) ∈ 〈h1, . . . , hk〉,
it follows by induction that hi ∈ 〈h1, . . . , hn〉 for any i > n. However the
ideal 〈LMh1, . . . , LMhk〉 does increase at each step, implying termination by
Hilbert’s basissatz. In turn, by Theorem 6.16 this implies that {h1, . . . , hk} is a
Gröbner basis.

6.4.2 Standard bases for submodules

A straightforward generalization of Gröbner bases gives a useful result for sub-
modules. Gröbner bases are in fact a special case of standard submodule bases;
see [GP88].

Let {h1, . . . , hk} be elements of Rd := ⊕di=1Rεi. Here εi is the i-th basis vec-
tor of Rd, and R is the polynomial ring R[x1, . . . , xn]. Let M be the module
Rk := ⊕ki=1Rei, where the ei denote the basis vectors of Rk. The R-module ho-
momorphism Ψ : M → Rd is defined by Ψei = hi, so that ImΨ = 〈h1, . . . , hk〉R.
See figure 6.4.

For monomials in Rd we take the elements of the form xαεi, as usual, and
xαei in Rk. Also for the term order on Rd we take an arbitrary multiplicative
well-order, and a refinement of it, via Ψ , on Rk. The generic algorithm 6.13
terminates for this setting, implementing a normal form map NFΨ .
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Lemma 6.18. Write LT(hi) = xαieni
. Then ker Ψ̃ is generated, as an R-module,

by the syzygies

(6.11) sij =
xγij−αi

LChi
eni

− xγij−αj

LChj
enj

,

where the indices i, j run over the pairs with 1 ≤ i < j ≤ k and ni = nj , and γij
is the exponent of lcm(xαi , xαj ). Moreover,

LM 〈sij〉 = 〈LM sij〉,
where the indices i, j run over the same values as in (6.11).

Proof: The proof is a minor modification of the proof of Lemma 6.15.

A basis {h1, . . . , hk} is called a standard submodule-basis for 〈h1, . . . , hk〉
if 〈LMh1, . . . , LMhk〉 = LM 〈h1, . . . , hk〉. In terms of the map Ψ this means
Im Ψ̃ = LM ImΨ . The result of this section is the following:

Theorem 6.19. Let sij be the generators (6.11) of ker Ψ̃ as an R-module, and
let NFΨ be a normal form, and assume that

NFΨr (Ψsij) = 0 for all sij .

Then:

a) {h1, . . . , hk} is a standard submodule basis for 〈h1, . . . , hk〉.
b) {sij − NFΨα(Ψsij)}, where ij runs over the same pairs as in (6.11), is a

standard submodule basis for kerΨ .

Proof: The proof is word for word the same as that of Theorem 6.16, except
that instead of invoking Lemma 6.15, one has to invoke Lemma 6.18.

6.4.3 Standard bases for subalgebras

The bases we consider in this section are known as SAGBI bases (Subalgebra
Analogue of Gröbner Bases for Ideals), see e.g. [Vas98]. Sturmfels calls them
Canonical Subalgebra bases, see [Stu96, Ch. 11]. We call them ‘standard subal-
gebra bases’ to emphasize the similarity with the other cases.

The standard subalgebra basis criterion Let {g1, . . . , gm} be polynomials
in R = R[x]. Let M := R[y1, . . . , ym] be the polynomial ring in m variables, and
define the ring homomorphism Ψ : yα �→ gα1

1 · · · gαm
m . Then the image of Ψ is the

subalgebra of R generated by g1, . . . , gm, which we denote by R[g1, . . . , gm].
In M and R we take the ordinary monomials, and as term order we take any

multiplicative well-order, just as in the Gröbner basis case. With such a term
order the monomial map Ψ̃ is a ring homomorphism as well. Now we can define
what a standard subalgebra basis is:
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Fig. 6.5 Diagram for standard subalgebra bases

Definition 6.20. The set {g1, . . . , gm} is called a standard subalgebra basis for
the subalgebra ImΨ = R[g1, . . . , gm] if Ψ is a standard map.

Note that this is equivalent to: LMR[g1, . . . , gm] = R[LM g1, . . . , LM gm].
The criterion for standard subalgebra bases will be formulated in terms of

a normal form map for Ψ . To apply this criterion we need an algorithm imple-
menting the normal form. Algorithm6.13 implements such a normal form map
NFΨ . Termination is guaranteed because LM r is strictly decreasing, and the
term order is supposed to be a well-order. It is not yet a proper algorithm, since
it is not explained how to decide whether a monomial is in Im Ψ̃ or not – but
see below.

In order to prove the criterion in Theorem 6.23 below, we need two lemmas:

Lemma 6.21. The kernel ker Ψ̃ is an ideal generated by binomials.

Proof: ker Ψ̃ is an ideal since Ψ̃ is a ring homomorphism, and it is generated
as an R-vector space by binomials by Lemma 6.11. A finite number of these
binomials therefore generate ker Ψ̃ as an ideal.

An element α ∈ M is called homogeneous if it is a sum of terms, each of
which is mapped to the same monomial under Ψ̃ . By the previous lemma, ker Ψ̃
is generated by homogeneous elements. This notion is used in the following
lemma, that is used to relax the condition on the generators of ker Ψ̃ in Theorem
6.23 below.

