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Solar forcing of climatic change during
the mid-Holocene: indications from raised
bogs in The Netherlands
Maarten Blaauw,1* Bas van Geel1 and Johannes van der Plicht2

(1Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,
Kruislaan 318, 1098 SM Amsterdam, The Netherlands; 2Centre for Isotope
Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The
Netherlands)

Abstract: Two cores of mid-Holocene raised-bog deposits from the Netherlands were 14C wiggle-match dated
at high precision. Changes in local moisture conditions were inferred from the changing species composition
of consecutive series of macrofossil samples. Several wet-shifts were inferred, and these were often coeval
with major rises in the D14C archive (probably caused by major declines in solar activity). The use of D14C
as a proxy for changes in solar activity is validated. This paper adds to the increasing body of evidence that
solar variability forced climatic changes during the Holocene.

Key words: Climatic change, solar forcing, raised bogs, 14C wiggle-match dating, mid-Holocene, wet-shifts,
The Netherlands.

Introduction

Changes in solar activity during the Holocene can be recon-
structed using the proxy D14C (Stuiver and Braziunas, 1993; 1998;
Stuiver et al., 1998; Chambers et al., 1999; Beer, 2000; Goslar,
2002). A temporal link between changes in D14C and Holocene
climatic changes has been documented by several studies
(Blackford and Chambers, 1995; Karlén and Kuylenstierna, 1996;
Chambers et al., 1999; Hong et al., 2000; Björck et al., 2001;
Bond et al., 2001; Hodell et al., 2001; Neff et al., 2001; Magny,
2004), while other studies report climate cycles with periodicities
close to those of solar variability (e.g., Wijmstra et al., 1984;
Chambers et al., 1999; Ram and Stolz, 1999; Chambers and
Blackford, 2001). However, the chronologies obtained in these
studies often were rather imprecise. To establish securely whether
a temporal correspondence exists between short-term (decadal to
centennial) changes in solar activity and climatic changes, chrono-
logies with much higher precision are needed.

Using 14C wiggle-match dating, high-precision chronologies
can be obtained of peat deposits (e.g., Kilian et al., 1995; 2000;
Blaauw et al., 2003). Wet-shifts in northwest and central Euro-
pean peat deposits dated with this method coincided with abrupt
D14C rises during periods of the Holocene (Subboreal/Subatlantic
transition: van Geel et al., 1996; Speranza et al., 2000; 2002;
‘Little Ice Age’: Mauquoy et al., 2002a; 2002b). In this paper, we
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extend our investigations to the mid-Holocene. We present local
vegetation reconstructions of two peat cores, together en-
compassing the period from c. 4500 to c. 340 cal. bc, and investi-
gate the possible relation between changes in solar activity and
changes in the peat records during this period.

Cores from raised bogs provide a well-known archive of cli-
matic changes. Raised bogs are dependent on precipitation alone
for water and nutrients. Because plant species found in raised bogs
each have their own requirements concerning depth of the water
table (Malmer, 1986; Hammond et al., 1990; Økland, 1990; van
der Molen, 1992; Wheeler and Proctor, 2000; Økland et al.,
2001), the macro- and microfossil composition of consecutive
samples can inform us about past changes in local moisture con-
ditions, and therefore about changes in effective precipitation
(precipitation minus evapotranspiration).

Material and methods

Two peat cores were taken from drained raised bogs in the eastern
part of the Netherlands (Figure 1). Core Eng-XV (Blaauw et al.,
2003; 2004) was collected from Engbertsdijksvenen; core MSB-
2K (Blaauw et al., 2003) was collected from the location
Meerstalblok in the Bargerveen nature reserve. The sequences
were analysed at high resolution (mostly 1 cm; 0.5 cm at some
intervals) for various proxies to reconstruct mire surface wetness.
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Figure 1 (A) Part of Europe, with The Netherlands indicated by a
rectangle (inset B). (C) Location of the cores MSB-2K (M) and Eng-
XV (E). The dotted line indicates the Dutch-German border. Dotted areas
indicate the present extent of the raised-bog deposits.

