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Abstract. This paper deals with the numerical continuation of invariant manifolds, re-

gardless of the restricted dynamics. Typically, invariant manifolds make up the skeleton

of the dynamics of phase space. Examples include limit sets, co-dimension 1 manifolds

separating basins of attraction (separatrices), stable/unstable/center manifolds, nested

hierarchies of attracting manifolds in dissipative systems and manifolds in phase plus pa-

rameter space on which bifurcations occur. These manifolds are for the most part invisible

to current numerical methods. The approach is based on the general principle of normal

hyperbolicity, where the graph transform leads to the numerical algorithms. This gives

a highly multiple purpose method. Examples of computations of both attracting and

saddle-type (1D and 2D) manifolds will be given, with and without non-uniform adaptive

refinement. A convergence result for the algorithm will be sketched.
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1 Introduction

Invariant manifolds of dynamical systems largely determine the geometry
of their phase space. Codimension 1 manifolds, for example, may separate
basins of attraction. But in general equilibria, closed curves, invariant tori,
their stable and unstable manifolds etc. are the corner stones around which a
more detailed analysis may be in order. If the invariant manifold of interest,
say Σ1, is no attractor, it may still lie in a higher dimensional invariant
manifold, Σ2, which is. If the dynamics are restricted to Σ2 then Σ1 may
even serve as a separatrix. This is the kind of situation we want to look at
in the present paper. To fix thoughts think of Σ2 being a 3–torus attractor
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with phase lock dynamics, where the aim is to visualize an unstable 2–torus
Σ1 inside this 3–torus.

The key notion needed here is normal hyperbolicity of the invariant
manifold, which guarantees the smooth persistence of the manifold under
small perturbations of the system. This persistence property enables us to
develop robust numerical algorithms that compute these manifolds by nu-
merical continuation. At each step of the continuation process we use the
graph transform to find the new ‘perturbed’ invariant manifold. The graph
transform is a classical tool for proving the invariant manifold theorem (see
Section 2.1). This transform is a contraction on a Banach space of functions,
whose graph is near the invariant manifold. The fixed point of the graph
transform corresponds to the invariant manifold itself. See [9] for details.

Simple iteration of a dynamical system has been used a lot in the liter-
ature to visualize invariant manifolds. However, in general it is impossible to
numerically locate an invariant manifold by iteration, even in the case of a
normally hyperbolic attractor. The reason is that the manifold may contain
smaller attractors, like in the case of Σ2. Our method is independent of the
dynamics on the manifold and can in principal be used to compute Σ2.

Another advantage of our method can be explained by the example
of Σ2. Now finding the separatrix 2–torus Σ1 within Σ2 is hardly possible
by simple iteration. Indeed, the numerical errors grow exponentially in the
unstable direction. However, since Σ1 in the ambient space is normally hy-
perbolic of saddle–type, our methods apply and we can visualize this object.
In fact, our approach will reverse this numerical instability, effectively mak-
ing Σ1 a stable object. We emphasize that the algorithm converges whether
the dynamics on Σ1 is quasi-periodic or more complicated, regardless.

The computation of invariant manifolds of higher dimension has been
addressed in the literature previously. Dieci and Lorenz [5] developed a
method to compute normally hyperbolic attracting tori. Their approach re-
quires global parametrizations of the tori. The method employs the graph
transform, and a convergence result is given in which the discretized graph
transform is a contraction. Broer, Osinga, and Vegter [3] present a method
to compute normally hyperbolic invariant manifolds of saddle–type. They
use simplicial complexes with flat faces to approximate manifolds. Since the
manifold is of saddle–type, the invariant stable/unstable splitting is com-
puted as a prerequisite to iterating the graph transform.

Three general aspects distinguish the present paper from previous at-
tempts. The first involves the discretization of the manifold. The approach
here approximates the manifold locally using polynomial maps from the tan-
gent space to the normal space. This gives a non-uniform approximation of
arbitrary order for any manifold. The second difference is in the choice of
coordinates in the neighborhood of the manifold. Briefly, our choice results in
smooth coordinates, an a-priori dimension reduction and an improvement in
contraction rate. The third aspect regards the convergence result. Computa-
tional experiments indicate the algorithm is contractive even in the absence
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of normal hyperbolicity. Normal exponential attraction is enough. To ex-
plain this, a convergence result is given, where we obtain the expected order
of approximation for the computed manifold, and that the discretized graph
transform is a contraction, without the hypothesis of normal hyperbolicity.
The reason this works is the following. To iterate our procedure, the dis-
cretized graph transform ΓD must preserve the bound on the Lipschitz norm
of a section. The essential difficulty is that given a function bounded only in
Lipschitz norm, there is not a very good bound on the Lipschitz constant of
its interpolant. The estimate that we use comes from the observation that as
the C0 norm of a function goes to zero, the Lipschitz norm of its interpolant
goes to zero, for a fixed mesh size.