Lemma 6.22. Let s1, . . . , sp be homogeneous generators of ker Ψ̃ as an ideal.
Assume that NFΨr (Ψsi) = 0 for all i = 1, . . . , p. Then there exists a Gröbner basis
{s′
i}qi=1 of ker Ψ̃ and representations α′

1, . . . , α
′
q with the properties (for all i =

1, . . . , q):

(6.12)


All s′

i are homogeneous,
s′
i − α′

i ∈ 〈sj − NFΨα(Ψsj)〉pj=1,

Ψα′
i = Ψs′

i,

Ψ̃ LMαi < Ψ̃ LM s′
i.
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Proof: The proof is by induction. First set s′
i := si and α′

i := NFΨα(Ψsi),
then properties (6.12) are satisfied. We turn {s′

i} into a Gröbner basis by adding
elements that increase 〈LM s′

i〉, but leave (6.12) invariant.
Assume {s′

1, . . . , s
′
q} is not yet a Gröbner basis. Choose an s ∈ ker Ψ̃ such that

LM s /∈ 〈LM s′
1, . . . , LM s′

q

〉
. Let m := Ψ̃ LM s and write s = s=m + s<m where

s=m is the homogeneous leading part of s, and Ψ̃ LM s<m < m. Now Ψ̃s=m is
just m times the coefficient of m in Ψ̃s, which is zero, so s=m ∈ ker Ψ̃ as well.
Since ker Ψ̃ =

〈
s′
1, . . . , s

′
q

〉
we can write

s=m =
q∑
i=1

ais
′
i. (ai ∈ R)

Since s=m and the s′
i are homogeneous, we may assume that the ai are homo-

geneous too. Now

Ψ̃ LM s=m = (definition)
m = (homogeneity)

Ψ̃ max
i

LM(ais′
i) = (compatible term orders)

max
i

LM(ai)Ψ̃ LM s′
i > (hypothesis)

max
i

LM(ai)Ψ̃ LMα′
i = (compatible term orders)

max
i
Ψ̃ LM(ais′

i) ≥ (property of LM)

Ψ̃ LM

(∑
i

ais
′
i

)
.

So adding s′
q+1 :=

∑q
i=1 ais

′
i and α′

q+1 :=
∑q
i=1 aiα

′
i to the generators and rep-

resentations, leaves (6.12) invariant while 〈LM s′
i〉q+1
i=1 � 〈LM s′

i〉qi=1. This proves
the induction step. Since the ideal 〈LM s′

i〉qi=1 cannot increase indefinitely, after
a finite number of steps {s′

1, . . . , s
′
q} is a Gröbner basis.

The following theorem gives a criterion for standard subalgebra bases. It is
the analogue of Theorem 6.16, which gives a criterion to recognize Gröbner ba-
ses: the S-polynomials should reduce to zero. In this case, the part of the S-
polynomials is played by the binomial generators of the so-called toric ideal
ker Ψ̃ (see e.g. [Stu96]).

Theorem 6.23. Let {si}pi=1 be generators of ker Ψ̃ as an ideal, let NFΨ be a
normal form, and assume that

NFΨr (Ψsi) = 0 for i = 1, . . . , p.

Then:
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a) {g1, . . . , gm} is a standard basis for the subalgebra R[g1, . . . , gm].
b) {si − NFΨα(Ψsi)}pi=1 generates kerΨ .

Moreover, if {si}pi=1 is a Gröbner basis for ker Ψ̃ , then {si − NFΨα(Ψsi)}pi=1 is a
Gröbner basis for kerΨ .

Proof: If {si}pi=1 is a Gröbner basis, set q = p and define ui := si−NFΨα(Ψsi),
i = 1, . . . , q. Since si ∈ ker Ψ̃ , and NFΨα(Ψsi) is a standard representation, it
follows by Lemma 6.12 that LMui = LM si, and thus 〈LMui〉qi=1 = 〈LM si〉qi=1 =
LM 〈si〉qi=1 = LM ker Ψ̃ . Otherwise use Lemma 6.22, and define ui := s′

i−α′
i, i =

1, . . . , q. Then also LMui = LM s′
i, and 〈LMui〉qi=1 = 〈LM s′

i〉qi=1 = LM 〈s′
i〉qi=1 =

LM ker Ψ̃ . Note that in both cases we have ui ∈ 〈sj − NFΨα(Ψsj)〉pj=1, for i =
1, . . . , q.

Let L be the free M -module generated by the vectors e1, . . . , eq, and define
the M -module homomorphism Φ by Φei := ui. By construction we have ImΦ ⊆
kerΨ , and by the foregoing discussion Im Φ̃ = 〈LMui〉qi=1 = LM ker Ψ̃ .

The map Φ has the normal form property – indeed, algorithm 6.2 provides
a normal form – so we may apply the standard map theorem. The first con-
clusion, ImΦ = kerΨ , proves that {u1, . . . , uq} and hence {si − NFΨα(Ψsi)}pi=1

generates kerΨ . The conclusion Im Φ̃ = LM ImΦ implies that the {u1, . . . , uq}
is a Gröbner basis for kerΨ . Finally, from Im Ψ̃ = LM ImΨ we conclude that
{g1, . . . , gm} is a standard subalgebra basis for R[g1, . . . , gm].

Implementing the criterion In order to check the standard subalgebra basis
criterion, it is necessary to compute NFΨ , and also to compute a (Gröbner ) basis
for the ideal ker Ψ̃ . These two problems are solved by the following algorithm.

Algorithm 6.24. (Gröbner basis and normal form for binomial ideals, or: Find-
ing syzygies for subalgebra bases, and representations of algebra elements.)
Input: A monomial ring homomorphism Ψ̃ : R[y] → R[x], an element m ∈ R[x].
Output: Gröbner basis for ker Ψ̃ ; a monomial t with Ψ̃ t = m if it exists.
Algorithm:

Introduce an elimination term order with {yi} < {xj}.
Compute a Gröbner basis G of 〈y1 − Ψ̃y1, . . . , ym − Ψ̃ym〉R[y,x] with re-

spect to <.
Output G ∩R[y]
Let t ∈ R[y, x] be the normal form of m with respect to G.
If t ∈ R[y], output t, otherwise output “m /∈ Im Ψ̃”.

See [Stu96, Alg. 4.5] or [AL94, Th. 4.3.13] for a proof. For more efficient algo-
rithms to compute G, see [Stu96, Ch. 12].