14C wiggle-match dating
The cores were 14C wiggle-match dated in order to obtain high-
precision chronologies. For details of the wiggle-match pro-
cedures and results we refer to Blaauw et al. (2003); here the
method will be summarized. At � rst instance, a constant accumu-
lation rate was assumed for the cores. The 14C dates of the cores
were matched with those of the 14C calibration curve INTCAL98
(Stuiver et al., 1998). At levels where 14C dates started to deviate
from the 14C calibration curve and where at the same time
lithology suggested either a hiatus or a change in accumulation
rate, the sequences were divided into subsets. These subsets were
then wiggle-match dated separately with the assumption of linear
accumulation rate for every subset. Two measures of the
goodness-of-�t were assessed: one based on minimalization of
weighted least squares (cf. Pearson, 1986) and one on maximaliz-
ation of the product of probability densities (Blaauw et al., 2003).
Con� dence intervals were calculated.

Local vegetation reconstruction
From 0.5–1 cm slices of the peat cores, samples of 2.5 cc volume
were boiled for c. 10 min in 5% KOH solution and, after rinsing
and sieving over a 100 mm sieve using demineralized water, the
.100 mm fraction (macrofossils; Birks, 2001) was analysed.
Identi� cation was based on literature (Grosse-Brauckmann, 1972;
1974; Grosse-Brauckmann and Streitz, 1992) and on a reference
collection. Abundances of plant and other remains were recorded
on the basis of estimated volume percentage (e.g., mosses),
number (e.g., seeds) or absence/presence. Samples were stored in
demineralized water containing some droplets of 5% HCl.

Core Eng-XV was also analysed for microfossils. Microfossil
samples c. 1 cm3 in volume were prepared as described by Fægri
and Iversen (1989), with 1 tablet of Lycopodium spores added to
estimate pollen concentration (Stockmarr, 1971). Identi� cation of
pollen grains was based on Moore et al. (1991) and on a reference
collection, while non-pollen palynomorphs were identi� ed based
on van Geel (1978) and on a reference collection.

Ecology of raised-bog species
Changes in vegetation composition were interpreted based on the
present ecology of species in raised bogs. The wetness-

preferences of the species most commonly found in the cores are
reviewed below (see also Figure 2).

· Scheuchzeria palustris (hereafter abbreviated to Scheuchzeria)
grows in places where the ground water table is very high or
where there is permanent standing water; it is susceptible to
drying out of the peat surface (Moore, 1955; Tallis and Birks,
1965). Ordination studies also showed that the occurrence of
Scheuchzeria indicated very wet conditions (Økland, 1990). As
Scheuchzeriawas placed rather high on the second axis of DCA
by Økland (1990), indicating a poor–rich gradient, the species
can be considered to be slightly minerotrophic compared to
other raised-bog plants. Other studies also mention its slight
minerotrophy (e.g., Casparie, 1972).

· Rhynchospora alba is also indicative of pools or high water
tables (Godwin and Conway, 1939; Mauquoy, 1997). R. alba
appears to occur at poorer (more acid) locations than
Scheuchzeria (Newbould, 1960; Økland, 1990). Compared with
Scheuchzeria, R. alba perhaps grows in a wider range of mire
surface water levels (Overbeck, 1975).

· Sphagnum cuspidatum is indicative of wet, oligotrophic con-
ditions, i.e., � oating or submerged in bog pools, along pool
margins and in wet hollows and soaks (Godwin and Conway,
1939; Newbould, 1960; Boatman, 1977; Daniels and Eddy,
1985; Mauquoy, 1997). As S. cuspidatum is found � oating in
deep pools, we assume it can occur at even wetter conditions
than Scheuchzeria. If Sphagnum cuspidatum (partly or entirely)
replaces Scheuchzeria in the macrofossil record, we therefore
interpret this as a possible shift to even wetter conditions.

· S. papillosum is an indicator of moist conditions as it is most
common in low lawns, although it is occasionally found higher
up on lawns or even in hummocks, and although it can resist
drought (Godwin and Conway, 1939; Mauquoy, 1997). DCA
by Økland (1990) placed the species at rather wet and relatively
rich conditions.

· S. imbricatum is a highly oceanic species (Daniels and Eddy,
1985). Nowadays it often occurs in hummocks, but there are
strong indications that in the past S. imbricatum grew mostly
in rather wet ‘lawn’ conditions (Casparie, 1972; Barber, 1981;
Green, 1968; Stoneman et al., 1993; Mauquoy and Barber,
1999). As with most palaeoecological studies, we interpret its
appearance as indicating a change to moister climate (higher
air humidity and cooler conditions).

