
 

 

 University of Groningen

An assertional proof for a construction of an atomic variable
Hesselink, Willem

Published in:
Formal Aspects of Computing

DOI:
10.1007/s00165-004-0038-5

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (2004). An assertional proof for a construction of an atomic variable. Formal Aspects of
Computing, 16(4), 387-393. DOI: 10.1007/s00165-004-0038-5

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

http://dx.doi.org/10.1007/s00165-004-0038-5
https://www.rug.nl/research/portal/en/publications/an-assertional-proof-for-a-construction-of-an-atomic-variable(0c88c80f-69a7-4892-aff0-3c5cb7ce32e5).html


DOI 10.1007/s00165-004-0038-5
BCS © 2004
Formal Aspects of Computing (2004) 16: 387–393

Formal Aspects
of Computing

An assertional proof for a construction
of an atomic variable
Wim H. Hesselink
University of Groningen, Groningen, The Netherlands

Abstract. The paper proves by assertional means the correctness of a construction of Haldar and Subramanian
of an atomic shared variable for one writer and one reader. This construction uses four unsafe variables and four
safe boolean variables. Assignment to a safe but nonatomic variable is modelled as a repetition of random assign-
ments concluded by an actual assignment. The proof obligation consists of four invariants. These are proved
using 25 auxiliary invariants. The proof has been constructed and verified with the theorem prover NQTHM.
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1. Introduction

In this note we discuss the construction of Haldar and Subramanian [HaS94] of an atomic shared variable for
one writer and one reader by means of four unsafe variables together with four safe boolean variables. Haldar
and Subramanian [HaS94] gave a correctness proof based on behavioural reasoning. It becomes more and more
accepted that reliable reasoning about concurrent algorithms requires assertional reasong, i.e., reasoning on the
level of individual states and single computation steps. The algorithm is a good case to show that assertional
reasoning can be used for programs with variables that are not atomic but only safe or even unsafe.

In order to make sense of this, we have to introduce the concepts of safeness and atomicity of shared variables.
We only consider variables that are written by a single process. Since processes themselves are sequential, it follows
that different write operations to the same variable never overlap.

For every shared variable, we assume at least that every read operation that does not overlap with any write
operation, returns the most recently written value. Following [Lam86], a shared variable is called safe iff every
read operation that overlaps with a write operation returns some legitimate value of the domain of the variable.
A variable is called unsafe iff it is not safe. For an unsafe variable, a read operation is not allowed to overlap with
write operations, since otherwise chaos may result.

A shared variable is atomic iff read and write operations behave as if they never overlap but always occur in
some total order that refines the precedence order (an operation precedes another one iff it terminates before the
other operation starts).

The program of [HaS94] that we treat here is a critical case since it uses no atomic shared variables, four unsafe
data variables, and four safe control bits. It can be compared with Tromp’s algorithm in [Tro89], which needs
eight safe bits, and which is a refinement of the version with four atomic bits. In [Hes98], we gave an assertional
proof of the version with four atomic bits. The safe bits complicate matters since, during the assignment to a safe
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bit, the bit can repeatedly change its value. When there are only four safe bits, one cannot preclude that a bit is
inspected during an assignment.

One may notice that the paper [HaS94] makes the assumption that the data variables are safe. This is because
they do not consider unsafe variables. They call the algorithm conflict-free to express that the assumption of
safeness is superfluous.

In section 2 we present the formal model and the algorithm. In section 3, we briefly sketch the method devel-
oped in [Hes02a] to prove atomicity of read-write objects and we apply this method to obtain the assertional proof
obligation, which in this case consists of four invariants. In section 4, we prove preservation of these invariants.
We summarize our conclusions in section 5.

2. The formal model and the algorithm

We first describe the formal model. Since assertional reasoning depends on the states between atomic steps, we
have to model the actions as atomic steps of some kind. By convention, shared variables are always assumed to be
unsafe unless otherwise specified. They are written in typewriter font. Actions on private variables are considered
atomic. Private variables are written in italics.

A read action of a shared variable x into a private variable v is denoted v :� x. A write action of a private
expression E into an unsafe shared variable x is written

(unsafe) x :� E. (0)

It is regarded as an atomic step, but the programmer has the proof obligation that, whenever a process is about
to execute command (0), no other process is about to read or write x as well.

For a safe shared variable, we need to indicate that reading during a write action may return any value. We
therefore denote a write action of a private expression E into a safe shared variable x by

(flickering) x :� E . (1)

We model this in relational semantics, such as TLA [Lam94], by specifying that command (1) has the relational
meaning

pc′ � pc ∨ (pc′ � pc + 1 ∧ x′ � E) . (2)

Here, the primes are used for the values of the variables after the step, pc stands for the location pointer, and by
convention all shared or private variables apart from pc and x are unchanged. In other words, command (1) is
modelled as a repetition of arbitrary assignments to x that ends with the actual assignment of E to x. The value
of x is indeterminate during the repetition. Liveness conditions are used to ensure that the repetition terminates.