2 Normal hyperbolicity and the invariant man-

ifold theorem

This section reviews part of the theory of normally hyperbolic manifolds
and paves the way for the development of an efficient algorithm for their
computation. First we present an overview of some basic definitions and
results from [9]. Consider a Cr diffeomorphism F on R

n, having an r–
normally hyperbolic invariant manifold Σ ⊂ R

n. Recall that Σ is r–normally
hyperbolic for F , r ≥ 1, if there is a continuous DF–invariant splitting

TΣ(Rn) = Nu(Σ) ⊕ T (Σ) ⊕ Ns(Σ), (1)

and a Riemann structure on the tangent bundle TΣ(Rn), such that, for y ∈ Σ,
i ≥ 0, and 0 ≤ k ≤ r:

||DF i |Ns
y (Σ) || · ||(DF i |Ty(Σ))−1 ||

k
≤ cµi,

||(DF i |Nu
y (Σ))−1 || · ||DF i |Ty(Σ) ||

k
≤ c (1/λ)

i
,

(2)

for some 0 < µ < 1 < λ < ∞, 0 < c < ∞. Here the operator norms are
associated with the Riemann structure on TΣ(Rn).

According to the Invariant Manifold Theorem [9, Theorem 4.1], a Cr

diffeomorphism F̃ , that is Cr–near F , has an r–normally hyperbolic invariant
manifold Σ̃, that is Cr and Cr–near Σ. Our primary goal is the computa-
tion of Σ̃. To compute Σ̃, we look at the classical proof for its existence.
The manifold Σ̃ is constructed in a vector bundle N(Σ) transverse to T (Σ).
The invariant splitting (1) induces a splitting of this transverse bundle into
stable and unstable parts, N(Σ) = Nu(Σ)⊕Ns(Σ). The hyperbolic splitting

Nu(Σ) ⊕ T (Σ) ⊕ Ns(Σ) has all the growth properties of the invariant split-
ting (1). The graph transform is then defined in terms of this hyperbolic
splitting. A natural choice for N(Σ) is given by the invariant splitting (1).
One drawback is that this N(Σ) is not necessarily Lipschitz, so may not yield
smooth coordinates of a neighborhood of Σ.
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Our approach will be to construct Σ̃ in the orthogonal bundle N(Σ), that
is, the bundle whose fiber at a point y ∈ Σ is the orthogonal complement in
Ty(Rn) of Ty(Σ), with respect to the Euclidean norm. This bundle has one
degree of smoothness less than Σ. Also, N(Σ) is a-priori known (it is given
by Σ), unlike the transverse bundle invariant under DF . A third benefit of
N(Σ) is an improved contraction rate for the linear graph transform updating
the hyperbolic splitting. The problem of determining the hyperbolic splitting
is a-priori restricted to N(Σ). Hence, only the stable and unstable growth
rates enter the picture, not the tangent growth rate. From now on, by the
notation N(Σ) = Nu(Σ) ⊕ Ns(Σ) we mean any given transverse bundle. In
computations, N(Σ) will be an approximation of the orthogonal bundle.

To formulate the graph transform in a way suitable for a numerical
algorithm, we need a concrete representation of the hyperbolic splitting
Nu(Σ) ⊕ T (Σ) ⊕ Ns(Σ). To this end, let P s(y) : R

n → R
n denote the pro-

jection matrix with range Ns
y (Σ) and nullspace Ty(Σ) ⊕ Nu

y (Σ), let Pu(y) :
R

n → R
n denote the projection matrix with range Nu

y (Σ) and nullspace
Ty(Σ) ⊕ Ns

y (Σ), and let Q(y) : R
n → R

n denote the orthogonal projection
matrix with range Ty(Σ). In practice, the projections are calculated using
orthonormal moving frames spanning Nu(Σ), Ns(Σ), and T (Σ) in TΣ(Rn).