· S. sect. Acutifolia comprises a group of species that cannot be
identi� ed to species level during macrofossil analysis. Most
species of the section grow at relatively dry conditions

Figure 2 Interpreted range of occurrence (horizontal lines) of raised-bog
plant species along a dry-wet (hummock-hollow) gradient, based on litera-
ture (e.g., Overbeck, 1975; see text). Thin horizontal lines indicate water.
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(hummocks). DCA by Økland (1990) placed S. rubellum,
according to Barber (1981) the most important peat-building
species of the section Acutifolia, close to Eriophorum
vaginatum and Ericaceae on the � rst axis.

· Oxycoccus palustris is characteristic of waterlogged ombro-
genous peat (Jacquemart, 1997). Its growth optimum is found
in moist hollows, and it is very sensitive to surface drying
(Jacquemart, 1997). Økland’s (1990) DCA placed the species
at intermediate levels on the moisture gradient axis.

· Andromeda polifolia occurs at greatest shoot frequency in low
hummocks and lawns of ombrotrophic bogs (Jacquemart,
1998). According to Jacquemart (1998), A. polifolia is not
necessarily a hygrophilous species, and is not found at the wett-
est locations. DCA by Økland (1990) placed the species at
intermediate levels on the moisture gradient axis. A. polifolia
grows slightly higher at a lawn-hummock gradient than Oxy-
coccus palustris (Overbeck, 1975).

· Erica tetralix is characteristic of wet heath and mire communi-
ties in oceanic western Europe (Bannister, 1966). It appears to
grow in slightly moister conditions than Calluna vulgaris (e.g.,
Overbeck, 1975). DCA con� rms this (Økland, 1990).

· Calluna vulgaris (Gimingham, 1960; Wallén, 1987) is
clearly a hummock species, restricted to drier microhabitats
(Nordbakken, 2001) with a relatively deep water table because
the roots need an aerated layer.

· Eriophorum vaginatum (Wein, 1973) can grow at a wide range
of moisture conditions (e.g., Wallén, 1987), and is dominant
where water tables are at surface level in spring and dry out
during summer. It can survive drought, but is also able to
invade pools. As a consequence of the wide ecological range
of E. vaginatum, its use in reconstructing mire surface water
levels is limited (Mauquoy, 1997).

· Scirpus caespitosus (Trichophorum cespitosum) can grow under
a wide range of water tables, as is the case with E. vaginatum
(Mauquoy, 1997). Its use for reconstruction of mire surface
water level is therefore limited.

· Macroscopic charcoal particles indicate local � res.
· Amphitrema � avum is a testate amoeba indicating relatively wet

local conditions (van Geel, 1978; Charman et al., 2000).
· Type 10 is the spore of a fungus occurring on the roots of

Calluna vulgaris (van Geel, 1978). Like its host plant, it
indicates relatively dry conditions.

· Type 12 is a fungal spore indicating relatively dry local con-
ditions (van Geel, 1978).

Summarizing, Scheuchzeria palustris, Rhynchospora alba and
Sphagnum cuspidatum clearly indicate very wet conditions in
raised bogs, while Calluna vulgaris, Type 10 and Type 12 are
obvious indicators of relatively dry conditions. The wetness-
preferences of other species are either intermediate (e.g., Sphag-
num papillosum) or dif� cult to interpret (e.g., Eriophorum
vaginatum). As the aim of this study was to identify wet-shifts,
Scheuchzeria, Rhynchospora alba and Sphagnum cuspidatum are
considered most relevant here.

Results

Originally, it was planned to obtain a mid-Holocene record of
climatic change from a single site (Engbertsdijksvenen).However,
a large hiatus (lasting from c. 4200 to 2500 cal. bc) was en-
countered in a core from Engbertsdijksvenen that was sampled to
investigate the period of c. 4500 to 2500 cal. bc (Blaauw, 2003).
Therefore, an additional core was collected at a different site
(Meerstalblok; core MSB-2K). Cores MSB-2K and Eng-XV were
14C wiggle-match dated (for explanation, see Blaauw et al., 2003).
The resulting chronologies are shown in Figure 3. The 14C

sequences of both cores were divided into three subsets based
upon changes in stratigraphy and most likely positions of 14C
dates on the calibration curve (Figure 3, a and b). The black dots
in Figure 3, c and d, give the most probable wiggle-match dating
derived calendar ages for every depth; sizes of the dots indicate
probabilities of calendar age. Average 1 s con� dence intervals
for calendar ages are 52, 99 and 86 y for the lower, middle and
upper subsets of core MSB-2K respectively, and 204, 114 and 36
y respectively for the lower, middle and upper subsets of core
Eng-XV (Blaauw et al., 2003). In the text, calendar ages are
rounded to the nearest � ve years.