Using this, algorithm 6.13 can be implemented. In general, to compute
NFΨ (f) one needs several invocations of algorithm 6.24. The slow Gröbner ba-
sis computation for G is only required once, and the normal form algorithm to
compute t is much faster.
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Fig. 6.6 Diagram for bases of modules over subalgebras

The analogue of Buchberger’s algorithm If the condition “NFΨr (Ψsi) = 0
for all si” fails, then adding the nonzero normal forms to the set of generators
does not change the subalgebra, but does enlarge the set of monomials in the
image of Ψ̃ . The condition can then be checked again, until it holds. This strategy
is called the Buchberger algorithm in the case where ImΨ is an ideal. In that
case Ψ̃ is also an ideal, and because of Hilbert’s basissatz these ideals cannot
increase indefinitely, assuring termination of the algorithm.

This argument fails in the case of subalgebras, and indeed, it can be shown
that (finite) canonical subalgebra bases do not exist for all subalgebras. Perhaps
the simplest example is the ideal

〈
x2
〉 ⊂ R[x], considered as an algebra. A basis

for this algebra includes polynomials P with LMP = xp, for every prime p.
Another example is the ring of polynomials in x1, x2, x3 that are invariant under
cyclic permutation of the variables; see [Göb95] or [Stu96, Ch. 11] for details.

6.4.4 Standard bases for modules over subalgebras

As a generalization of the previous section, we now consider modules over sub-
algebras of polynomial rings. Standard bases for such objects are used in the
sequel as building blocks for standard bases for left-right tangent spaces, the
ultimate object of our interest.

The standard subalgebra basis criterion Let {g1, . . . , gm} and {f1, . . . , fl}
be polynomials in R = R[x]. The polynomial ring R[y1, . . . , ym] is again denoted
byM . Define theM -module homomorphism Ψ : M l → R : eiyα �→ fig

α1
1 · · · gαm

m .
See Fig. 6.6; in this figure, ei is the i-th canonical basis vector of R[y]l. The
image of Ψ , which is written as {f1, . . . , fl}R[g1, . . . , gm], is the object of interest.
Algorithm 6.13 again implements a normal form. How to compute inverses of Ψ̃
will be explained below.

The kernel of Ψ̃ is an M -submodule, generated by binomials. Lemma 6.22
has an obvious counterpart in the current context, with “ideal” replaced by “M -
submodule”, and “Gröbner basis” by “standard submodule basis”. The proof
remains valid too.
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The following theorem gives a criterion that guarantees Ψ to be a standard
map, which, as usual, means that LM ImΨ = Im Ψ̃ . Here Ψ is defined in terms
of two sets of elements, {fi} and {gi}. The pair ({fi}, {gi}) is called a standard
basis for the subalgebra-module ImΨ = {fi}R[gi] if Ψ is a standard map. A basis
is called a standard subalgebra-module basis if the following criterion is met:

Theorem 6.25. Let {si} be generators of ker Ψ̃ as an M -submodule, let NFΨ

be a normal form, and assume that

NFΨr (Ψsi) = 0 for all si.

Then:

a) ({fi}, {gi}) is a standard basis for the subalgebra-module

{f1, . . . , fl}R[g1, . . . , gm].

b) {si − NFΨα(Ψsi)} generates kerΨ .

Moreover, if {si} is a standard submodule basis for ker Ψ̃ , then {si−NFΨα(Ψsi)}
is a standard submodule basis for kerΨ .

Proof: The proof is completely analogous to the proof of Theorem 6.23.

Implementing the criterion To turn the above discussion into a computer
program, we need an algorithm that compute generators si of ker Ψ̃ (that is,
generators for the syzygies), and an algorithm implementing the normal form
map NFΨ . In the application, the first module generator f1 is 1, and this fact can
be exploited. We specialize to this case. To describe the algorithm we introduce
the following notation:

RN = R[t2, . . . , tl, y1, . . . , ym, x1, . . . , xn],
IN = 〈t2 − LM f2, . . . , tl − LM fl, y1 − LM g1, . . . , ym − LM gm〉,
GN = {gN1, . . . , gNq} = Gröbner basis for IN with respect to �,

where � is an elimination term order on RN with {yi} � {ti} � {xi}, and which
is graded, with respect to the total degree, in the variables ti. Then we have:

Proposition 6.26. With the definitions above, each binomial in

GN ∩ {1, t2, . . . , tl}R[y1, . . . , ym]

is an element of ker Ψ̃ via the binomial correspondence

mti −m′tj �→ mei −m′ej ,
mti −m′ �→ mei −m′e1,
m−m′ �→ mek −m′ek for k = 1, . . . , l

Here m and m′ are arbitrary monomials in R[y]. These elements together form
a generating set of ker Ψ̃ as an R[y]-module.
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Proof: First note that IN ∩ {1, t2, . . . , tl}R[y] ⊆ ker Ψ̃ via the binomial cor-
respondence. For the converse, of the binomials in ker Ψ̃ not generated by the
elements mentioned above, let α be one with smallest leading monomial. This
leading monomial is of the form tim or m, with m ∈ R[y]. Since GN is a
Gröbner basis of IN , this monomial is a multiple of the leading monomial of
some g ∈ GN . Both terms of g are at most linear in the ti, and do not involve xi,
by the choice of term order. Subtracting the proper multiple of g from α yields
an α′ with smaller leading monomial, which by choice of term order again, lies
in GN ∩ {1, t2, . . . , tl}. This provides the required contradiction.

Remark 6.27. (Efficiency) It is most efficient to first enlarge the {gi} to a
standard subalgebra basis. Then elements m − m′ ∈ GN , each resulting in l
syzygies to be checked in the condition of Theorem 6.25, can all be ignored since
they will automatically reduce to 0.

Using the Gröbner basis GN , and the standard map ΨN related to it, we can
write down a normal form algorithm for Ψ . It is algorithm 6.13 with an explicit
subroutine for finding the inverse image of a monomial under Ψ̃ . Here the term
order � is essential.

