Energy transfer pathways in dinuclear heteroleptic polypyridyl complexes

Weldon, Frances; Hammarström, Leif; Mukhtar, Emad; Hage, Ronald; Gunneweg, Eric;
Haasnoot, Jaap G.; Reedijk, Jan; Browne, Wesley; Guckian, Adrian L.; Vos, Johannes G.
Published in:
Inorganic Chemistry

DOI:
10.1021/ic049896p

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Weldon, F., Hammarström, L., Mukhtar, E., Hage, R., Gunneweg, E., Haasnoot, J. G., ... Vos, J. G. (2004). Energy transfer pathways in dinuclear heteroleptic polypyridyl complexes: Through-space vs through-bond interaction mechanisms. Inorganic Chemistry, 43(14), 4471-4481. DOI: 10.1021/ic049896p

[^0]If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Supplementary information for manuscript ic049896p

Ligand synthesis. Synthesis of 1,3-bis(5-(2-pyridyl)-4H-1,2,4-triazol-3-yl)benzene ($H_{2} m L$).

This synthesis involved four steps.
First step. Synthesis of 2-pyridylamidrazone. 2-cyanopyridine ($22 \mathrm{~g}, 0.21 \mathrm{~mol}$) and excess hydrazine hydrate ($15 \mathrm{~g}, 0.3 \mathrm{~mol}$) were mixed in a minimum amount of ethanol and allowed to stir overnight. The pale yellow needle-like crystals were filtered, washed with diethyl ether and air dried. Yield $=26.8 \mathrm{~g}(94 \%)$. M.P. $=96-90^{\circ} \mathrm{C}\left(\right.$ lit. $\left.95-96{ }^{\circ} \mathrm{C}\right){ }^{\mathrm{i}}$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right]: \delta(\mathrm{ppm}): 7.24\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{5}, \mathrm{~J}=6 \mathrm{~Hz}\right), 7.67\left(1 \mathrm{H}\right.$, dd, pyridyl H_{4}, $\mathrm{J}=7.8 \mathrm{~Hz}), 8.00\left(1 \mathrm{H}\right.$, d, pyridyl $\left.\mathrm{H}_{3}, \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.50\left(1 \mathrm{H}, \mathrm{d}\right.$, pyridyl $\left.\mathrm{H}_{6}, \mathrm{~J}=6 \mathrm{~Hz}\right), 4.63$ $\left(2 \mathrm{H}, \mathrm{s}\right.$, broad $\left.\mathrm{H}_{\mathrm{NH}}\right), 5.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{NH} 2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right]: \delta(\mathrm{ppm}): 119.90,123.90$, 136.50, 148.10, 148.80, 150.97.

Second Step. Preparation of Isophthaloyl dichloride. To a solution of isophthalic acid $(16.61 \mathrm{~g}, 0.1 \mathrm{~mol})$ and DMF $\left(1 \mathrm{~cm}^{3}\right)$, thionyl chloride $\left(30 \mathrm{~cm}^{3}, 0.4 \mathrm{~mol}\right)$ was added under a nitrogen atmosphere. The reaction mixture was then heated to reflux temperature for 30 min , by which time a deep yellow solution had formed. After cooling, any excess thionyl chloride was removed by distillation, and upon cooling of the remaining solution, white crystals formed. These were collected under vacuum and washed with hexane. Yield $=9.2 \mathrm{~g}(50 \%) . \quad$ M.P. $=40-42^{\circ} \mathrm{C}\left(\text { lit. } 43-44^{\circ} \mathrm{C}\right)^{\mathrm{ii}}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right]: \delta(\mathrm{ppm}): 8.86\left(1 \mathrm{H}, \mathrm{s}\right.$, phenyl $\left.\mathrm{H}_{2}\right), 8.43\left(2 \mathrm{H}\right.$, d, phenyl $\mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}), 7.74\left(1 \mathrm{H}, \mathrm{t}\right.$, phenyl $\left.\mathrm{H}_{5}, \mathrm{~J}=7.9 \mathrm{~Hz}\right){ }^{13} \mathrm{C}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right]: \delta(\mathrm{ppm}): 130.23,134.08$, 134.70, 137.30, 167.56.

Third step. Preparation of N, N^{\prime}-Isophthaloyl-bis((2-pyridyl)hydrazidine).