In overview, one step of our continuation algorithm has two parts. The
initial data is an F–invariant manifold Σ with its hyperbolic splitting Nu(Σ)⊕
T (Σ) ⊕ Ns(Σ). The first step uses the graph transform on Σ with Nu(Σ) ⊕
T (Σ) ⊕ Ns(Σ) to determine the F̃–invariant manifold Σ̃. The second step
uses the linear graph transform L together with initial data determined by Σ̃
and Nu(Σ) ⊕ T (Σ) ⊕ Ns(Σ) to determine the hyperbolic splitting Nu(Σ̃) ⊕
T (Σ̃) ⊕ Ns(Σ̃) of Σ̃. Now the first and second steps may be repeated with
initial data Σ̃ and Nu(Σ̃)⊕T (Σ̃)⊕Ns(Σ̃). In fact there are two linear graph
transforms Ls and Lu which locate Ns(Σ̃) and Nu(Σ̃), respectively. For
example, Ls operates on a space of j–plane bundles near Ns(Σ) in TΣ(Rn),
where j = dimNs(Σ). The linear graph transform Ls is a contraction on
this space with fixed point Ns(Σ̃). This is elaborated in [2].

3 The graph transform

In this section a concrete formulation of the graph transform is given, which
will be used to develop an algorithm for the invariant manifold. The mani-
fold Σ ⊂ R

n is a C1 compact boundaryless manifold, F–invariant, r-normally
hyperbolic, r ≥ 1, with splitting Nu(Σ) ⊕ T (Σ) ⊕ Ns(Σ). Here, Nu(Σ) ⊕
Ns(Σ) = N(Σ) is any bundle transverse to T (Σ), where Ns

y (Σ) (resp. Nu
y (Σ)),

y ∈ Σ, are Lipschitz continuous functions Σ → Gn,j . Here, Gn,j is the Grass-
mann manifold of j–planes of R

n, where j = dim Ns(Σ) (resp. Nu(Σ)). We
refer to Ns(Σ) as the stable bundle and to Nu(Σ) as the unstable bundle.

Under these assumptions, N(Σ) induces a tubular neighborhood U of
Σ, [8]. In fact, U is lipeomorphic to {(p, v) : p ∈ Σ, v ∈ Np(Σ), |v| < ε} for
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Σ

q

y = π ◦ F̃ (p + vs(p) + vu(p))

q

F̃ (p + vs(p) + vu(p))

¤
¤¤²

q

p

q p + vs(p) + vu(p)

Figure 1: Invariance Condition

some ε > 0. The point (p, v) ∈ N(Σ) corresponds to the point p + v ∈ U .
From now on we take N(Σ) = {(p, v) : p ∈ Σ, v ∈ Np(Σ), |v| < ε}, and do
not distinguish between N(Σ) and the neighborhood U of Σ. For each y ∈ U ,
there is a unique fiber of N(Σ) through y, say Np(Σ). The projection of y
onto Σ is π(y) = p ∈ Σ. The vector y − π(y), being in Nπ(y)(Σ), may be
decomposed uniquely as y−π(y) = vs+vu, vs ∈ Ns

π(y)(Σ) and vu ∈ Nu
π(y)(Σ).

Hence, any point y in U may be written y = π(y) + vs + vu.
We look for an F̃–invariant manifold Σ̃ in the neighborhood U of Σ.

Now, Σ̃ will be represented as a graph in Ns(Σ) plus a graph in Nu(Σ).
Thus, suppose that Ss

ε,δ is the space of Lipschitz sections of Ns(Σ) with
Lipschitz constant less than δ, [6, 9], where ε is the diameter of the tubular
neighborhood U . Similarly define Su

ε,δ. Elements of Ss
ε,δ are Lipschitz maps

σs : Σ → Ns(Σ), and we write σs(p) = (p, vs(p)), for some vs(p) ∈ Ns
p (Σ).

The notation for Su
ε,δ is analogous. The space Ss

ε,δ (Su
ε,δ) with the natural C0

norm on sections, denoted | · |b, is complete. Now define Sε,δ to be the set of
all pairs of sections (σs, σu) with σs ∈ Ss

ε,δ, and σu ∈ Su
ε,δ. The space Sε,δ is

complete with respect to the norm ‖(σs, σu)‖ ≡ max{|σs|b, |σ
u|b}.