Algorithm 6.28. (Normal form for modules over subalgebras)
Input: A map Ψ : R[y]l → R with Ψe1 = 1, the associated monomial map Ψ̃ ,
a Gröbner basis GN as above, the associated map ΨN : RqN → RN , and the
associated normal form map NFΨN .
Output: α ∈ R[y]l, r ∈ R such that

1. f = r + Ψα,
2. r = 0 or LM r /∈ Im Ψ̃ ,
3. α is a standard representation.

Algorithm:

α← 0
r ← f
BeginLoop

m← (LT r) with ei replaced by ti.
rN ← NFΨN

r (m)
If rN ∈ {1, t2, . . . , tl}R[y], then

If rN ∈ R[y], then
t← e1rN

Else
t← rN with ti replaced by ei

EndIf
α← α+ t
r ← r − Ψt
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Else
ExitLoop

EndIf
EndLoop

Proof: The condition that LT r ∈ Im Ψ̃ is equivalent to the existence of an
rN ∈ {1, t2, . . . , tl}R[y] that is equal tommodulo IN . Since the term order favors
monomials without xi’s and with lowest-degree ti’s, if such a form exists it is
the output of the normal form NFΨN

r (m). Correctness follows from the invariant
f = r + Ψα, and the fact that LM r decreases implies termination, using the
well-orderedness of �.

The analogue of Buchberger’s algorithm If the basis ({fi}, {gi}) defining
the map Ψ , is not a standard basis, that is NFΨr (Ψsi) �= 0 for some si, it may be
turned into one by adding elements. There are two possibilities: Either the bino-
mial si is of the form ej(yα − yβ), or it is of the more general form ejy

α − eky
β

with j �= k. Syzygies of the first form will not occur if {gi} is a standard subal-
gebra basis to start with (see remark 6.27). Using the normal form of syzygies
of the second form, new elements are found and added to the {fi}, that increase
Im Ψ̃ but leave ImΨ invariant.

6.4.5 Left-Right tangent space

In Sect. 3.2.3 the codimension of the tangent space to the orbit of a map under
left-right transformations was shown to be equal to the codimension of

(6.13) T rE = J + {1, f1, f2}R[[H,H2]] ⊂ R.

Here R is the ring of formal power series R[[ρ1, ρ2, ψ, χ]], J is an ideal, and
f1, f2, H,H2 are all elements of R. The first problem to solve is: How to compute
the codimension of T , and find elements in R complementing it. The second
problem is: Given an arbitrary f ∈ R, write it explicitly as a sum of an element
of T and a linear combination of the complementing elements. The result of this
latter procedure can be used to build explicit reparametrizations connecting an
arbitrary deformation to a universal one.

The situation is analogous to the case of unfoldings of functions under right-
transformations. There the tangent space was an ideal, the procedure to find
the codimension and complementing elements was Buchberger’s algorithm (for
standard bases), and the normal form procedure computed the required repre-
sentation for arbitrary functions f , which the algorithm of Kas and Schlessinger
used to compute reparametrizations.

The space of equation (6.13) is of the following general form:

(6.14) 〈h1, . . . , hk〉 + {f1, . . . , fl}R[[g1, . . . , gm]].

Spaces of this form are the image of Ψ in Fig. 6.7, except that for simplicity we
here use the polynomial ring R = R[x] as a base ring, instead of the ring of formal
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Fig. 6.7 LR-tangent space diagram

power series R[[x]]. In the application we use truncated formal power series, but
at this stage this would unnecessarily complicate the notation. Note that the
discussion below is independent of the term order; indeed, in the polynomial
ring the term order may be, but need not be, a well-order. (However, for a
reversed well-order, the reduced normal form does not exist; algorithm 6.14 will
not terminate in general.)

In Fig. 6.7, the maps Ψ and Ψ̃ are defined on elements of the form (xαe1i, 0)
and (0, e2iyα). By linearity, Ψ is defined on all of on all of Rk ⊕ R[y]l. The
goal of this section is, first of all, to formulate a condition guaranteeing that
LM ImΨ = Im Ψ̃ . If equality holds, the map Ψ is called a standard map, and the
triple

({h1, . . . , hk}, {f1, . . . , fl}, {g1, . . . , gm})
is called a standard basis for the “left-right tangent space” (6.14).

Generators of ker Ψ̃ In what follows, two natural but different R[y]-module
structures on Rk ⊕ R[y]l will be used. For lack of better names, we call them
the (ordinary) R[y]- and monomial R[y]-module structures, and multiplication
is defined as follows:

yi · (a, b) = (gia, yib), (ordinary module structure)
yi · (a, b) = (LM(gi)a, yib). (monomial module structure)

By Lemma 6.11 the kernel ker Ψ̃ is generated, as a linear vector space, by bino-
mials. Write Ψ̃1 for the restriction of Ψ̃ to Rk×{0}, whose image is the ideal 〈hi〉,
and let Ψ̃2 be the restriction of Ψ̃ to {0} ×R[y]l. Then we have the following:

Lemma 6.29. The kernel of Ψ̃ is generated, as a linear vector space, by the
following three sets of binomials:

a) {(xαe1i − cxβe1j , 0) ∈ ker Ψ̃1}1≤i≤j≤k
b) {(0 , yαe2i − cyβe2j) ∈ ker Ψ̃2}1≤i≤j≤l
c) {(xαe1i , − cyβe2j) | Ψ̃1(xαe1i) = Ψ̃2(cyβe2j)}1≤i≤k, 1≤j≤l

Moreover, any binomial in the kernel is in one of these three sets.
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Proof: By Lemma 6.11, ker Ψ̃ is generated by binomials. A binomial in Rk ⊕
R[y]l has both monomials in the first component, both in the second, or exactly
one in either, corresponding to the three cases of the lemma.

