
 

 

 University of Groningen

SUPPORT VECTOR MACHINES FOR THE CLASSIFICATION OF WESTERN
HANDWRITTEN CAPITALS
Wang, F.; Vuurpijl, L.; Schomaker, Lambertus

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wang, F., Vuurpijl, L., & Schomaker, L. (2004). SUPPORT VECTOR MACHINES FOR THE
CLASSIFICATION OF WESTERN HANDWRITTEN CAPITALS. In EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/support-vector-machines-for-the-classification-of-western-handwritten-capitals(c6b68302-c7cd-4d64-b3fe-370c3b63a9b2).html


SUPPORT VECTOR MACHINES FOR THE CLASSIFICATIONOF WESTERN HANDWRITTEN CAPITALSFUSI WANG, LOUIS VUURPIJL AND LAMBERT SCHOMAKERNijmegen Institute for Cognition and InformationP.O.Box 9104, 6500 HE Nijmegen, The NetherlandsE-mail: fswang(vuurpijl,shomaker)�nii.kun.nlhttp://hwr.nii.kun.nlIn this paper, new tehniques are presented using Support Vetor Mahines (SVMs)for multi-lass lassi�ation problems. The issue of deomposing a N-lass las-si�ation problem into a set of 2-lass lassi�ation questions is disussed. Inpartiular, the tehnique for normalizing the outputs of several SVMs is presented.Based on these tehniques, support vetor lassi�ers for the reognition of West-ern handwritten apitals are realized. Comparisons to several other lassi�ationmethods are also presented.1 IntrodutionSupport vetor mahines (SVMs) are primarily designed for 2-lass lassi-�ation problems1. Although SVMs ahieve substantial improvements overthe urrently best performing methods and behave robustly over a variety ofdi�erent learning tasks when a problem is treated as a binary lassi�ationproblem2;3, the appliation of SVMs to multi-lass lassi�ation problems isstill a hallenge.Whereas in theory, the ombination of n SVMs an be used to solve aN -lass (N > 2) lassi�ation problem, suh a proedure requires some arewhen applied to pratial problems4. In this paper, the issue of deomposinga N -lass lassi�ation problem into a set of 2-lass lassi�ation questions isdisussed. For ombining the output of a set of SVMs, it is required that theiroutputs are normalized. In this paper, we will address the normalization ofSVMs' output, testing the proposed tehnique on the lassi�ation problemof simple bitmaps of Western handwritten apitals.Also, the use of several other lassi�ation methods, suh as the NearestNeighbor (1NN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)and Multi-Layer Pereptron (MLP) is disussed in this paper. The experi-ments are performed with handwritten isolated upperase English haraterswhih are extrated from the UNIPEN5 data base and onverted to pixelimages.In this paper, setion 2 is onerned with the basi idea of the SupportVetor Mahine (SVM) and the problems faed to the SVM when it is applied
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to multi-lass lassi�ation. In setion 3, four other lassi�ers are brieyintrodued. Setions 4 and 5 show experimental results and give a summaryof our approah.2 SVMs for multi-lass lassi�ation2.1 The Basi Idea of SVMThe Support Vetor Mahine is a lassi�ation tehnique whih was developedat AT&T Bell laboratories by Vapnik and o-workers1. SVMs are trained toperform pattern reognition between two lasses by �nding a deision surfaedetermined by a subset of the omplete training set, termed Support V etors(SV ). For more details on SVMs, one an see for example the tutorials6;7;8.Given a 2-lass training set S = f(x1; y1); :::; (xL; yL)g, where xi 2 Rd,y 2 f+1;�1g and i = 1; :::; L, the goal of training a SVM is to �nd the optimalhyperplane de�ning the deision boundary between the two lasses. In generalase, a separating hyperplane should satisfy:yi(w � xi + b) � 1� �i (1)Where the �i is a nonnegative variable introdued in the non-separablease, in the separable ase �i = 0. The pair fw; bg de�nes a separatinghyperplane: w � x+ b = 0 (2)If we denote with jjwjj the Eulidean norm of w, the distane d(xi) of apoint xi from the separating hyperplane (w; b) is given by:d(xi) = w � xi + bjjwjj (3)Sine the distane of the losest point equals 1=jjwjj, the optimal sepa-rating hyperplane an be regarded as the solution of the onvex optimizationproblem of: Minimize 12w �w + CP �iSubjet to yi(w � xi + b) � 1� �iThe term CP �i an be thought of as some measure of the amount ofmislassi�ation, C is an penalty parameter. This problem an be solved by
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means of the lassial method of Lagrangemultipliers9, whose optimal solutionpair fwo; bog de�nes the so-alled optimal separating hyperplane. The wo anbe written as wo = lXi=1 �iyixi (4)Here the feature vetors in set Nsv = f(x1; y1); :::; (xl; yl)g are the so-alled Support V etors. Thus, we an get a linear lassi�er f(x) for a binarylassi�ation problem of the form:f(x) = sgn(wo � x+ bo) (5)Non-linear SVMs are de�ned as linear separators in a high-dimensionalspae Rh in whih the input spae Rd is mapped through a non-linear mappingfuntion �(x). A non-linear lassi�er f(x) for a binary lassi�ation problemhas the form: f(x) = sgn( lXi=1 �iyiK(xi;x) + bo) (6)where K(xi;x) = �(xi) � �(x) (7)is a so-alled kernel funtion whih an be used to form arbitrarily omplexdeision surfaes.2.2 SVM output normalizationSVM is well suited for binary lassi�ation problems, beause the optimalhyperplane de�nes the deision surfae between two lasses. When SVMtehnique is applied to multi-lass lassi�ation problems, usually the multi-lass lassi�ation problem is deomposed into a set of 2-lass lassi�ationproblems4. The output lass should be determined by hoosing the maximumof the outputs of all sub-SVMs. However, before these outputs may be om-pared, they have to be normalized. This subsetion desribes a tehnique fornormalizing the output of SVMs in a multi-lass lassi�ation system.The output g(x) of a SVM, on the deision between two lasses, is de�nedas:
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g(x) = lXi=1 �iyiK(xi;x) + bo (8)In the linear separable ase, the mapping funtion �(x) = x. The Eu-lidean distane d(x) of a point x from the separating hyperplane g(x) = 0 isgiven by: d(x) = g(x)jjwojj (9)The wo an be obtained by applying �(x) of the support vetors.wo = lXi=1 �iyi�(xi) (10)The Eulidean norm jjwojj of wo an be alulated by1�21 = jjwojj2 = lXi=1 lXj=1 �i�jyiyjK(xi;xj) (11)To make it possible to ompare the distane output of di�erent SVMs,for eah SVM we de�ne the saling fator �2 as the mean over the positiveset. That is 1�2 = 1p pXi=1 g(xi)�1 (12)Here the p is the number of positive samples in training set. Finally, theomparable distane output of one SVM an be get bys(x) = g(x)�1�2 (13)2.3 Deomposing N-lass lassi�ation problemAmong the wide variety of methods available in the literature to learn las-si�ation problems, some are able to handle many lasses, while others arespei� to 2-lass problems. Traditionally, when the latter are used to solveN-lass lassi�ation problems, N-lassi�ers are typially trained to separate
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one lass from the N-1 others. The same idea an be applied with SVMs. Thisway of deomposing a general lassi�ation problem into 2-lass problems isknown as a one�against� others4 deomposition, and is independent of thelearning method used to train the lassi�ers.Suppose we need to lassify an unknown sample into a set of lassesf1; :::; Ng, given the N-lasses training set: S = fx1; :::;xV g, divide it intoN subsets fS1; ::::SNg, where Si ontains all training samples belong to i. Thei-th SVM is trained in the set of fPE;NEg, where PE = Si andNE = S�Si.If si(x) is the normalized output of the i-th SVM, whih is desribed in setion2.2, then the unknown example x will be lassi�ed into lasses j if:fj(x) = argmax(si(x)) i = 1; :::; N (14)If there are not too many lasses, the pairwise� oupling deompositionsheme an be used to replae the one�against� others. In this sheme onelassi�er is trained to disriminate between eah pair of lasses, ignoring theother lasses. This shemes make it possible to use the bubble sort algorithmto get out the �nal ategory.3 Desription of the other lassi�ers usedFor omparing the performane of the SVM to other lassi�ers, the NearestNeighbor (1NN), k-Nearest Neighbor (kNN), Hidden Markov Model (HMM)and Multi-Layer Pereptron (MLP) are introdued in this setion.3.1 kNN and 1NN methodFor an unknown sample x, the kNN follows the following priniple. Searhthe k nearest neighbors10 of x from V samples in the training set using anappropriate distane measure. Suppose there are N ategories in the givensamples, ki samples in the k nearest neighbor of x oming from ategory i,now, if kj = max(ki); i = 1; :::; N ; (15)then x an be lassi�ed to lass j . This is the basi rule of kNN. Whenk = 1, the output is the nearest neighbor of x. kNN beomes the nearestneighbor (1NN) method in this ase. For a large training set, the kNN methodimplements the Bayes rule, and furthermore kNN is very easy to implement.This is why kNN has beome one of the most important pattern reognition
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methods. The major problem of kNN is that all training samples have to beavailable during lassi�ation, and for a unknown pattern x, the distane ofx to all samples has to be omputed. This requires a lot of memory and timeresoures. In referenes10;11 there are some algorithms to speed up a kNNlassi�ers.3.2 MLP methodAs a representative of neural network lassi�ers, the multi-layer pereptron12(MLP) is used in our approah. To design a MLP lassi�er, two problemshave to be solved. The �rst is what kind of neural network struture shouldbe adopted. For instane, how many hidden layers, how many nodes in eahlayer and what kind of ativation funtion should be used for eah node. Upto now there is no theory whih an guide one to yield the optimal strutureof a neural network.The seond problem is how to hoose a learning algorithm for the neuralnetwork. Statistial methods an reah the global minimum point of a MLPand yield the best performane, but this learning method needs a long trainingtime. Bak-propagation is applied widely, but it may be plagued by the loalminima problem.Our MLP lassi�er uses the Bak-propagation learning algorithm and a256 � 128 � 32 � 26 neural network. The input layer represent the image ofthe input haraters and is fully onneted to the hidden units in the seondlayer. All units in the lassi�er have the same transfer funtion: They sumtheir inputs, add a onstant b alled bias, and take a �xed funtion f , alledan ativation funtion, of the result. The ativation funtion of all hidden andoutput layer units is the sigmoid funtion.3.3 HMM methodHidden Markov Models (HMMs) a popular method of statistial represen-tation in speeh proessing is based on the representation of an objet as arandom proess that generates a sequene of states. The elements of a HMMan be desribed as follows13;14:� N : the number of states� M : the number of output symbols� T : the number of observations� Q = fqtg : the set of states, t = f1; 2; :::; Ng� V = fV kg : the set of output symbols, k = f1; 2; :::;Mg
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� A = fAijg : the transition matrix of the underlying Markov hain. HereAij is the probability of transition to state j given the urrent state i.� B = fBj(Vk)g : the model output symbol probability matrix, whereBj(Vk) is the probability of output symbol Vk given the state qj .� a = faig: the initial probability vetor, i = 1; 2; :::; NThe harater in this lassi�er is sanned vertially and horizontally togenerate the orresponding out-ontour pro�les. The disrete hidden Markovmodels are generated using the Segmental k-means algorithm13 while a soringmehanism based on the Viterbi algorithms13 is used in test phase. Someparameters of the HMM lassi�er are N = 8, M = T = 16.4 Experimental resultsWe have extrated 14967 upperase isolated English haraters from theUNIPEN data base of the NICI. 5200 were used as training set (200 for eahletter), the rest was used as test set. This is a very diÆult data set, withharaters written by many writers, in a wide range of tablets and systems.The raw data of eah isolated letter is onverted into a 16x16 bitmap image.The pen width is 2 pixels. Examples of test data an be observed in �gure 1.The raw 256 dimensional bitmap vetor is used as the input for eah lassi�er.All lassi�ers are programmed in the C programming language, running on aPentium-II 400Hz PC.