Wet-shifts
Changes in vegetation composition through time are summarized
in Figures 4 and 5, together with residual D14C (Stuiver et al.,
1998). Numbered hatched lines with arrows show wet-shifts as
inferred from changes in the vegetation composition of the cores.
According to Aaby (1976), wet-shifts in raised-bog sequences
were most probably caused by changes in climate, while changes
to drier conditions often should be attributed to local succession
(peat accumulating away from the water table). Therefore, in this
paper we focus on the wet-shifts as proxies of climatic change.

Core MSB-2K
The record begins with the base of core MSB-2K (Figure 4),
experiencing dry, hummock conditions: Calluna vulgaris, Erica-
ceae rootlets and Eriophorum vaginatum are dominant (although
Oxycoccus palustris is also found).

MSB-1
Starting at c. 4390 cal. bc, Sphagnum cuspidatum, Rhynchospora
alba and Scheuchzeria peak brie� y, suggesting a wet-shift. Later
(starting c. 4325 cal. bc), alternating dominances of C. vulgaris,
Ericales rootlets, Eriophorumvaginatum and Sphagnum sect. Acu-
tifolia indicate dry local conditions.

MSB-2
At c. 4115 cal. bc, surface wetness increases for a short period
(S. cuspidatum peaks, and also R. alba shows a small peak).

MSB-3
At c. 3910 cal. bc a major wet-shift occurs, as indicated by a
hiatus (from c. 4010 to 3910 cal. bc) and subsequent dominance
of Scheuchzeria with some R. alba. We interpret this as follows:
at some stage of the wet period, streaming water at the surface
of the bog may have eroded sur� cial material (cf. Casparie, 1972).
Peat accumulation started again with Scheuchzeria and R. alba.
Later (c. 3760 cal. bc), Calluna vulgaris and Ericales rootlets
indicate drier local conditions. Other explanations could be found
for the hiatus, but are considered less plausible. We have no evi-
dence for local peat digging during the period considered. Excess-
ive dryness as a cause of the hiatus is unlikely because the local
macrofossil record clearly indicates very wet local conditions
(dominance of Scheuchzeria and R. alba). Moreover, a local � re
is not assumed to have caused the hiatus, as no signi� cant
charcoal peaks were present.

MSB-4
Around c. 3635 cal. bc, C. vulgaris is replaced by Andromeda
polifolia, Oxycoccus palustris and some Sphagnum cuspidatum.
Remains of Scheuchzeria increase in abundance. All these
changes point to a wet-shift.

MSB-5
At c. 3535 cal. bc, Sphagnum cuspidatum becomes dominant over
Scheuchzeria and R. alba, indicating a possible shift to even
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Figure 3 14C wiggle-match dating chronologies of cores MSB-2K and Eng-XV. The 14C sequences of both cores were divided into three subsets based
upon changes in stratigraphy and best � ts of 14C dates on the calibration curve (a, b). Error bars of 14C dates indicate 1 s con� dence intervals. For the
calibration curve, the 1 s error envelope is depicted. The most probable calendar-year ages for every depth are plotted in (c, d), their shape indicating
probabilities of calendar age. The vertical boxes with horizontal lines indicate hiatuses. See text.

wetter conditions. Around c. 3410 cal. bc conditions get drier
again as A. polifolia and Ericales rootlets show small peaks.

MSB-6
At c. 3360 cal. bc, the abundance of remains of Scheuchzeria
increases slightly. This might imply wetter conditions.

MSB-7
After a hiatus from c. 3160 to 2910 cal. bc, at c. 2895 cal. bc
Sphagnum cuspidatum brie� y gets dominant over Scheuchzeria.
This indicates a shift to even wetter conditions. The hiatus can be
explained by an erosion event caused by excess surface water;
compare with wet-shift 3. Also in this case, other causes for the
hiatus could be ruled out: there is no evidence for peat digging,
the macrofossil record shows very wet local conditions, and no
charcoal was found. Around c. 2755 cal. bc, conditions become
drier again (Calluna vulgaris and Ericales rootlets get dominant
over the hygrophilous species).

Core Eng-XV
Approximately 270 years (from c. 2650 to c. 2380 cal. bc) are not
represented in the core intervals studied here. The base of core
Eng-XV (Figure 5) represents relatively dry conditions as shown
by dominance of Eriophorum vaginatum, Scirpus caespitosus,
Andromeda polifolia and charcoal.