The binomials of case (a) generate (as vector space) an R-module. It is gener-
ated (as an R-module) by the ideal syzygies given in Lemma 6.15. The binomials
of case (b) generate (as a vector space) a monomial R[y]-module. Generators of
this object are just the subalgebra-module syzygies, which can be computed by
algorithm 6.28. It remains to find the binomials of case (c). The linear span
of these binomials has a monomial R[y]-module structure. The projection of
this module onto its second component, R[y]l, is the monomial R[y]-module
Ψ̃−1

2 (LM 〈h1, . . . , hk〉). This module is generated by monomials. Assuming for
the moment that we know its monomial generators vi ∈ R[y]l, we can say the
following:

Lemma 6.30. Let {s1, . . . , sp} ⊂ Rk be the ideal syzygies of 〈hi〉 as defined
in lemma 6.15. Let {b1, . . . , bq} ⊂ R[y]l, be a binomial standard basis of the
submodule ker Ψ̃2 (the subalgebra-module syzygies). Let v1, . . . , vr be monomial
generators of the submodule Ψ̃−1

2 (LM 〈h1, . . . , hk〉) ⊆ R[y]l. Let < on Rd ⊕R[y]
be a refinement of the term-order on R, such that if m ∈ R[y] and m′ ∈ Rd and
m−m′ ∈ ker Ψ̃ , then m > m′. Then, for any m ∈ LM ker Ψ̃ , (at least) one of the
following holds:

a) m ∈ 〈LM s1, . . . , LM sp〉R × {0},
b) m ∈ {0} × 〈LM b1, . . . , LM bq〉R[y],
c) m ∈ {0} × 〈v1, . . . , vr〉R[y].

Proof: Let m ∈ LM ker Ψ̃ . Then there exists an m′ < m such that m −m′ ∈
ker Ψ̃ . This binomial falls into one of the classes (a), (b) or (c) of Lemma 6.29.
In case (a), m ∈ LM 〈si〉 × {0} = 〈LM si〉 × {0}, by Lemma 6.18. In case (b),
m ∈ {0} × LM 〈bi〉 = {0} × 〈LM bi〉, since {bi} is a standard submodule basis by
hypothesis. In case (c) finally, m ∈ {0}×R[y]l by the choice of the refined term
order. This implies m′ ∈ LM 〈hi〉 × {0}, hence m ∈ Ψ̃−1

2 LM 〈hi〉 = {0} × 〈vi〉.
Now we can describe ker Ψ̃ completely:

Lemma 6.31. Let {s1, . . . , sp}, {b1, . . . , bq} and {v1, . . . , vr} be as in Lemma
6.30. Let w1, . . . , wr ∈ Rk be monomials such that vi − wi ∈ ker Ψ̃ for all 1 ≤
i ≤ r. (Here vi − wi denotes the element (−wi, vi) ∈ Rd ⊕R[y]l.) Then

(6.15)
ker Ψ̃ = 〈s1, . . . , sp〉R × {0}

+ {0} × 〈b1, . . . , bq〉R[y]

+ 〈v1 − w1, . . . , vr − wr〉R[y]

where in the last term the monomial R[y]-module structure is used.
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Proof: By Lemma 6.11 it is enough to check that every binomial in ker Ψ̃
lies in the right-hand-side of (6.15). So let m − m′ be any binomial in ker Ψ̃ ,
and suppose m > m′. If m −m′ is an element of the sets (a) or (b) of Lemma
6.29, then it is an element of 〈si〉R×{0} or {0}×〈bi〉R[y] respectively, since {si}
and {bi} generate the corresponding submodules. If m−m′ is in set (c), then by
Lemma 6.30(c), m ∈ {0}×〈vi〉R[y], say m = yαvi. Then (m−m′)−yα(vi−wi) is
in set (b), and these elements are in the right-hand-side of (6.15) as was already
shown.

Standard bases for left-right tangent spaces In order to formulate the
theorem, we now introduce the map Φ. As in previous cases, the image of Φ will
be the kernel of Ψ , if suitable conditions are met. Recall that Ψ1 is the restriction
of Ψ to Rk × {0}.
Definition 6.32. Let {s1, . . . , sp}, {b1, . . . , bq}, {v1 −w1, . . . , vr −wr} be as in
Lemma 6.31. Let ε1i be canonical basis vectors of Rp, let ε2i be those of R[y]q

and ε3i those of R[y]r. Suppose both Ψ and Ψ1 have the normal form property,
and let NFΨ , NFΨ1 be normal forms. Then Φ is defined as follows:

Φ : Rp ⊕R[y]q ⊕R[y]r → Rk ⊕R[y]l

xαε1i �→ (xαsi, 0) − (xα NFΨ1
α (Ψ1si), 0

)
(i = 1 . . . p)

yβε2i �→
(
0, yβbi

) − yβ NFΨα(Ψ(0, bi)) (i = 1 . . . q)
yβε3i �→ yβ(vi − wi) − yβ NFΨα(Ψ(vi − wi)) (i = 1 . . . r)

Wherever appropriate, multiplication is according to the ordinary R[y]-module
structure.

The definition of Φ on Rp × {0} × {0} uses the normal form NFΨ1
α instead of

NFΨα , since the latter is not guaranteed to map into Rk × {0}, and only on that
subset can we use the R-module structure, instead of the coarser structure of an
R[y]-module.

Extending the ordinary R[y]-module structure in the obvious way to Rp ⊕
R[y]q⊕R[y]r, the map Φ becomes an ordinary R[y]-module homomorphism. The
map Ψ̃ is defined as usual, by setting Ψ̃m := LMΨm for monomials, and extend-
ing it linearly. Then, similarly extending the monomial R[y]-module structure
to Rp ⊕R[y]q ⊕R[y]r, makes Φ̃ a monomial R[y]-module homomorphism.