If σ = (σs, σu) ∈ Sε,δ, σs(p) = (p, vs(p)) and σu(p) = (p, vu(p)), then

graph{σ} ≡ {p + vs(p) + vu(p) : p ∈ Σ} (3)

is a Lipschitz manifold near Σ in Lipschitz norm for small ε, δ.
We may split the F̃–invariance condition graph{σ} = F̃ (graph{σ}) into

two coupled equations, a part on Σ and a part normal to Σ. That is, {p +
vs(p) + vu(p) : p ∈ Σ} is F̃–invariant if and only if

vs(y) + vu(y) = F̃ (p + vs(p) + vu(p)) − y,

y = π ◦ F̃ (p + vs(p) + vu(p)),
(4)

for p ∈ Σ. See Figure 1. Under our hypotheses, y = π ◦ F̃ (p + vs(p) + vu(p))
may be solved for p ∈ Σ given y ∈ Σ, σs ∈ Ss

ε,δ and σu ∈ Su
ε,δ for small ε, δ,

and θ ≡ ‖F − F̃‖C1 . Denote this solution by p = p(y, vs, vu).
The graph transform is a map Γ : Sε,δ → Sε,δ given by a pair Γ(σ) ≡

(Γs(σ),Γu(σ)), for σ ∈ Sε,δ. Putting Γs(σ)(p) ≡ (p,ws(p)), we define ws(p),
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by multiplying the first equation of (4) by P s(y),

ws(y) = P s(y)
[

F̃ (p + vs(p) + vu(p)) − y
]

, p = p(y, vs, vu), (5)

for y ∈ Σ.

Putting Γu(σ)(p) ≡ (p,wu(p)), and by multiplying the first equation of
(4) by Pu(y), we define wu(p), for p ∈ Σ, implicitly from the relationship

vu(y) = Pu(y)
[

F̃ (p + vs(p) + wu(p)) − y
]

,

y = π ◦ F̃ (p + vs(p) + wu(p)),
(6)

for p ∈ Σ. In (6), there is a unique solution for wu(p) for small θ, ε, and δ.

If (σs, σu) = (Γs(σ),Γu(σ)), then (5) and (6) imply (4), and hence the
graph of (σs, σu) is F̃–invariant. Hence σ is a fixed point of Γ if and only if
the graph of σ is an F̃–invariant manifold.

To insure that Γ is a contraction under the condition of (eventual) r–
normal hyperbolicity (2), it may be necessary to replace F̃ with F̃N , some
large integer N , in the definition of Γ above. This is a standard step in the
classical proof of the Invariant Manifold Theorem [6, 9]. With this replace-
ment, we have the main theorem concerning the existence of Σ̃ obtained as
the graph of the fixed point of Γ, [6, 9, 11, 12].

Theorem 1 Let F, F̃ : R
n → R

n be Cr maps for some r ≥ 1. Suppose

Σ ⊂ R
n is a compact boundaryless manifold of class C1. Also, suppose Σ is

F–invariant, r–normally hyperbolic, and that F |Σ is a diffeomorphism.

Then there exists θ > 0 such that, if ‖F − F̃‖Cr < θ, there exists a Cr

manifold Σ̃, Cr close to Σ, F̃–invariant and r–normally hyperbolic.

Moreover, suppose Nu
p (Σ), Ns

p (Σ) are Lipschitz functions of p ∈ Σ, and

Γ is the graph transform defined above. Then there exists θ, ε, δ > 0, such

that Γ : Sε,δ → Sε,δ is a contraction whose fixed point has graph equal to Σ̃.

Remark 1 The case that F is one or more steps of a time discretization falls
into the framework of Sections 2 and 3, [7]. Thus the results of this paper
apply to vector fields as well as maps.

4 Algorithm for the Invariant Manifold

In Sections 2 and 3 we discussed the graph transform in a setting suitable
for computations. This involved the choice of an appropriate hyperbolic
splitting, and explicit formulas for the graph transform. This section gives
a computable approximation of any manifold Σ̃ which is C1–near the initial
manifold Σ. This leads to an algorithm for approximating Σ̃, obtained by
applying the graph transform to these discrete manifolds.



Algorithms for Invariant Manifolds 7

To discretize Σ̃, initial data consisting of a C1 compact manifold Σ ⊂ R
n,

with a Lipschitz transverse bundle N(Σ) = Ns(Σ)⊕Nu(Σ) are required. This
scheme gives an approximation of order p ≥ 1 for dim Σ ≡ d ≥ 1.