Eng-1
At c. 2310 cal. bc, Scheuchzeria replaces E. vaginatum and A.
polifolia shows a decline, indicating a wet-shift. Amphitrema
� avum enters. Subsequently around c. 2115 cal. bc conditions get
drier as � rst S. papillosum and later E. vaginatum and Types 10
and 12 peak.

Eng-2
At c. 1960 cal. bc, Scheuchzeria replaces E. vaginatum, implying
a wet-shift.

Eng-3
Around c. 1870 cal. bc, Sphagnum cuspidatum replaces
Scheuchzeria after a large charcoal peak, indicating a wet-shift.
Amphitrema � avum enters again and O. palustris shows a
maximum.

Eng-4
After relatively dry conditions (dominance of Sphagnum sect.
Acutifolia), at c. 1715 cal. bc S. cuspidatum takes over.
Amphitrema � avum peaks. Later, around c. 1595 cal. bc, the
sequence becomes drier again, indicating hummock conditions
(C. vulgaris).
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Figure 4 Residual D14C and changes in local vegetation derived from core MSB-2K, with the chronology based on Figure 3. Vertical boxes with horizontal
striping indicate hiatuses, numbered vertical lines with arrows indicate inferred wet-shifts (ambiguous wet-shifts are labelled with question marks), vertically
hatched areas indicate occurrence of macrofossils in estimated volume percentage, black areas indicate macrofossils counted as numbers, dots indicate
macrofossils counted as present at low amounts, lines indicate percentages of microfossils (expressed on a tree pollen sum). D14C is the relative 14C
content (i.e., deviation of the activity from the standard), corrected for radioactive decay, and expressed in ‰. Here D14C is, in addition, detrended for
the geomagnetic component and is called ‘residual D14C’.

Eng-5
Hummock conditions change into lawn conditions as around
c. 1435 cal. bc Calluna vulgaris and S. sect. Acutifolia are
replaced by S. papillosum, through a distinctly wet phase of S.
cuspidatum, R. alba, Erica tetralix and O. palustris. Types 10 and
12 show a decline.

Eng-6
At c. 1230 cal. bc, S. cuspidatum and R. alba indicate a wet-shift.
Later (starting c. 1170 cal. bc), S. papillosum gradually replaces
S. cuspidatum.

Eng-7
Around c. 1075 cal. bc, R. alba starts dominating S. papillosum,
and some S. cuspidatum occurs. Although this could point to
slightly wetter local conditions, at the same time S. sect.
Acutifolia, C. vulgaris and Ericales rootlets reach rather high
values.

Eng-8
During a phase of relatively very dry conditions (thick branches
of C. vulgaris are found, together with Ericales rootlets and S.
sect. Acutifolia), at c. 785 cal. bc a short but distinctive peak of
S. imbricatum occurs, and also Scheuchzeria enters again with
low values.

Eng-9
At c. 660 cal. bc, Sphagnum sect. Acutifolia and Calluna vulgaris
are replaced by S. imbricatum, through a short phase of S.
cuspidatum and S. papillosum. Numbers of Types 10 and 12 show
a decline. All these changes clearly point to conditions getting
wetter. Later (c. 475 cal. bc) an increase of Ericales rootlets and
Type 10 show that conditions become drier again.

Eng-10
Around c. 385 cal. bc, S. imbricatum increases again with an
associated decline of Ericales rootlets and Type 10, re� ecting a
wet-shift.

D14C rises and wet-shifts
As can be seen from Figures 4 and 5, and Table 1, most of the
major rises in the residual D14C record were coeval with wet-
shifts in the studied raised-bog deposits (MSB-1, 3, 4, 5, 6, 7,
Eng-5, 8, 10). Most of these wet-shifts were evident, whereas one
of the wet-shifts (MSB-6) was less clear. On only two occasions,
no wet-shift was recorded during a large D14C rise (core
MSB-2K during the D14C rise of c. 4265–4215 cal. bc, and core
Eng-XV during the D14C rise of c. 1535–1485 cal. bc). Even
smaller increases in D14C at times appear to have been coeval
with wet-shifts (wet-shifts Eng-1, 3 and 4), although this may be
a coincidence.
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Figure 5 Residual D14C and changes in local vegetation derived from core Eng-XV, with the chronology based on Figure 3. For explanation, see Figure 4.

