
 

 

 University of Groningen

SUPPORT VECTOR MACHINES FOR THE CLASSIFICATION OF WESTERN
HANDWRITTEN CAPITALS
Wang, F.; Vuurpijl, L.; Schomaker, Lambertus

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wang, F., Vuurpijl, L., & Schomaker, L. (2004). SUPPORT VECTOR MACHINES FOR THE
CLASSIFICATION OF WESTERN HANDWRITTEN CAPITALS. In EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/support-vector-machines-for-the-classification-of-western-handwritten-capitals(c6b68302-c7cd-4d64-b3fe-370c3b63a9b2).html


SUPPORT VECTOR MACHINES FOR THE CLASSIFICATIONOF WESTERN HANDWRITTEN CAPITALSFUSI WANG, LOUIS VUURPIJL AND LAMBERT SCHOMAKERNijmegen Institute for Cognition and InformationP.O.Box 9104, 6500 HE Nijmegen, The NetherlandsE-mail: fswang(vuurpijl,s
homaker)�ni
i.kun.nlhttp://hwr.ni
i.kun.nlIn this paper, new te
hniques are presented using Support Ve
tor Ma
hines (SVMs)for multi-
lass 
lassi�
ation problems. The issue of de
omposing a N-
lass 
las-si�
ation problem into a set of 2-
lass 
lassi�
ation questions is dis
ussed. Inparti
ular, the te
hnique for normalizing the outputs of several SVMs is presented.Based on these te
hniques, support ve
tor 
lassi�ers for the re
ognition of West-ern handwritten 
apitals are realized. Comparisons to several other 
lassi�
ationmethods are also presented.1 Introdu
tionSupport ve
tor ma
hines (SVMs) are primarily designed for 2-
lass 
lassi-�
ation problems1. Although SVMs a
hieve substantial improvements overthe 
urrently best performing methods and behave robustly over a variety ofdi�erent learning tasks when a problem is treated as a binary 
lassi�
ationproblem2;3, the appli
ation of SVMs to multi-
lass 
lassi�
ation problems isstill a 
hallenge.Whereas in theory, the 
ombination of n SVMs 
an be used to solve aN -
lass (N > 2) 
lassi�
ation problem, su
h a pro
edure requires some 
arewhen applied to pra
ti
al problems4. In this paper, the issue of de
omposinga N -
lass 
lassi�
ation problem into a set of 2-
lass 
lassi�
ation questions isdis
ussed. For 
ombining the output of a set of SVMs, it is required that theiroutputs are normalized. In this paper, we will address the normalization ofSVMs' output, testing the proposed te
hnique on the 
lassi�
ation problemof simple bitmaps of Western handwritten 
apitals.Also, the use of several other 
lassi�
ation methods, su
h as the NearestNeighbor (1NN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)and Multi-Layer Per
eptron (MLP) is dis
ussed in this paper. The experi-ments are performed with handwritten isolated upper
ase English 
hara
terswhi
h are extra
ted from the UNIPEN5 data base and 
onverted to pixelimages.In this paper, se
tion 2 is 
on
erned with the basi
 idea of the SupportVe
tor Ma
hine (SVM) and the problems fa
ed to the SVM when it is applied
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to multi-
lass 
lassi�
ation. In se
tion 3, four other 
lassi�ers are brie
yintrodu
ed. Se
tions 4 and 5 show experimental results and give a summaryof our approa
h.2 SVMs for multi-
lass 
lassi�
ation2.1 The Basi
 Idea of SVMThe Support Ve
tor Ma
hine is a 
lassi�
ation te
hnique whi
h was developedat AT&T Bell laboratories by Vapnik and 
o-workers1. SVMs are trained toperform pattern re
ognition between two 
lasses by �nding a de
ision surfa
edetermined by a subset of the 
omplete training set, termed Support V e
tors(SV ). For more details on SVMs, one 
an see for example the tutorials6;7;8.Given a 2-
lass training set S = f(x1; y1); :::; (xL; yL)g, where xi 2 Rd,y 2 f+1;�1g and i = 1; :::; L, the goal of training a SVM is to �nd the optimalhyperplane de�ning the de
ision boundary between the two 
lasses. In general
ase, a separating hyperplane should satisfy:yi(w � xi + b) � 1� �i (1)Where the �i is a nonnegative variable introdu
ed in the non-separable
ase, in the separable 
ase �i = 0. The pair fw; bg de�nes a separatinghyperplane: w � x+ b = 0 (2)If we denote with jjwjj the Eu
lidean norm of w, the distan
e d(xi) of apoint xi from the separating hyperplane (w; b) is given by:d(xi) = w � xi + bjjwjj (3)Sin
e the distan
e of the 
losest point equals 1=jjwjj, the optimal sepa-rating hyperplane 
an be regarded as the solution of the 
onvex optimizationproblem of: Minimize 12w �w + CP �iSubje
t to yi(w � xi + b) � 1� �iThe term CP �i 
an be thought of as some measure of the amount ofmis
lassi�
ation, C is an penalty parameter. This problem 
an be solved by
168