The algorithm of [HaS94] uses an unsafe array buf of four items and four safe control variables to simulate
an atomic variable of type Item. We use control variables ww, rr, and c[0] and c[1], of the type Bit � {0, 1}. We
thus declare

buf : array Bit × Bit of Item ;
ww, rr : SAFE Bit ;
c : array Bit of SAFE Bit .

The initial value v0 of the abstract variable is stored in buf[0, 0] � v0. The control variables have the initial values
ww � 0, rr � 1, and c[0] � c[1] � 0.

Recall that there is only one writer and one reader. The writer writes to buf, ww and c. The reader writes to
rr. We represent the algorithm by means of two procedures Write and Read . The writing procedure writes to one
of the four buffers and then inspects variable rr to get an estimate where the reader is reading. If the reader is
reading a recent buffer, the writer writes again to a fresh one, see [HaS94]. For a bit b, we use ¬b to denote 1 − b.

proc Write (vw) :
var aw : Bit :� ww , cw : Bit ;
20: cw :� ¬c[aw] ;

(unsafe) buf[aw, cw] :� vw ;
21: (flickering) c[aw] :� cw ;
22: if aw � rr then
23: cw :� ¬c[¬aw] ;

(unsafe) buf[¬aw, cw] :� vw ;
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24: (flickering) c[¬aw] :� cw ;
25: if aw � rr then

aw :� ¬aw ;
26: (flickering) ww :� aw fi ;
27: fi

end .

We have numbered the atomic steps for future reference. The numbers start at 20 to ease their use in our mechan-
ical theorem prover. The grain of atomicity is such that every atomic step contains only one essential reference
to a shared variable. The proviso “essential” is added, since the writer reads in steps 20 and 23 its own output
variable c. This reading can easily be eliminated by introducing a private copy of c.

proc Read () :
var br : Bit :� rr , cr : Bit ;
40: if br �� ww then

br :� ¬br ;
41: (flickering) rr :� br ;
42: cr :� c[br] ;
43: vr :� buf[br, cr] ;
44: fi

end .

3. Proof obligations

Inspired by [Lyn96], we developed in [Hes02a] an assertional theory for atomicity of read-write objects, i.e., atomic
shared variables. Theorem CRIT of [Hes02a] serves to prove atomicity. We shall apply it to the above protocol.
We thus provide both processes with private integer ghost variables start and sqn. A shared integer ghost variable
masq serves to denote the maximal sqn value of the completed operations. Initially masq � t0 for some number
t0. Every process updates masq at the end of every operation by

masq :� max(sqn, masq) .

In every operation of a process, it updates its private variables start and sqn precisely once as described now.
Every operation of a process starts by copying the current value of masq to start. During every write operation,

the writer increments sqn and attaches its new value of sqn as a kind of time stamp to the value to be written.
When reading, the reader copies this attached number to sqn. The initial value v0 of the abstract variable has the
initial tag t0.

According to theorem CRIT of [Hes02a], atomicity of the protocol is proved when we have the invariants that
every write action has the postcondition start < sqn for the writer and that every read action has the postcondition
start � sqn for the reader.

We therefore augment the procedures with the actions on the ghost variables. For convenience in the invari-
ants, we replace the repeated procedure calls by an infinite loop for the writer and an infinite loop for the reader
and we extend the lifetimes of the local variables of the procedures by replacing them with private variables of
the processes such that initially aw � 0 and br � 1. The tags attached to the values are represented by a separate
array tag, which is a ghost variable where initially tag[0, 0] � t0. In this way, the code for the writer becomes:

Writer : loop
20: start :� masq ; sqn :� sqn + 1 ;

choose vw ; cw :� ¬c[aw] ;
(unsafe) buf[aw, cw] :� vw ;
tag[aw, cw] :� sqn ;

21: (flickering) c[aw] :� cw ;
22: if aw � rr then
23: cw :� ¬c[¬aw] ;

(unsafe) buf[¬aw, cw] :� vw ;
tag[¬aw, cw] :� sqn ;

24: (flickering) c[¬aw] :� cw ;
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25: if aw � rr then
aw :� ¬aw ;

26: (flickering) ww :� aw fi fi ;
27: masq :� max(sqn, masq) ;

end loop .

Note that we now let the writer choose the value vw nondeterministically in 20.

Reader : loop
40: start :� masq ;

if br �� ww then
br :� ¬br ;

41: (flickering) rr :� br ;
42: cr :� c[br] ;
43: vr :� buf[br, cr] ;

sqn :� tag[br, cr] fi ;
44: masq :� max(sqn, masq) ;

end loop .