Table 1 Major D14C rises during the mid-Holocene, their duration, ampli-
tude and temporally corresponding wet-shifts in the studied raised-bog
deposits (Figures 4 and 5). For a rise in the (residual) D14C record to be
considered major here, it has to comply with two rules: its amplitude
should be at least twice the 1 s error envelope of the D14C record (which
averages 5‰ during the period considered) and the D14C record should
show rising levels during more than two measurements ($30 y)

Major D14C rise Amplitude D14C Corresponding
(start–end; cal. bc) rise (in ‰) wet-shift

(cal. bc)

c. 4375–4315 18.7 MSB-1 (c. 4390)
c. 4265–4215 18.6 (no wet-shift)
c. 4005–3935 18.2 MSB-3 (c. 3910)
c. 3665–3615 20.4 MSB-4 (c. 3635)
c. 3545–3485 17.1 MSB-5 (c. 3535)
c. 3385–3325 22.9 MSB-6 (c. 3360)?
c. 3105–3075 10.6 (hiatus)
c. 2925–2825 26.9 MSB-7 (c. 2895)
c. 2505–2455 14.8 (no record)
c. 1535–1485 11.2 (no wet-shift)
c. 1465–1365 13.4 Eng-5 (c. 1435)
c. 845–755 26.0 Eng-8 (c. 785)
c. 415–345 25.5 Eng-10 (c. 385)

Discussion

The local vegetation composition of two sequences from raised-
bog deposits in The Netherlands has been reconstructed in detail
and the sequences were 14C wiggle-match dated at high resolution

(Figure 3), thereby forming a discontinuous, precisely dated
record from c. 4500 to c. 340 cal. bc. From the local vegetation
reconstruction, several wet-shifts were inferred (Figures 4 and 5).

Most of the major rises in the residual D14C record were coeval
with wet-shifts in the cores (Figures 4 and 5; Table 1). As raised
bogs depend entirely on precipitation for water and nutrients,
the wet-shifts in the sequences are assumed to have been caused
by increases in effective precipitation (precipitation minus
evapotranspiration), and thus by changes into a wetter and/or
cooler climate (e.g., Barber, 1981; Blackford, 2000; Mauquoy
et al., 2002a; 2002b). Some wet-shifts in the studied peat cores
occurred without a corresponding D14C rise. This was not
unexpected; several factors could cause climatic changes and,
moreover, wet-shifts could also be caused by internal dynamics.

Temporal links between archives of climate change and
changes in solar activity have been reported before (e.g., Wijmstra
et al., 1984; Blackford and Chambers, 1995; Hong et al., 2000;
Bond et al., 2001; Chambers and Blackford, 2001; Magny, 2004),
but the chronologies used in these studies often were rather
imprecise. With our approach of 14C wiggle-match dating, peat
chronologies become far more precise. Only with such high-
precision chronologies can short-term (decadal to centennial)
events in climate proxy records be securely compared with short-
term events in independentlydated archives, e.g., with rises in the
D14C record.

Core Eng-XIV (Kilian et al., 1995; 2000) was collected at a
location within a few metres from core Eng-XV, and was 14C
wiggle-match dated at high resolution. This core showed a major
wet-shift at the start of the rise of D14C at c. 850 cal. bc. However,
no such major wet-shift was identi� ed in core Eng-XV at this
time. Only for a short time did Sphagnum imbricatum enter,
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accompanied by some Scheuchzeria (wet-shift Eng-8; c. 785 cal.
bc). The site had grown into a dry hummock; from c. 1100 to
c. 600 cal. bc, the core consisted almost completely of thick stems
and branches of Calluna vulgaris. Hummocks are thought to be
less responsive to climatic changes than hollows or intermediate
sites; even large increases in surface water level would not be
recorded in high hummocks (Aaby, 1976; Barber et al., 1998).
This could also explain the lack of wet-shifts at the time of the
large D14C rises starting at c. 4265 cal. bc (core MSB-2K) and
c. 1535 cal. bc (core Eng-XV); at these times, the cores experi-
enced hummock conditions (large amounts of C. vulgaris and
Ericales rootlets).

Multicore investigations of precisely 14C wiggle-match dated
peat cores could help in assessing the representativity and rep-
licability of climate records as derived from peat deposits (Barber
et al., 1998; Charman et al., 1999; Mauquoy et al., 2002a). The
precisely dated core Eng-XIV (see above) forms a duplicate of
core Eng-XV from c. 1150 cal. bc to c. 340 cal. bc. As opposed
to core Eng-XV, core Eng-XIV did show a major wet-shift at the
major D14C rise of c. 850 cal. bc (Kilian et al., 2000). Owing to
constraints in time and budget, it was not possible to 14C wiggle-
match date duplicate cores from the period of c. 4500 to c. 1150
cal. bc.