Figure 1. Some bitmap images of testing examples.We designed some experiments to ompare the performanes of eahmethod. In the �rst experiment, we test the training time as a funtion
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of the number of samples. There are 26 lasses in these experiments. Theresult is listed in Table 1. The 1NN and kNN lassi�ers are not listed in thistable, beause they do not need to be trained as the prototype set is the wholetraining set.Table 1. training time in seonds as a funtion of the number of training samplesSN 130 260 650 1300 2600 5200HMM 30 57 133 262 519 1046MLP 81 283 693 1422 6062 1561SV C2 7 15 67 123 960 8075SV C1 4 6 12 28 204 67628We use a polynomial degree 2 kernel funtion for SVM lassi�er. Theone�against�others ategory is used when training SV C1. The pairwise�oupling deomposition sheme is used when training SV C2. From Table 1 wean dedue that there is little di�erene between methods when the number oftraining samples is small. When the number of samples inreases, the HMMlassi�er linearly inreases its training time, whereas the SVC's training timeinreases dramatially.Table 2. Test set orret reognition rate in perentages.SV C2 SV C1 HMM kNN 1NN MLPtop1 81.2 79.6 78.4 77.4 76.9 76.9top2 89.0 86.2 86.5 86.7 87.4 85.2top3 92.1 88.6 89.8 88.9 91.1 88.4top4 93.9 90.2 91.9 89.5 93.2 90.2top5 95.1 91.2 93.2 89.6 94.5 91.4The seond experiment tests the reognition rate. The experimental re-sults are shown in Table 2. In these experiments, the polynomial degree2 kernel funtion and a penalty parameter 1000 are used for all SV lassi-�ers. The SV C2 uses the pairwise � oupling deomposition sheme. Theone � against � others deomposition sheme is used in the SV C1. In theSV C1 all SVMs outputs are normalized as desribed in setion 2.2. For theSV C2 the bubble sort algorithm was used to sort the letters in the andidateset. The pairwise-oupling deomposition sheme is more eÆient than one-against-others as an be seen in table 2. Although we need to train more
174