We let q and r stand for the pc values of the writer and the reader, respectively.
Safeness of the assignments to the unsafe variable buf requires that whenever the writer is about to write

buf[i, j] and the reader is about to read buf[m, n], then (i, j) �� (m, n). This is expressed in the two invariants

(Iq0) q � 20 ∧ r � 43 ∧ aw � br ⇒ cr � c[br] ,
(Iq1) q � 23 ∧ r � 43 ∧ ¬aw � br ⇒ cr � c[br] .

In order to distinguish the private ghost variables start and sqn of writer and reader, we write startw and
sqnw for the values at the writer and startr and sqnr for the values at the reader. As indicated above, the proof
obligations for atomicity are the invariants

(Jq0) startw < sqnw ,
(Jq1) r � 44 ⇒ startr � sqnr .

Stricly speaking, the inequality of (Jq0) is required only when q � 27, but it is easier to prove the stronger invariant
(Jq0). For simplicity, we use t0 � 1 and assume that tag[i, j] � 1 for all i, j, and sqnw � 1 and startw � sqnr � 0
initially.

4. Verification

We thus have to verify that our concurrent program with 13 atomic statements satisfies the invariants (Iq0), (Iq1),
(Jq0), (Jq1). We use the method described in [Hes02a] Section 3.3. The program is verified using two events files
[Hes02b] for the theorem prover NQTHM of [BoM88]. The file concprelude defines the semantics for shared
variable concurrency. The file regvarHS contains the program, the development of the invariants, and their
initialization. We now proceed with a fairly detailed account of the proof.

Since the shared variables ww and rr are only safe variables, we avoid them as much as possible in the invariants
and use their local copies aw and br instead, based on the following two invariants:

(Kq0) r � 41 ∨ rr � br ,
(Kq1) q � 26 ∨ ww � aw .

Preservation of (Kq0) and (Kq1) is easy. They hold initially because of the initialization chosen. Since the assign-
ments at 41 and 26 are flickering, nothing can be said about the value of rr at 41 or the value of ww at 26.

In order to prove (Iq0), we generalize it to

(Iq0) q ∈ {20, 26, 27} ∧ r � 43 ∧ aw � br ⇒ cr � c[br] .

This invariant is threatened only when q � 22 or q � 25, in which cases its preservation follows from (Kq0).
Preservation of (Iq1) is threatened only when q � 22, in which case its preservation follows also from (Kq0).
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In order to prove (Jq0), we postulate that sqnw is always the largest number around, as expressed in the
invariants

(Kq2) masq � sqnw ,
(Kq3) sqnr � sqnw ,
(Kq4) tag[i, j] � sqnw .

In (Kq4), the variables i and j are free and range over Bit. The invariant (Jq0) is threatened only when q � 20. It
is preserved at 20 because of (Kq2). We need (Kq3) to prove preservation of (Kq2) when r � 44, and (Kq4) to
prove preservation of (Kq3) when r � 43. The remaining verifications are easy. For example, all three predicates
hold initially. This concludes the treatment of the first three proof obligations.

4.1. The last proof obligation

The proof of invariance of (Jq1) is complicated. We provide it for the sake of completeness and illustration.
Since we only want to consider invariants of a relatively simple form, the proof of (Jq1) turns out to need twenty
auxiliary invariants.

We first settle a number of auxiliary invariants. Since masq never decreases and startr is only set equal to masq,
we obviously have the invariant:

(Lq0) startr � masq .

Since tag, c, sqnw, are modified by the writer almost without interaction with the reader, there are some relatively
easy invariants which express sqnw in terms of tag.

(Lq1) q �� 21 ⇒ tag[aw, c[aw]] � sqnw ,
(Lq2) q � 21 ⇒ tag[aw, cw] � sqnw ,
(Lq3) q � 21 ⇒ tag[aw, ¬cw] + 1 � sqnw ,
(Lq4) q ∈ {25, 26} ⇒ tag[¬aw, c[¬aw]] � sqnw ,
(Lq5) q � 24 ⇒ tag[¬aw, cw] � sqnw .

The invariant (Lq1) is preserved at 21 and 25 because of (Lq2) and (Lq4). Predicate (Lq3) is preserved at 20
because of (Lq1). Predicate (Lq4) is preserved at 24 because of (Lq5). The rather surprising preservation of
(Lq4) at 25 is due to (Lq1). Note that the mutual dependence of (Lq1) and (Lq4) does not introduce circular
reasoning: all invariants are postulated in the preconditions of all steps, and we then prove that they hold in the
postconditions.