Theorem 6.33. Let {si} ⊂ Rk, {bi} ⊂ R[y]l and {vi −wi} ⊂ Rk ⊕R[y]l be as
in Lemma 6.31. Let Φ be defined as above. Suppose that

1. NFΨ1
r (Ψ1si) = 0, (i = 1 . . . p)

2. NFΨr (Ψ(0, bi)) = 0, (i = 1 . . . q)
3. NFΨr (Ψ(vi − wi)) = 0. (i = 1 . . . r)

Then:



126 6.4. Instances of standard bases

Fig. 6.8 The full LR-tangent space diagram

a) The triple
({h1, . . . , hk}, {f1, . . . , fl}, {g1, . . . , gm})

forms a standard basis for

ImΨ = 〈h1, . . . , hk〉R + {f1, . . . , fl}R[g1, . . . , gm].

b) The map Φ is a standard map, and ImΦ = kerΨ .

Proof: Assumptions 1 to 3, together with the definition of Φ as an ordinary
R[y]-module homomorphism, imply that ImΦ ⊆ kerΨ . By Lemma 6.12 applied
to Ψ and Ψ1 and their corresponding normal forms, we find the following:

LMΦxαε1i = LM(xαsi, 0)
LMΦyβε2i = LM(0, yβbi)

LMΦyβε3i = LM yβ(vi − wi) = LM yβvi

Using Lemma 6.31 it follows that Im Φ̃ ⊇ LM ker Ψ̃ .
The map Φ has the normal form property, because the term orders involved

are well-orders. The standard map theorem 6.10 applies, from which the results
ImΦ = kerΨ and Im Φ̃ = LM ImΦ follow immediately. The statement Im Ψ̃ =
LM ImΨ means that the triple ({hi}, {fi}, {gi}) forms a standard basis for ImΨ .
This completes the proof.

Implementing the criterion The map NFΨ1
r of Theorem 6.33 is just the

normal form algorithm 6.2 for ideals. The algorithm that computes NFΨr is the
‘union’ of algorithm 6.28 for modules over subalgebras, and algorithm 6.2: For
each leading term, try to write it as an ideal element and, when that fails, try
to write it as an element of the subalgebra-module.

In sections 6.4.1 and 6.4.4 it is explained how to compute syzygies of the first
and second kind, the si and bi of Theorem 6.33. We now assume that {h1, . . . , hk}
is already a standard ideal basis. This means that the Ψ1si reduce to zero so that
we can forget about syzygies of the first kind. It remains to find generators vi
of the R[y]-module Ψ̃−1

2 (LM 〈h1, . . . , hk〉). Using the notation of section 6.4.4,
this submodule is generated by the monomials in 〈IN ∪ {LMh1, . . . , LMhk}〉 in-
tersected with {1, t2, . . . , tl}R[y] (here we use that {h1, . . . , hk} is a standard
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basis). A possible line of attack is therefore: Compute generators of the largest
monomial ideal contained in 〈IN ∪ {LMh1, . . . , LMhk}〉 ∩R[t, y] (which is auto-
matically a Gröbner basis), and select the elements in {1, t2, . . . , tl}R[y]. With
the proper term order, this amounts to one Gröbner basis calculation, and one
‘inverse’ Gröbner basis calculation. More precisely, this is the algorithm:

Algorithm 6.34. (Computing syzygies vi − wi of the third kind)
Input: A basis G for the ideal IN (see Prop. 6.26), a term order � with {yi} �
{ti} � {xi} which is graded in the ti, a map Ψ with Ψe21 = f1 = 1, and such
that {Ψe11, . . . , Ψe1k} = {h1, . . . , hk} is a Gröbner basis.
Output: Generators v1, . . . , vr of the monomial ideal Ψ̃−1

2 (〈LMh1, . . . , LMhk〉),
corresponding elements w1, . . . , wr ∈ Rk with Ψ̃2vi = Ψ̃1wi.
Algorithm:

Compute Gröbner basis G′ for 〈G ∪ {LMh1, . . . , LMhk}〉 with respect to
�.

Compute G′′ = G′ ∩ {1, t2, . . . , tl}R[y]
Find basis M of largest monomial subideal contained in 〈G′′〉 ⊆ R[t, y]
M ←M ∩ {1, t2, . . . , tl}R[y] and label the elements v1, v2, . . . , vr
For i = 1, . . . , r, do the following:

Find m ∈ R[x] and j such that Ψ̃2vi = m LMhj
wi ← me1j

EndFor

Proof: By the choice of term order �, the elements in B ∩ {1, t2, . . . , tl}R[y]
generate 〈B〉 ∩ {1, t2, . . . , tl}R[y], for any Gröbner basis B, hence the output
{v1, . . . , vr} is indeed a basis for the largest monomial ideal contained in IN ∩
{1, t2, . . . , tl}R[y]. The body of the final For-loop is simply the normal form
algorithm NFΨ1 for ideals written down explicitly – it takes only one pass for
monomials.

Remark 6.35. (A shortcut) If the basis G is a Gröbner basis for IN to start
with, the computation of G′ is a bit easier: Only syzygies of monomials and
binomials need to be checked. The result is a monomial, and its reduction is
either zero or a single new monomial.

To compute the basis M in line 3 of above algorithm, note that a monomial
is in 〈G′′〉 if and only if it is reduced to 0 by the ordinary normal form algorithm
6.2. The basis G′′ consists of binomials and monomials only (because the S-
polynomial that occur are either monomials or binomials; see [ES96, Prop. 1.1]).
A reduction by a binomial results in a (nonzero) monomial, whereas a monomial
reduction results in 0. Therefore, a basis for the largest monomial ideal contained
in M can be found by running the normal form algorithm backwards via the
binomials, starting from the monomials in G′′:

Algorithm 6.36. (Finding largest monomial subideal)
Input: A Gröbner basis G consisting of monomials and binomials only.
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Output: A (Gröbner) basis M for largest monomial ideal 〈M〉 ⊂ 〈G〉
Algorithm:

M ← all monomials of G
B ← all binomials of G
For all monomials xα in M , do the following:

For all binomials xβ − xγ in B (where xβ > xγ) do
If xβ+(α−γ)+ /∈ 〈M〉, then

Add it to M
EndIf

EndFor
EndFor
Output M

Here α+, where α is a vector in Zn, denotes the vector α with all negative entries
replaced by zeroes.
Proof: Let m be a monomial in 〈G〉. We shall prove: If m can be reduced
via a g ∈ G to m′ and m′ ∈ 〈M〉, then m ∈ 〈M〉. Since G is a Gröbner basis
a finite number of reduction steps yield a monomial m′′ which is a multiple of
some monomial in G. Since M contains all monomials of G this means that that
m′′ ∈ 〈M〉, hence by ‘backward induction’ m ∈ 〈M〉.