sub-SVMs, In the ase of large training set sizes, it takes less training time.This is beause in the pairwise-oupling deomposition sheme eah sub-SVMuses less training samples as they are oming from two lasses only. In theone-against-others ase eah SVM is trained with data originating from alllasses.In the reognition proedure, if we fous only on the top1 result, thepairwise-oupling deomposition sheme takes less time. If we need a andi-date set, the SV C2 reognition time will inrease quadrati in the number oflasses. This an be observed in table 3.Table 3. Reognition time in seonds for the lassi�ation of 9767 samples.SV C2 SV C1 HMM kNN 1NN MLPNeed only top1 284 692 227 523 522 46Need top5 4397 702 240 572 542 54From these observations we an onlude that the SV C2 is more robustthan the other lassi�ers.5 ConlusionsIn this paper, a tehnique is introdued for using support vetor mahinesfor multi-lass lassi�ation. A solution for the problem of normalizing theoutput of several SVMs is highlighted. Di�erent deomposition tehniquesare disussed. The result of several experiments are presented. The lassi�-ation performanes are not so high beause of the diÆult data and rudefeature vetors. In ontrast to the onventional lassi�ation methods, whenonsidering training and reall times, support vetor lassi�ers are onsider-ably slower. However when onsidering reognition rates, the pair-wise SVCproves to outperform all other lassi�ers. Our future work will be foused onthe improvement of the feature vetors and the ombination of SV C2 withthe other lassi�ers.Referenes1. V. Vapnik. The nature of statistial learning theory. Springer-Verlag,Berlin, 1995.2. D.M.J. Tax, R.P.W. Duin, and M. van Breukelen. Support vetor las-si�ers: A �rst look. In H.E. Bal, H. Corporaal, P.P. Jonker, and J.F.M.
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