means of the 
lassi
al method of Lagrangemultipliers9, whose optimal solutionpair fwo; bog de�nes the so-
alled optimal separating hyperplane. The wo 
anbe written as wo = lXi=1 �iyixi (4)Here the feature ve
tors in set Nsv = f(x1; y1); :::; (xl; yl)g are the so-
alled Support V e
tors. Thus, we 
an get a linear 
lassi�er f(x) for a binary
lassi�
ation problem of the form:f(x) = sgn(wo � x+ bo) (5)Non-linear SVMs are de�ned as linear separators in a high-dimensionalspa
e Rh in whi
h the input spa
e Rd is mapped through a non-linear mappingfun
tion �(x). A non-linear 
lassi�er f(x) for a binary 
lassi�
ation problemhas the form: f(x) = sgn( lXi=1 �iyiK(xi;x) + bo) (6)where K(xi;x) = �(xi) � �(x) (7)is a so-
alled kernel fun
tion whi
h 
an be used to form arbitrarily 
omplexde
ision surfa
es.2.2 SVM output normalizationSVM is well suited for binary 
lassi�
ation problems, be
ause the optimalhyperplane de�nes the de
ision surfa
e between two 
lasses. When SVMte
hnique is applied to multi-
lass 
lassi�
ation problems, usually the multi-
lass 
lassi�
ation problem is de
omposed into a set of 2-
lass 
lassi�
ationproblems4. The output 
lass should be determined by 
hoosing the maximumof the outputs of all sub-SVMs. However, before these outputs may be 
om-pared, they have to be normalized. This subse
tion des
ribes a te
hnique fornormalizing the output of SVMs in a multi-
lass 
lassi�
ation system.The output g(x) of a SVM, on the de
ision between two 
lasses, is de�nedas:
169