The first component of the discrete manifold is a d–dimensional sim-
plicial complex C in R

n with vertices in Σ. The d–simplices of C will be
denoted by C1, . . . , Cm. The maximal diameter of the d–simplices of C will
be denoted H > 0, and the polyhedron determined by C by ΣP

H . We assume
that ΣP

H is a d–dimensional manifold in R
n homeomorphic to Σ. In this case

we say that C supports Σ. It is well known that every compact submanifold
of R

n has a supporting simplicial complex. Note that since Σ ∈ C1, we have
dist

(

ΣP
H ,Σ

)

= o(H), as H → 0. The family of sets {Ci}
m
i=1, with the associ-

ated parameter H, must be a regular family [4]. Roughly, this means none of
the Ci are almost contained in a (d − 1)–dimensional hyperplane, uniformly
as H → 0. The second component is the principal lattice of order p of each
d–simplex Ck, [4]. For instance, in the case of the standard 2–simplex, the
positions of the points of the principal lattice of order p are given by the first
p+1 rows of Pascal’s triangle. The points of the lattice are called the ‘nodes’
of Ck.

The third component is a discrete representation of the stable and un-
stable bundles of Σ, Ns(Σ) and Nu(Σ). For this we must assume H is small
enough that N(Σ) is transverse to ΣP

H . Then N(Σ) induces a one-to-one
correspondence between points y ∈ ΣP

H and u ∈ Σ. Now we approximate
Ns(Σ) and Nu(Σ) by bundles over ΣP

H . The initial data for the approx-
imation consists of the fibers at the vertices of each Ck. These are then
interpolated as functions over each Ck. The interpolated N(Σ) are globally
Lipschitz and transverse to T (Σ), hence induce a tubular neighborhood. See
[1,2] for details.

The fourth and final component is, for each Ck, a point in each of the
stable and unstable fibers at each node. At a node, the sum of these two
points is the intersection of Σ̃ with the normal fiber. The points of intersec-
tion of Σ̃ with the normal fibers at the nodes are called the ‘grid points’. For
each Ck, the stable (unstable) points determine a stable (unstable) polyno-
mial. We use the coordinates induced by Ns(Σ) (resp. Nu(Σ)) to reduce the
problem of interpolating the stable (unstable) points to one involving func-
tions Ck → R

j , where j = dim Ns(Σ) (resp. Nu(Σ)). Then, in coordinates,
the polynomials are the pth order Lagrange polynomials on the d–simplex Ck,
[4]. Locally, the discrete manifold approximating Σ̃ is the sum of graphs of
stable and unstable polynomials defined on Ck. This discrete manifold, Σ̃D,
is a pth order approximation to Σ̃, as H → 0.

A discrete version ΓD of the graph transform Γ may now be defined.
Conceptually, there is no difference between the derivation of the discrete
graph transform ΓD and the derivation of Γ in Section 3. Using ΣP

H in place
of the initial manifold Σ and using the discrete normal fibers and the discrete
manifolds Σ̃D for the candidate manifolds near Σ, one derives ΓD just as Γ
was derived. See [1,2] for details.
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Figure 2: Invariant torus of fattened Thom map, losing smoothness, ε = 0.6;
left: 5000 third order elements, right: first order adaptively refined

5 Computations

This section contains some of the numerical experiments done to test the
performance of our algorithm. In Section 6, we will propose a mathematical
mechanism for the observed convergence of the algorithm.

These examples illustrate different features and benefits of our approach.
To demonstrate that the algorithm converges regardless of the dynamics on
the manifold, examples were chosen with a wide variety of dynamics. The
first three examples are computations of invariant tori. In the first torus
there is a dense intersection of the stable and unstable manifolds of a saddle
point. In the second torus, there are two saddle points, a source, and a sink
– almost all the points on the torus are in the basin of attraction of the sink.
The third is a quasiperiodic torus of a vector field, which may be phase-locked
depending on the value of the continuation parameter. The last two examples
are saddle–type invariant curves. In the first of these there is a range of
dynamics as the continuation parameter varies: initially quasiperiodic with
phase locking, then a saddle–node bifurcation. The second is a saddle–type
periodic orbit of a vector field. No special difficulty was ever observed in the
continuation due to these different dynamical scenarios.