The wet-shift at the major rise of D14C at c. 850 cal. bc men-
tioned above was coeval with a major climatic change in many
parts of the world. An overview of the global climatic change
during this period is given by van Geel et al. (1998); additional
evidence of this change comes from the North Atlantic Ocean
(Bond et al., 2001), the Norwegian Sea (Calvo et al., 2002),
Northern Norway (Vorren, 2001), England (Waller et al., 1999),
the Czech Republic (Speranza et al., 2000; 2002), central southern
Europe (Magny, 2004), Chile (van Geel et al., 2000), New
Mexico (Armour et al., 2002) and across the continent of North
America (Viau et al., 2002).

D14C
Past variations in atmospheric 14C content (D14C) have been the
result of changes in 14C production (depending on solar varia-
bility, galactic cosmic ray � ux and/or geomagnetic � eld strength)
and/or changes in the carbon cycle (in particular ocean ventilation
changes). Radiocarbon and other cosmogenic isotopes such as
10Be are produced by galactic cosmic rays entering the Earth’s
atmosphere. Solar wind (a low-density proton-electron gas,
streaming from the sun) in combination with the Earth’s magnetic
� eld, provides a shield against a large amount of the galactic
cosmic rays entering the Earth’s atmosphere. A decreased solar
activity leads to less solar wind, reduced shielding against cosmic
rays, and thus to increased production of cosmogenic isotopes
(e.g., Hoyt and Schatten, 1997; Beer, 2000).

D14C and solar activity
Rapid major increases in D14C during the Holocene, such as the
one starting around 850 cal. bc and the increases during the ‘Little
Ice Age’, are attributed to decreases in solar activity (e.g.,
Stuiver and Braziunas, 1993; 1998; Chambers et al., 1999; Beer,
2000; Beer et al., 2002; Goslar, 2002; R. Muscheler, personal
communication). Radiocarbon and 10Be levels changed together
with observed sunspot indices and climatic changes during recent
centuries (e.g., Beer, 2000). Recently the 14C signal has been dis-
turbed by nuclear bombs and by large-scale burning of fossil fuel.
Moreover, changes in instrumental records (measured reliably
only since the most recent decades) of cosmic rays, 10Be levels,
solar irradiance and solar activity indices such as sunspot numbers
showed highly comparable behaviour (e.g., Hoyt and Schatten,
1997; Beer, 2000; Goslar, 2002).

D14C and cosmic ray intensity
An increase in galactic cosmic ray � ux, for example caused by a
supernova, could lead to increased atmospheric levels of cosmo-
genic isotopes such as 14C. To our knowledge, such explanations
of changes in cosmogenic isotope levels have only been reported
for periods before the Holocene (e.g., Shaviv, 2002). Moreover,
there are strong theoretical arguments in favour of a quite stable
galactic cosmic ray � ux (J. Beer, personal communication).

D14C and geomagnetic � eld
Fluctuating geomagnetic activity could in� uence atmospheric 14C
levels as well. Most studies assume that only the long-term (.3
ka) changes in cosmogenic isotopes are forced by geomagnetic
changes (e.g., Merrill et al., 1996; Beer, 2000; Beer et al., 2002).
Holocene changes in geomagnetism have been reconstructed from
several regions (e.g., Valet et al., 1998; Ali et al., 1999; Gogorza
et al., 2000; Yang et al., 2000; Laj et al., 2002; Ojala and
Saarinen, 2002; Snowball and Sandgren, 2002). Although long-
term geomagnetic trends appear to be more or less similar
between these records, they differ at shorter timescales. Several
of the records show intriguing short-term changes in intensity,
declination and inclination. However, changes in geomagnetic
� eld are complex and only partly understood, and it is not known
to what extent the reported short-term changes were coeval glo-
bally or merely artifacts caused by chronological problems,
changes in sedimentation, and/or local, non-dipolar changes in
magnetic � eld (Merrill et al., 1996). Local variations in magnetic
� eld would not have a global effect and could thus not cause
major changes in the production rate of cosmogenic isotopes (J.
Beer, personal communication). Neither do the reported rapid
changes in the geomagnetic records correspond well with the
rapid � uctuations in the D14C record. Snowball and Sandgren
(2002: 529) however, state that owing to ‘the current lack of a
high-resolution reconstruction of the geomagnetic � eld intensity
(in terms of a dipole-moment), it cannot be assumed that short-
term (,103 year) variations in solar activity are solely responsible
for similar duration anomalies in the production rates of cosmog-
enic nuclides, as the internal dynamics of the Earth’s geodynamo
may promote similar features’. However, even if changes in geo-
magnetic � eld would cause major and rapid D14C changes, it has
to be noted that changes in the Earth’s magnetic � eld can be
caused by changes in solar activity (Merrill et al., 1996).