2-Pyridylamidrazone ($6.8 \mathrm{~g}, 0.05 \mathrm{~mol}$) was dissolved in a minimum amount of dry THF and $10 \mathrm{~cm}^{3}$ triethylamine under a nitrogen atmosphere. To this was added dropwise, under N_{2}, with constant stirring, a solution of isophthaloyl dichloride ($5.08 \mathrm{~g}, 0.025 \mathrm{~mol}$) in THF, while maintaining the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was then
reduced to approx. $25 \mathrm{~cm}^{3}$ volume and an equivolume of water added. The yellow product was filtered, washed with water, hot methanol and diethyl ether and dried under vacuum and in the oven at $60^{\circ} \mathrm{C}$. Yield $=7.2 \mathrm{~g}(72 \%) \mathrm{M} . \mathrm{P}=268-270^{\circ} \mathrm{C}$ (lit. 278-279 ${ }^{\circ} \mathrm{C}$ dec. $)^{1} \mathrm{H}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta(\mathrm{ppm}): 8.42\left(1 \mathrm{H}, \mathrm{s}\right.$, phenyl $\left.\mathrm{H}_{2}\right), 8.20(2 \mathrm{H}, \mathrm{d}$, pyridyl $\left.\mathrm{H}_{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.60\left(1 \mathrm{H}, \mathrm{t}\right.$, phenyl $\left.\mathrm{H}_{5}, \mathrm{~J}=7.4 \mathrm{~Hz}\right), 8.02\left(1 \mathrm{H}, \mathrm{d}\right.$, phenyl $\left.\mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{~J}=7.4 \mathrm{~Hz}\right)$, $7.91\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{4}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.49\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{5}, \mathrm{~J}=5 \mathrm{~Hz}\right), 8.60(1 \mathrm{H}, \mathrm{d}$, pyridyl H_{6}, $\left.\mathrm{J}=5 \mathrm{~Hz}\right), 7.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{NH}}\right), 10.30\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{NH}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right]: \delta(\mathrm{ppm})$: $120.85,124.87,126.85,128.28,130.27,134.45,136.99,147.94,148.16,150.60,162.78$.

Fourth step. Cyclization of $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$-Isophthaloyl-bis((2-pyridyl)hydrazidine) to form $\mathrm{H}_{2} \mathrm{~mL}$. N, N^{\prime}-Isophthaloyl-bis((2-pyridyl)hydrazidine) ($7.00 \mathrm{~g}, 0.017 \mathrm{~mol}$) was suspended in a minimum volume $\left(\sim 30 \mathrm{~cm}^{3}\right)$ of ethylene glycol and heated under reflux temperature for 2 hours. A white crystalline precipitate was obtained upon cooling of the solution. Further precipitation of the product was induced by the addition of a small amount of water to the mother liquor. The ligand was titriated with boiling methanol, filtered and dried in the oven overnight. Completion of cyclization was confirmed by the disappearance of the $\mathrm{C}=\mathrm{O}$ stretch at $1630 \mathrm{~cm}^{-1}$ in the IR spectrum. Yield $=2.8 \mathrm{~g}(44 \%) \quad \mathrm{M} . \mathrm{P}=320-322{ }^{\circ} \mathrm{C}$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta(\mathrm{ppm}): 8.88\left(1 \mathrm{H}, \mathrm{s}\right.$, phenyl $\left.\mathrm{H}_{2}\right), 8.16\left(2 \mathrm{H}, \mathrm{d}\right.$, phenyl $\mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}), 7.65\left(1 \mathrm{H}, \mathrm{t}\right.$, phenyl $\left.\mathrm{H}_{5}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 8.23\left(1 \mathrm{H}, \mathrm{d}\right.$, pyridyl $\left.\mathrm{H}_{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 8.02(1 \mathrm{H}$, dd, pyridyl $\left.\mathrm{H}_{4}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.55 \mathrm{ppm}\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{5}, \mathrm{~J}=6 \mathrm{~Hz}\right), 8.72(1 \mathrm{H}$, d, pyridyl $\left.\mathrm{H}_{6}, \mathrm{~J}=5 \mathrm{~Hz}\right), 14.90\left(1 \mathrm{H}, \mathrm{s}(\right.$ broad $\left.), \mathrm{H}_{\mathrm{NH}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta(\mathrm{ppm}): 121.53$, $123.38,123.62,125.06,126.58,129.41,131.40,137.80,146.31,149.52,149.72$. Elem. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{8}=\mathrm{C}: 65.56 ; \mathrm{H}: 3.85 ; \mathrm{N}: 30.59$ \%. Found: C: 65.39; H: 3.76; $\mathrm{N}: 30.57$ \%.