Another advantage of our approach is illustrated in Examples 1 and 2.
In these examples, continuation is carried out past the point where normal
hyperbolicity of the torus is lost. As indicated earlier, contractivity of ΓD is
retained because the tori remain attractive. Thus, it is possible to see how
the tori lose their smoothness as the parameter varies. An additional feature
is highlighted in the computations involving vector fields, Examples 3 and 5.
In both cases, initial data is obtained by simulation, and is quite rough. Here,
ΓD converged with this rough initial data, smoothing it out. The examples
also illustrate that ΓD remains contractive for different values of p ≥ 1 and
a non–uniform mesh. Example 1 uses p = 3 and a non–uniform mesh, and
Example 4 uses p = 3. Additionally, in Examples 1 and 4, comparisons are
made to computations in [3]. Here, we are able to carry continuation farther
due to the choice of the hyperbolic splitting mentioned earlier.
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Figure 3: Invariant torus of a fattened ‘sink’ map, losing smoothness, ε = 0.4;
5000 first order elements

Example 1: The 3D fattened Thom map

xi+1 = 0.1xi + ε sin zi

yi+1 = zi + yi + εxi

zi+1 = 2zi + yi + εxi

, (xi, yi, zi) ∈ R × S1 × S1 (7)

For (7) with ε = 0, x = 0 is an attracting torus. The torus loses hyperbolicity
at ε = 0.47, although it is still attracting. Starting from ε = 0.0, we set
ε = 0.3 and iterated to the invariant torus. This took 5 iterates, with average
contraction 0.1179. This is close to 0.1, which is what we expect from (7).
Taking ε steps of 0.02, we continued the torus to ε = 0.6, see Figure 2.
The second computation with example (7) used adaptive refinement. We
started with 800 first order elements. After each iteration, elements whose
tangent data differed significantly from neighboring elements’ tangent data
were subdivided. Taking ε steps of 0.02, we continued the torus to ε = 0.6.
The average contraction was 0.12, and the final torus, illustrated in Figure 2,
has 4652 elements. For ε ≈ 0.47, the shape of our torus is the same as that
computed in [3]. Indeed, the shape of the ε = 0.6 torus is near that of the
ε ≈ 0.47 torus, except that there appears to be a ridge along which the torus
is losing smoothness, see Figure 2. In fact, there is small scale bumpiness
along the ridge of the torus on the right in Figure 2, and this area is the site
of a further loss of smoothness for increasing ε.

Example 2: A fattened ‘sink’ map

xi+1 = 0.25xi + ε sin zi

yi+1 = yi + 0.5 sin yi + εxi

zi+1 = zi − 0.5 cos yi sin zi + εxi

, (xi, yi, zi) ∈ R × S1 × S1 (8)

For (8) with ε = 0, x = 0 is an attracting torus. At ε = 0.13, the torus
loses hyperbolicity at a sink. For ε > 0.13, the sink has two stable complex
conjugate eigenvalues whose eigenspace is a plane normal to the torus. We
continued the torus to ε = 0.4 using ε steps of 0.1. The average contraction
through the first two continuation steps was 0.2649, close to 0.25. In Figure
3, the influence of the linear behaviour at the sink is evident in the shape of
the torus as it appears to lose smoothness.
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Figure 4: Lorenz-84 invariant tori, near Hopf saddle–node bifurcation; 32768
first order elements; left: F = 1.84, right: F = 1.755

Example 3: The ‘Lorenz-84’ system, [13]

ẋ = −y2 − z2 − 0.25x + 0.25F
ẏ = xy − 4xy − y + G
ż = 4xy + xz − z

, (x, y, z) ∈ R
3 (9)

System (9) exhibits a Hopf saddle–node bifurcation near (F,G) = (1.68, 1.68),
[10]. There is a repelling torus in a region ‘above’ this point in parameter
space. We continued the torus along a segment with G fixed, ∆F = 0.01,
towards and away from the Hopf saddle–node point. The initial torus was
an approximation to the torus for (F,G) = (1.8, 1.65). Figure 4 shows the
two final tori computed, for F = 1.84 and F = 1.755. At this point, com-
putational instability was observed, although the torus continues to exist,
for increasing and decreasing F . This instability may be due to insufficient
numerical resolution and weak attraction. Note for decreasing F the torus
approaches a more sphere–like surface and the inner radius gets smaller. This
is expected since the parameters approach the Hopf saddle–node point.