D14C and the ocean
When 14C is produced in the atmosphere, it oxidizes to 14CO2 and
enters the global carbon cycle. As the ocean is the largest reservoir
in the carbon cycle, changes in CO2 exchange between the ocean
and the atmosphere could cause changes in atmospheric 14CO2

content. Several studies (Hughen et al., 1998; 2000; Muscheler
et al., 2000; Marchal et al., 2001) hold a supposed near-cessation
of the thermohalinecirculation in the North-Atlantic Ocean during
the Younger Dryas at least partly responsible for the concurrent
D14C rise. Such a rise could have been caused by increased
oceanic uptake of CO2 from the atmosphere and/or reduced venti-
lation of 14C-depleted ocean water, after which even a constant
production of 14CO2 would cause rising atmospheric 14CO2 levels.
Goslar et al. (2000) and Renssen et al. (2000) propose ‘non-
oceanocentric’ scenarios, where a decline in solar activity is
argued to have caused the Younger Dryas D14C rise, and also the
shift to cold climatic conditions (possibly in concert with ocean
circulation changes). If the ocean should be held responsible for
the major, rapid rises in atmospheric 14C content during the Holo-
cene, major changes in ocean circulation would need to have
occurred. During the Holocene, no such major ocean circulation
changes have been detected (Chapman and Shackleton, 2000;
Keigwin and Boyle, 2000; Bond et al., 2001). Therefore, changes
in ocean circulation cannot have caused the rapid and large
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increases in atmospheric 14C content during the Holocene (Stuiver
et al., 1991).

Solar forcing of climatic change
A strong case that changes in 14C production rate (and not ocean
circulation) were the cause of the rapid changes in atmospheric
levels of 14C during the Holocene is that 10Be and 14C showed
highly similar changes (Bard et al., 1997; R. Muscheler, personal
communication). The � uctuations of these isotopes also corre-
sponded with major changes in the sunspot cycle during the last
c. 350 years, and with precise satellite measurements of solar
irradiation during the last few decades (Hoyt and Schatten, 1997).
Considering the evidence above, the major rises in D14C discussed
in this paper were most probably caused by changes in solar
activity. Moreover, nearly every major D14C rise was coeval with
a wet-shift in the mid-Holocene peat cores reported here. Because
these wet-shifts were most probably caused by a change to a
wetter and/or cooler climate, the present study gives additional
indications for solar forcing of climatic change.

Forcing mechanisms
Most climate models cannot explain how relatively small changes
in solar irradiance alone could force changes in climate. Possible
amplifying factors for solar forcing of climatic change are dis-
cussed by van Geel et al. (1999). One likely forcing mechanism
involves variations of solar UV irradiance, which cause changed
production of ozone and related absorption of heat in the earth’s
atmosphere, resulting in shifts of the atmospheric circulation cells
(Haigh, 1996; van Geel et al., 1999; 2001; Schuurmans et al.,
2001; Rozema et al., 2002). Carslaw et al. (2002) review a poss-
ible amplifying mechanism for solar forcing of climatic change
through the connection between cosmic rays and cloud formation.
Ocean circulation changes forced by solar variability could form
an additional amplifying mechanism (Bond et al., 2001).

Conclusions

Nine out of 11 mid-Holocene major D14C rises were coeval with
wet-shifts (as inferred from changes in reconstructed vegetation
composition) in two precisely 14C wiggle-match dated raised-bog
deposits. By demonstrating the temporal link between major D14C
rises (probably caused by declines in solar activity) and wet-shifts
in peat (probably caused by climate getting cooler and/or wetter),
the present paper adds to the accumulating evidence that solar
variability has played an important role in forcing climatic change
during the Holocene. Knowledge about solar forcing of climatic
change is important for evaluating causes of recent global
warming (anthropogenic and natural), and for predicting future
climatic changes.
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II. Weitere Reste (Früchte und Samen, Moose u.a.) und ihre
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