Predicate (Jq1) only contains private variables of the reader. The writer therefore preserves (Jq1). Since the
reader can reach r � 44 from 40 and 43, predicate (Jq1) is threatened at 40 and 43. For preservation of (Jq1) at
43, it is necessary and sufficient to postulate the invariant

(Sq0) r � 43 ⇒ startr � tag[br, cr] .

In the remainder of this text, we only give the remaining invariants and why we need them, but we omit the
arguments to show that they are sufficient. The reader interested in the details and willing to read lisp-like code
is referred to [Hes02b].

We postpone the treatment of (Jq1) and first settle (Sq0). For this purpose, we introduce the following invar-
iants concerning startr.

(Sq1) r ∈ {41, 42} ⇒ startr � tag[br, c[br]] ,
(Sq2) q � 24 ∧ aw �� br ⇒ startr � tag[br, ¬cw] ,
(Sq3) q � 23 ∧ aw �� br ⇒ startr � tag[br, c[br]] .

Predicate (Sq1) is introduced to preserve (Sq0) at 42. Similarly, (Sq2) is introduced for (Sq1) at 24 and (Sq3)
for (Sq2) at 23. Preservation of (Sq3) at 22 is worth mentioning. Because of the test in 22 and invariant (Kq0),
the writer only arrives at 23 with aw �� br when the reader is at 41. Therefore (Sq3) is preserved because of
(Sq1).
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In addition to (Lq2) and (Lq3), the next invariants express that sqnw is large when q � 21:

(Tq0) q � 21 ∧ r �∈ {40, 44} ⇒ masq < sqnw ,
(Tq1) q � 21 ∧ aw �� br ⇒ masq < sqnw ,
(Tq2) q � 21 ∧ aw �� br ⇒ sqnr < sqnw ,
(Tq3) q � 21 ⇒ tag[¬aw, j] < sqnw .

The variable j in (Tq3) ranges over Bit. The predicates (Tq0) and (Tq1) are introduced to preserve (Sq1) at 21
and 40, respectively; (Tq2) is introduced for (Tq1) at 44; (Tq3) is introduced for (Tq2) at 43. These predicates
together are strong enough to prove preservation of (Sq0).

Remark. The invariants (Tq0) and (Tq1) imply that when q � 21 and masq � sqnw, then aw � br and r ∈ {40, 44}.
Indeed, the antecedent can occur during an execution, namely when the writer is repeatedly executing 21 (see formula
(2) in section 2), while the reader completes reading with br � aw and cr � cw. It then sets masq equal to sqnw and
can freely move between 40 and 44. �	

Preservation of (Jq1) at 40 is also subtle, since ww may be flickering at 26. For treating this case, we introduce
the following invariants to express that sqnr is large enough.

(Uq0) r ∈ {40, 44} ∧ q � 26 ⇒ masq � sqnr ,
(Uq1) r ∈ {40, 44} ∧ aw � br ⇒ masq � sqnr ,
(Uq2) r ∈ {40, 44} ∧ aw � br ∧ q ∈ {26, 27} ⇒ sqnw � sqnr .

Indeed, (Uq0) and (Uq1) are introduced for (Jq1) at 40. Predicate (Uq2) is needed for (Uq1) at 27. In order to
prove preservation of (Uq0), (Uq1), and (Uq2) at 43, we finally postulate the invariants

(Uq3) r � 43 ∧ q � 26 ⇒ masq � tag[br, cr] ,
(Uq4) r � 43 ∧ aw � br ⇒ masq � tag[br, cr] ,
(Uq5) r � 43 ∧ aw � br ∧ q ∈ {26, 27} ⇒ sqnw � tag[br, cr] .

It turns out that this completes the construction of a sufficient set of constituent invariants: their conjunction is
stable, holds initially, and implies the four proof obligations of section 3.

5. Conclusion

The proof that the unsafe variables buf[i, j] are treated correctly in the lines 20 and 23 is straightforward and
only requires the invariants (Iq0), (Iq1), and (Kq0). The atomicity proof is complicated because of the flickering
assignments in lines 21, 24, 26, and 41. Line 21 is the most critical location.

The proof of [HaS94] is based on Lamport’s method [Lam86] that uses the precedence relation between oper-
ation executions. We find this behavioural proof extremely difficult to follow and therefore unconvincing. Our
proof may be tedious, but it is conceptually straightforward. In any case, it gives independent confirmation of
the correctness of the algorithm.

We only consider our proof trustworthy, however, because of our use of the theorem prover NQTHM. This
prover also enabled us to modify the set of constituent invariants. Indeed, in earlier versions of our proof, we did
not yet have (Lq3), and the invariants (Tq) had inequalities with “� tag[aw, ¬cw]” instead of “< sqnw”. When
writing this paper, we changed this since we find the present form somewhat easier to understand. Mechanical
verification enabled us to make the change in a reliable way and with little effort.
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