Example 4: The 3D-fattened Arnold family

xi+1 = xi + 0.1 + ε(yi + zi/2 + sinxi)
yi+1 = 0.3(yi + sin xi)
zi+1 = 2.4(yi + zi + sin xi)

, (xi, yi, zi) ∈ S1 × R
2 (10)

For ε = 0, (10) has a closed curve of saddle–type. We continued the curve
to ε = 0.78, near where the curve loses hyperbolicity at a sink. The initial
invariant curve and hyperbolic splitting was analytically known. Here, ∆ε =
0.2, and the last ε value for which the hyperbolic splitting was computed was
0.6. Figure 5 shows the final curve with its hyperbolic splitting – the angle
between the stable and unstable parts of which is small. Similar results were
obtained in [3], where the curve was continued to ε = 0.7125.
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Arnold family curve with nearly
degenerate hyperbolic splitting,
ε = 0.78; 50 third order elements

Lorenz system curve near a ho-
moclinic orbit, r = 16.5; 200 first
order elements

Figure 5: Saddle–type invariant curves

Example 5: The Lorenz system, [14]

ẋ = 10(y − x)
ẏ = rx − y − xz
ż = xy − (8/3)z

, (x, y, z) ∈ R
3 (11)

At r = 20.0, (11) has a saddle–type periodic orbit, which was continued to
r = 16.5. Figure 5 shows the final curve near a homoclinic orbit. In this
example it was necessary to redistribute the grid points near the sharp bend
in the curve to prevent their spread during continuation.

6 Convergence of the Algorithm

In Section 3 the usual formulation of the graph transform was derived. In
Section 4 discrete manifolds were introduced. Then ΓD arose from consid-
ering the graph transform acting on discrete manifolds. Now we show that
ΓD is a contraction on a suitable space of functions. Thus the algorithm
converges to a discrete manifold Σ̃D. Also, if Σ̃ is sufficiently smooth, then
Σ̃D is a pth order approximation to Σ̃ as H → 0. In this section we give a
heuristic explanation of the convergence result. See [1] for details.

One step of ΓD differs from one step of Γ in two ways. First, the
stable/unstable and normal/tangent fibers used to define Γ are replaced by
approximations of these fibers. With this replacement, we stay within the
limits of the usual formulation of Γ. This is because our fiber approximations
are Lipschitz and have appropriate transversality properties. Second, after
the usual graph transform procedure, the resulting manifold is interpolated.
Hence, we may write the discrete graph transform as ΓD = Ip ◦ Γ. Here, Γ
is the usual graph transform (defined using the approximate stable/unstable
and normal/tangent fibers), and Ip is the pth order interpolation of manifolds
described in Section 4.

Under the assumption of normal hyperbolicity, Γ is a contraction on
the space of sections Sε,δ. A look at the proof of this [6, 9, 15] reveals three
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steps. (To simplify the discussion, assume that Σ is attracting.) First, for
any section σ bounded by ε, the section Γ ◦ σ is bounded by ε. This is
proved using only the attraction toward the manifold, by choosing ε and
θ ≡ ‖F − F̃‖C1 small. Second, for any section σ bounded by ε with Lipschitz
constant bounded by δ, the Lipschitz constant of Γ ◦ σ is bounded by δ.
This is proved using the normal hyperbolicity of Σ by choosing ε, δ, and θ
small. Third, the Lipschitz constant of Γ : Sε,δ → Sε,δ is less than one. To
prove this, one uses the attraction towards the manifold and the fact that Γ
preserves the bound ε and the Lipschitz constant δ of sections. Again, one
chooses ε, δ, and θ small.

Can we show that ΓD = Ip ◦ Γ is a contraction on a space of sections
similarly? Consider the first step above. On each simplex of ΣP

H , Ip is
Lagrange interpolation. So, given a section σ bounded by ε, Ip ◦ σ is a
section bounded by Cpε, some Cp ≥ 1. For a section σ bounded by ε, Γ ◦σ is
bounded by αε, some α ∈ (0, 1), for ε and θ small. In fact, α is the factor of
contraction towards Σ under F . Thus, by replacing F with FN if necessary
(as in Section 3), we may make α > 0 smaller than 1/Cp. Then for any
section σ bounded by ε, Ip ◦ Γ ◦ σ is bounded by Cpαε < ε. Now consider
the second step above. If σ is a section bounded by ε, Γ ◦ σ is bounded by
αε and hence the Lipschitz constant of Ip ◦ Γ ◦ σ is bounded by C ′

pαε/H,
some C ′

p > 0. We will choose ε/H sufficiently small that C ′
pαε/H < δ. In

this way we obtain that ΓD carries the space of sections Sε,δ into itself. Now
consider the third step above. We have Lip{ΓD} ≤ Lip{Ip}Lip{Γ}. Due to
the linearity properties of Lagrange interpolation, Lip{Ip} ≤ Cp. A look at
the third step above reveals Lip{Γ} ≤ α + o(1) as ε + δ + θ → 0 . Hence
Lip{ΓD} ≤ Cpα+o(1) as ε+δ+θ → 0. Since Cpα < 1, we obtain Lip{ΓD} < 1
for small ε, δ, and θ. Following this outline we conclude ΓD : Sε,δ → Sε,δ is a
contraction for suitably chosen ε, δ, θ, and H.