Write g = xβ−xγ and m = xδ, and assume that LM g = xβ |m = xδ, then the
reduct of m by g is xδ−β+γ . Assume that this monomial is in 〈M〉, say xα|xδ−β+γ

with xα ∈M . Using xβ |xδ it follows that x(α−γ)+ |xδ−β , and after multiplication
with xβ this becomes xβ+(α−γ)+ |xδ. By the algorithm, xβ+(α−γ)+ ∈ 〈M〉, hence
xδ ∈ 〈M〉.
Remark 6.37. (Efficiency) When a monomialm is added toM , it may render
other monomials in M redundant, namely those that are multiples of m. The
algorithm becomes a little more efficient if these are removed.

6.5 The ring of formal power series

The analogue of a Gröbner basis, in the ring of formal power series, is commonly
called a standard basis.3 Introduced in 1964 by Hironaka [Hir64], it preceded
the notion of Gröbner basis, which was introduced by Buchberger in his thesis
of 1965, see [Buc65]. Meanwhile it has been shown (see e.g. [Bec90a, Bec90b,
Bec93]) that concepts in one context have close analogues in the other. The
aim of this section is to show that the standard basis criteria developed above,
for various subsets of the polynomial ring, have similar analogues in the ring
of formal power series. Because of the modular (or ‘object-oriented’) set-up, we
only have to show that the normal form property continues to hold.
3 In this chapter we call such bases standard ideal bases, and use the term standard

basis in the more general sense explained before.
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6.5.1 Three approaches

A polynomial has finitely many terms, so whatever term order is chosen, the
leading or highest term is well-defined. This is not so for formal power series.
In that case, to guarantee existence of the leading term, the term order should
be a reversed well-order, that is, every nonempty subset of terms should have
a highest term. In this section we suppose that the term order is a reversed
well-order.

Unless the number of monomials is finite, a reversed well-order is not a well-
order, and the normal form algorithm 6.2 will not terminate in general, so exis-
tence of a normal form becomes an issue. There are different ways to approach
this problem. Instead of looking at all ideals, one can restrict to ideals gener-
ated by polynomials (cf. [CLO98, p. 165]). It turns out that such ideals admit
standard bases consisting of rational functions. Moreover a suitable normal form
algorithm exists, acting within the ring of rational functions. This algorithm is
known as the Mora normal form, see [Mor82, Mor85], and leads to the theory
of standard ideal bases in local rings, see [GP88].

Another way of dealing with the infiniteness is to truncate. This makes the
set of monomials finite, and hence recovers the well-ordering property of the
term order. Although Mora’s approach is more elegant than the method of trun-
cation, the former only seems to work in the context of ideals. For our intended
application we also need subalgebra bases, which are infinite in general, so that
we need to truncate anyhow. See section 6.5.3 for more details.

A third approach is to let go of the algorithmic character altogether, and
define the normal form map inductively. In this way we recover Hironaka’s result
that every ideal has a standard basis, see also [Bec93]. This is the subject of the
next section.

6.5.2 Existence of a normal form for formal power series

In order to prove that a normal form map exists, we need some lemmas. We
assume the term order is a reversed well-order.

Lemma 6.38. Let u �= 1 be a monomial, and assume u has no successor. Then
there exists a strictly decreasing sequence of monomials ui, i ∈ N such that
u = infi∈N u

i.

Proof: The set of monomials is countable. Let wi be a counting of them,
without duplicates, and assume w0 = 1. Set u0 = 1 and define

ui+1 := wj with j := min{k|ui > wk > u}.
(Note that j > i.) Each ui+1 is well-defined since otherwise ui would be a
successor of u. It is clear that {ui} is strictly decreasing. To prove that u = infi ui,
let wn be any monomial larger than u, then since un+1 = wj for some j > n,
this implies that un ≤ wn by definition of un+1.
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The topology on the ring of formal power series R = R[[x]] is that of term-
wise convergence. This implies that a sum of terms

∑
i ti converges if |ti| → ∞

as i → ∞. Here | · | is the total degree: |cxα| := α1 + · · · + αn. Given a map
Ψ : M → R, we extend the total degree function to M by setting |m| := |Ψ̃m|.
Now we can state the result:

Proposition 6.39. Let Ψ : M → R be a linear map, such that the associated
monomial map Ψ̃ is well-defined. Assume further that M has the topology of
term-wise convergence, and that Ψ is continuous. Then Ψ has the normal form
property.

Remark 6.40. By the assumption that Ψ̃ is well-defined we mean that Ψm �= 0
for monomials m. Continuity of Ψ is equivalent to the statement that for any
monomialm ∈ R there are only finitely many monomialsm′ such that LMΨm′ =
m.

For the proof we need two more results.

Lemma 6.41. Let ui be a strictly decreasing sequence of monomials. Then
|ui| → ∞ as i→ ∞.

Proof: Assume it does not, then there is an infinite, strictly decreasing subse-
quence ûi with |ûi| =constant, but there are only finitely many monomials with
a given total degree.