g(x) = lXi=1 �iyiK(xi;x) + bo (8)In the linear separable 
ase, the mapping fun
tion �(x) = x. The Eu-
lidean distan
e d(x) of a point x from the separating hyperplane g(x) = 0 isgiven by: d(x) = g(x)jjwojj (9)The wo 
an be obtained by applying �(x) of the support ve
tors.wo = lXi=1 �iyi�(xi) (10)The Eu
lidean norm jjwojj of wo 
an be 
al
ulated by1�21 = jjwojj2 = lXi=1 lXj=1 �i�jyiyjK(xi;xj) (11)To make it possible to 
ompare the distan
e output of di�erent SVMs,for ea
h SVM we de�ne the s
aling fa
tor �2 as the mean over the positiveset. That is 1�2 = 1p pXi=1 g(xi)�1 (12)Here the p is the number of positive samples in training set. Finally, the
omparable distan
e output of one SVM 
an be get bys(x) = g(x)�1�2 (13)2.3 De
omposing N-
lass 
lassi�
ation problemAmong the wide variety of methods available in the literature to learn 
las-si�
ation problems, some are able to handle many 
lasses, while others arespe
i�
 to 2-
lass problems. Traditionally, when the latter are used to solveN-
lass 
lassi�
ation problems, N-
lassi�ers are typi
ally trained to separate
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one 
lass from the N-1 others. The same idea 
an be applied with SVMs. Thisway of de
omposing a general 
lassi�
ation problem into 2-
lass problems isknown as a one�against� others4 de
omposition, and is independent of thelearning method used to train the 
lassi�ers.Suppose we need to 
lassify an unknown sample into a set of 
lassesf
1; :::; 
Ng, given the N-
lasses training set: S = fx1; :::;xV g, divide it intoN subsets fS1; ::::SNg, where Si 
ontains all training samples belong to 
i. Thei-th SVM is trained in the set of fPE;NEg, where PE = Si andNE = S�Si.If si(x) is the normalized output of the i-th SVM, whi
h is des
ribed in se
tion2.2, then the unknown example x will be 
lassi�ed into 
lasses 
j if:fj(x) = argmax(si(x)) i = 1; :::; N (14)If there are not too many 
lasses, the pairwise� 
oupling de
ompositions
heme 
an be used to repla
e the one�against� others. In this s
heme one
lassi�er is trained to dis
riminate between ea
h pair of 
lasses, ignoring theother 
lasses. This s
hemes make it possible to use the bubble sort algorithmto get out the �nal 
ategory.3 Des
ription of the other 
lassi�ers usedFor 
omparing the performan
e of the SVM to other 
lassi�ers, the NearestNeighbor (1NN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)and Multi-Layer Per
eptron (MLP) are introdu
ed in this se
tion.3.1 kNN and 1NN methodFor an unknown sample x, the kNN follows the following prin
iple. Sear
hthe k nearest neighbors10 of x from V samples in the training set using anappropriate distan
e measure. Suppose there are N 
ategories in the givensamples, ki samples in the k nearest neighbor of x 
oming from 
ategory 
i,now, if kj = max(ki); i = 1; :::; N ; (15)then x 
an be 
lassi�ed to 
lass 
j . This is the basi
 rule of kNN. Whenk = 1, the output is the nearest neighbor of x. kNN be
omes the nearestneighbor (1NN) method in this 
ase. For a large training set, the kNN methodimplements the Bayes rule, and furthermore kNN is very easy to implement.This is why kNN has be
ome one of the most important pattern re
ognition
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methods. The major problem of kNN is that all training samples have to beavailable during 
lassi�
ation, and for a unknown pattern x, the distan
e ofx to all samples has to be 
omputed. This requires a lot of memory and timeresour
es. In referen
es10;11 there are some algorithms to speed up a kNN
lassi�ers.3.2 MLP methodAs a representative of neural network 
lassi�ers, the multi-layer per
eptron12(MLP) is used in our approa
h. To design a MLP 
lassi�er, two problemshave to be solved. The �rst is what kind of neural network stru
ture shouldbe adopted. For instan
e, how many hidden layers, how many nodes in ea
hlayer and what kind of a
tivation fun
tion should be used for ea
h node. Upto now there is no theory whi
h 
an guide one to yield the optimal stru
tureof a neural network.The se
ond problem is how to 
hoose a learning algorithm for the neuralnetwork. Statisti
al methods 
an rea
h the global minimum point of a MLPand yield the best performan
e, but this learning method needs a long trainingtime. Ba
k-propagation is applied widely, but it may be plagued by the lo
alminima problem.Our MLP 
lassi�er uses the Ba
k-propagation learning algorithm and a256 � 128 � 32 � 26 neural network. The input layer represent the image ofthe input 
hara
ters and is fully 
onne
ted to the hidden units in the se
ondlayer. All units in the 
lassi�er have the same transfer fun
tion: They sumtheir inputs, add a 
onstant b 
alled bias, and take a �xed fun
tion f , 
alledan a
tivation fun
tion, of the result. The a
tivation fun
tion of all hidden andoutput layer units is the sigmoid fun
tion.3.3 HMM methodHidden Markov Models (HMMs) a popular method of statisti
al represen-tation in spee
h pro
essing is based on the representation of an obje
t as arandom pro
ess that generates a sequen
e of states. The elements of a HMM
an be des
ribed as follows13;14:� N : the number of states� M : the number of output symbols� T : the number of observations� Q = fqtg : the set of states, t = f1; 2; :::; Ng� V = fV kg : the set of output symbols, k = f1; 2; :::;Mg
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� A = fAijg : the transition matrix of the underlying Markov 
hain. HereAij is the probability of transition to state j given the 
urrent state i.� B = fBj(Vk)g : the model output symbol probability matrix, whereBj(Vk) is the probability of output symbol Vk given the state qj .� a = faig: the initial probability ve
tor, i = 1; 2; :::; NThe 
hara
ter in this 
lassi�er is s
anned verti
ally and horizontally togenerate the 
orresponding out-
ontour pro�les. The dis
rete hidden Markovmodels are generated using the Segmental k-means algorithm13 while a s
oringme
hanism based on the Viterbi algorithms13 is used in test phase. Someparameters of the HMM 
lassi�er are N = 8, M = T = 16.4 Experimental resultsWe have extra
ted 14967 upper
ase isolated English 
hara
ters from theUNIPEN data base of the NICI. 5200 were used as training set (200 for ea
hletter), the rest was used as test set. This is a very diÆ
ult data set, with
hara
ters written by many writers, in a wide range of tablets and systems.The raw data of ea
h isolated letter is 
onverted into a 16x16 bitmap image.The pen width is 2 pixels. Examples of test data 
an be observed in �gure 1.The raw 256 dimensional bitmap ve
tor is used as the input for ea
h 
lassi�er.All 
lassi�ers are programmed in the C programming language, running on aPentium-II 400Hz PC.