The final part of the convergence result regards the approximation prop-
erties of the fixed point of ΓD. If Σ̃D is the graph of the fixed point of ΓD and
Σ̃ is the graph of the fixed point of Γ, then Σ̃D is a pth order approximation
to Σ̃, as H → 0, provided Σ̃ ∈ Cp+1. This is a consequence of the standard
error estimate for Lagrange interpolation.

The essential hypotheses of this result are: (1) There exists a smooth
manifold Σ, exponentially attracting and F–invariant. (2) There exists a
smooth manifold Σ̃, F̃–invariant and C1–near Σ. Normal hyperbolicity is
not required. To see why, we look back at the outline of the proof that
Γ is a contraction. Normal hyperbolicity is only used in the second step,
to estimate Lip{Γ ◦ σ} in terms of Lip{σ}. In step two of the outline of
the proof that ΓD is a contraction, we estimated Lip{ΓD ◦ σ} ≡ Lip{Ip ◦
Γ ◦ σ} using only the C0 bound on Γ ◦ σ together with properties of Ip.
Numerical experiments support the claim that the algorithm converges for
attracting manifolds without normal hyperbolicity. Note: In the saddle case,
the hypothesis that Σ be attracting may be replaced by the condition that
Σ be 0–normally hyperbolic [9].
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7 Conclusion and Future Work

The work reported in this paper had three stages: formulation of a method to
locate invariant manifolds, testing the algorithm on examples, and proposing
a mechanism for the observed convergence of the algorithm. Now we ask if
the theoretical mechanism matches the observed behaviour of the algorithm.

First, the result shows that ΓD is a contraction under the hypothesis
that there exists an attracting manifold (normal hyperbolicity isn’t required).
This agrees with experience. For examples, see the Thom map and the
sink map. Second, the convergence result indicates the contraction factor
of ΓD is close to Cpα, where α is the contraction factor normal to Σ and
Cp is a bound on the factor by which the C0–norm of a function can grow
under Ip. Experiments confirm that the contraction factor of ΓD is directly
proportional to α, for example, see the Thom map and the sink map. Also,
in test cases, changes in the tangential exponential growth rate (and thus
the normal hyperbolicity), had no effect on the contraction factor. Third,
if p = 1, then Cp = 1, while if p > 1, then generally Cp > 1. This is
because linear interpolation does not leave a convex neighborhood, but higher
order interpolation may. Hence, if α ≈ 1, first order interpolation should
be more likely to converge than higher order interpolation. This agrees with
experience. For example, this happened with the Lorenz–84 torus. Fourth, in
the result, if H is too small compared to ε, the Lipschitz constant of sections
iterated under ΓD may blow up. In practice, for some cases, (especially
curves in R

3), ΓD did converge for large values of H, but not for smaller
values of H – this is the subject of further tests.

The mechanism of convergence given by the result matches the experi-
mental observations of the algorithm’s behavior. If the result of Section 6 is
an accurate model of the mechanism of convergence, does this model indicate
any improvements to the algorithm? According to the result, the contraction
factor is Cpα. Ideally, Cp = 1, which means the set of sections whose graphs
are contained in the neighborhood U of Σ is closed under Ip. Thus, it makes
sense to modify Ip by cutting off the part of the graph of Ip ◦σ outside of U .
With this modification, Cp = 1 and the contraction factor of ΓD is α, while
the order of approximation is retained. Besides Cp, the other controllable pa-
rameter effecting convergence is C ′

p. The bound on the Lipschitz constant of
an interpolated section is C ′

pε/H. A more robust algorithm can be obtained
with interpolation schemes for which C ′

p > 0 is small.

A natural extension of the algorithm is to compute ‘parts’ of manifolds.
The extension to this case significantly widens the range of applicability of
the method. This work is in progress, and preliminary results are promising.
One topic this paper did not discuss was the computation of the hyperbolic
splitting, although this splitting was computed at each continuation step
in Examples 4 and 5. See [2] for details. From our experience, other areas
which need work are the representation of the manifold at non–smooth points,
better adaptive refinement schemes, and the problem of weak attraction.
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