Theorem 6.42. (Transfinite induction) Let P be a property of elements of a
set T , and let T be well-ordered. Suppose that for all u ∈ T we have that if
P (u′) holds for all u′ < u, then P (u) holds. (In particular, P (1) is true, where 1
is the smallest element of T .) Then P (u) holds for all u ∈ T .

Proof: [Wae60, p. 17] Suppose the set S := {u ∈ T |P (u) does not hold} is
non-empty. By well-orderedness it has a smallest element, say u; in other words
P (u′) holds for every u′ < u. This implies, by assumption, that P (u) holds, a
contradiction.

Proof of Proposition 6.39: Let f ∈ R be given. Let T be the set of monomials
of R, with the element −∞ adjoined, which is supposed to be smaller than any
monomial. Let P (u), with u ∈ T , denote the following property:

P (u) ⇔


αu ∈M and ru ∈ R are well-defined,
Ψαu + ru = f,

ru = 0 or LM ru /∈ Im Ψ̃ or LM ru ≤ u.

Assume P (u′) holds for all u′ > u. We show that P (u) also holds.
If u = 1, the largest element, then set α1 := 0 and r1 := f , and P (1) holds.
Suppose u has a successor v > u, then P (v) holds. If rv = 0 or LM rv /∈ Im Ψ̃

or LM rv �= v, then set ru := rv and αu := αv, making P (u) true. If not, then
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LM rv ∈ Im Ψ̃ , say LT rv = Ψ̃ tv. Define αu := αv + tv and ru := rv − Ψtv, and
P (u) holds.

So suppose u < 1 has no successor, then by Lemma 6.38 a decreasing sequence
ui of monomials exists, with infimum u. (This is also true if u = −∞.) Applying
Lemma 6.41 we find |ui| → ∞. From the way the rui are constructed, using
continuity of Ψ , this implies that the sequence rui converges. By definition of
total degree on M , also |tui | → ∞. Since M has the topology of term-wise
convergence, this implies convergence of αui . Define ru := limi→∞ rui and αu :=
limi→∞ αui . Again using continuity of Ψ we find Ψαu + ru = limi→∞(Ψαui +
rui) = f . If rui does not become constant from some i on, we have either ru = 0
or LM ru ≤ v for all v > u. Since u has no successor the latter inequality implies
LM ru ≤ u. This shows that (∀u′ > u : P (u′)) ⇒ P (u).

For the application of Theorem 6.42, reverse the ordering of the monomials.
Then the order becomes a well-order (the smallest element of any set of monomi-
als {ti} is LM

∑
ti). The conclusion is that P (u) holds for all u ∈ T , in particular

for u = −∞. Define NFΨ (f) := (α−∞, r−∞), then P (−∞) implies that this is a
normal form for Ψ .

Example: Standard ideal- and subalgebra-bases The statement and proofs
of the theorems on standard ideal bases (Gröbner bases) and standard subideal
bases in polynomial rings, remain unchanged in the present setting of formal
power series. The term order is such that 1 is the largest monomial. Again
the order is taken to be multiplicative, in the sense that m1 < m2 implies
mm1 < mm2 for any monomial m for which multiplication is defined. Only the
normal form algorithm should be replaced by the normal form map, and the
word “Gröbner basis” should be replaced by “standard ideal basis”. We refer to
sections 6.4.1 and 6.4.3 for details.

6.5.3 Truncated formal power series

In actual computations it is not possible to work with objects that require and
infinite amount of data for their description. In particular, we cannot do com-
putations with formal power series. In Sect. 6.5 two solutions to this problem
were mentioned, namely restricting to rational functions, and truncating. In this
section we describe the latter in more detail.

How to truncate Let us suppose that a map Ψ : M → R has been fixed, as
well as a monomial order on R, and a compatible order on M . A natural and
general way of truncating is to restrict to some finite vector space generated
by monomials. In this section we give a condition on this vector space R′ that
makes the truncation “nicely behaved”.

The philosophy is as follows. Given spaces M ′ and R′, we restrict Ψ : M → R
to a map between finite dimensional vector spaces Ψ ′ : M ′ → R′, by setting
Ψ ′ := πR′Ψ |M ′ , where πR′ is the canonical projection to R′. Then we want that
the information contained in Ψ is also contained in the restriction of Ψ , insofar as
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it pertains to the monomials in M ′ and R′. In more precise terms, the following
seem natural conditions:

(1) ImΨ ′ = πR′ ImΨ,

(2) (Ψ ′)̃ = (Ψ̃)′,
(3) Im Ψ̃ ′ = πR′ Im Ψ̃ ,
(4) Ψ is a standard map ⇒ Ψ ′ is a standard map.

It is difficult to see what the weakest condition on M ′ and R′ is, given a map Ψ ,
such that these conditions are fulfilled. However, a natural condition on R′ and
M ′ exists that ensures conditions (1) to (4) above, namely

R′ := {m|m a monomial,m > m′},(6.16)

M ′ := {m ∈M |m a monomial, Ψ̃m ∈ R′},

for some monomial m′. The form of R′ implies that the maps LM and πR′

commute on R. This in turn implies (2) and (4). The form of M ′ then implies
(1) and (3).

In practice the term orders are multiplicative, and a setR′ is finite-dimensional
and nontrivial only if the term order is a graded term order. For instance, for
pure lexicographic orders the set (6.16) either is infinite-dimensional, or does not
contain all variables. The vector space M ′ is of the same form as R′, because of
the compatibility of the term orders.

There is another way of describing the truncation. In the case that R is a
ring, which includes all of our applications, the span of B is the quotient of R by
an ideal, because of the multiplicative property of the term order. This ideal is
called the truncation ideal. Generators of this ideal include m′, but usually it is
necessary to include more generators. The truncation ideal is never used in this
work.

Normal form For finite sets of monomials, a total order is always a well-order.
Therefore algorithms 6.13 and 6.14 terminate, which proves that the normal form
property holds in the context of truncated power series, and reduced normal
forms exist.
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