Figure 1. Some bitmap images of testing examples.We designed some experiments to 
ompare the performan
es of ea
hmethod. In the �rst experiment, we test the training time as a fun
tion
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of the number of samples. There are 26 
lasses in these experiments. Theresult is listed in Table 1. The 1NN and kNN 
lassi�ers are not listed in thistable, be
ause they do not need to be trained as the prototype set is the wholetraining set.Table 1. training time in se
onds as a fun
tion of the number of training samplesSN 130 260 650 1300 2600 5200HMM 30 57 133 262 519 1046MLP 81 283 693 1422 6062 1561SV C2 7 15 67 123 960 8075SV C1 4 6 12 28 204 67628We use a polynomial degree 2 kernel fun
tion for SVM 
lassi�er. Theone�against�others 
ategory is used when training SV C1. The pairwise�
oupling de
omposition s
heme is used when training SV C2. From Table 1 we
an dedu
e that there is little di�eren
e between methods when the number oftraining samples is small. When the number of samples in
reases, the HMM
lassi�er linearly in
reases its training time, whereas the SVC's training timein
reases dramati
ally.Table 2. Test set 
orre
t re
ognition rate in per
entages.SV C2 SV C1 HMM kNN 1NN MLPtop1 81.2 79.6 78.4 77.4 76.9 76.9top2 89.0 86.2 86.5 86.7 87.4 85.2top3 92.1 88.6 89.8 88.9 91.1 88.4top4 93.9 90.2 91.9 89.5 93.2 90.2top5 95.1 91.2 93.2 89.6 94.5 91.4The se
ond experiment tests the re
ognition rate. The experimental re-sults are shown in Table 2. In these experiments, the polynomial degree2 kernel fun
tion and a penalty parameter 1000 are used for all SV 
lassi-�ers. The SV C2 uses the pairwise � 
oupling de
omposition s
heme. Theone � against � others de
omposition s
heme is used in the SV C1. In theSV C1 all SVMs outputs are normalized as des
ribed in se
tion 2.2. For theSV C2 the bubble sort algorithm was used to sort the letters in the 
andidateset. The pairwise-
oupling de
omposition s
heme is more eÆ
ient than one-against-others as 
an be seen in table 2. Although we need to train more
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sub-SVMs, In the 
ase of large training set sizes, it takes less training time.This is be
ause in the pairwise-
oupling de
omposition s
heme ea
h sub-SVMuses less training samples as they are 
oming from two 
lasses only. In theone-against-others 
ase ea
h SVM is trained with data originating from all
lasses.In the re
ognition pro
edure, if we fo
us only on the top1 result, thepairwise-
oupling de
omposition s
heme takes less time. If we need a 
andi-date set, the SV C2 re
ognition time will in
rease quadrati
 in the number of
lasses. This 
an be observed in table 3.Table 3. Re
ognition time in se
onds for the 
lassi�
ation of 9767 samples.SV C2 SV C1 HMM kNN 1NN MLPNeed only top1 284 692 227 523 522 46Need top5 4397 702 240 572 542 54From these observations we 
an 
on
lude that the SV C2 is more robustthan the other 
lassi�ers.5 Con
lusionsIn this paper, a te
hnique is introdu
ed for using support ve
tor ma
hinesfor multi-
lass 
lassi�
ation. A solution for the problem of normalizing theoutput of several SVMs is highlighted. Di�erent de
omposition te
hniquesare dis
ussed. The result of several experiments are presented. The 
lassi�-
ation performan
es are not so high be
ause of the diÆ
ult data and 
rudefeature ve
tors. In 
ontrast to the 
onventional 
lassi�
ation methods, when
onsidering training and re
all times, support ve
tor 
lassi�ers are 
onsider-ably slower. However when 
onsidering re
ognition rates, the pair-wise SVCproves to outperform all other 
lassi�ers. Our future work will be fo
used onthe improvement of the feature ve
tors and the 
ombination of SV C2 withthe other 
lassi�ers.Referen
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