Synthesis of 1,4-bis(5-(2-pyridyl)-4H-1,2,4-triazol-3-yl)benzene ($H_{2} p L$).
Preparation of N, N '-Terephthaloyl-bis((2-pyridyl)hydrazidine). This compound was prepared as outlined above for the N, N-isophthaloyl-intermediate except that a solution of terephthaloyl dichloride $(5.08 \mathrm{~g}, 0.025 \mathrm{~mol})$ was added to the 2-pyridylamidrazone
solution $(6.8 \mathrm{~g}, 0.05 \mathrm{~mol})$. Yield $=6.00 \mathrm{~g}(60 \%) . \mathrm{M} . \mathrm{P} .>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$: $\delta(\mathrm{ppm}): 8.00(2 \mathrm{H}, \mathrm{s}$, phenyl H$), 8.19\left(1 \mathrm{H}, \mathrm{d}\right.$, pyridyl $\left.\mathrm{H}_{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.72(1 \mathrm{H}, \mathrm{dd}$, pyridyl $\left.\mathrm{H}_{4}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.51\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{5}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 8.62\left(1 \mathrm{H}\right.$, d, pyridyl $\mathrm{H}_{6}, \mathrm{~J}=$ $4.4 \mathrm{~Hz}), 7.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{NH}}\right), 10.30\left(1 \mathrm{H}, \mathrm{s}(\mathrm{broad}), \mathrm{H}_{\mathrm{NH}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \underline{\mathrm{SO}]:} \delta(\mathrm{ppm}):\right.$ $120.89,125.01,127.57,127.96,137.09,148.24,148.44,150.30,161.72$.

Cyclization of N, N'-Terephthaloyl-bis((2-pyridyl)hydrazidine) to form $\mathrm{H}_{2} p L_{\text {. }}$ This was carried out as previously described for $\mathrm{H}_{2} \mathrm{~mL}$. Yield $=1.40 \mathrm{~g}(57 \%)$ M.P. $>$ $300{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}-\mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta(\mathrm{ppm}): 8.23(2 \mathrm{H}$, s, phenyl H$), 8.19\left(1 \mathrm{H}\right.$, d, pyridyl $\mathrm{H}_{3} \mathrm{~J}$ $=7.9 \mathrm{~Hz}), 8.02\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{4}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.54\left(1 \mathrm{H}\right.$, dd, pyridyl $\left.\mathrm{H}_{5}, \mathrm{~J}=6 \mathrm{~Hz}\right), 8.72$ $\left(1 \mathrm{H}\right.$, d, pyridyl $\left.\mathrm{H}_{6}, \mathrm{~J}=5 \mathrm{~Hz}\right), 14.50\left(1 \mathrm{H}, \mathrm{s}(\mathrm{broad}), \mathrm{H}_{\mathrm{NH}}\right) \cdot{ }^{13} \mathrm{C}-\mathrm{NMR} _\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta$ (ppm): 121.52, 123.21, 125.11, 126.40, 126.81, 127.45, 137.88, 149.69, 150.41. Elem. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{8}=\mathrm{C}: 65.56$; H: 3.85; N: 30.59 \%. Found: C: 65.83; H: 3.94; N: 30.28 \%.

Table S1 ${ }^{l} H-N M R$ data for the complexes with $H_{2} m L$ in $C D_{3} C N$, (f) and (b) refer to the free and bound pyridyltriazole arms, respectively.

Complex	$\mathbf{H}_{2} \mathrm{~mL}$ Resonances				
	H3	H4	H5	H6	Phenyl
$\begin{array}{cc} \mathbf{m R u} & (f) \\ & (b) \\ \mathbf{m O s}^{\text {a }} & (f) \end{array}$	8.24	7.78	7.18	8.53	8.68 (s), 7.44 (t),
	8.05	7.90	7.12	7.49	7.88 (d)
	8.19	8.00	7.48	8.74	8.65 (s), 7.55 (t),
(b)	8.05	7.86	7.19	7.65	8.14 (d)
mRuRu	8.09	7.88	7.12	7.48	$\begin{gathered} 8.37(\mathrm{~s}), 7.29(\mathrm{t}), \\ 7.85(\mathrm{~d}) \end{gathered}$
mRuRu ${ }^{\text {a }}$	8.17	7.96	7.25	7.77	$\begin{gathered} 8.35(\mathrm{~s}), 7.34(\mathrm{t}) \\ 7.83(\mathrm{~d}) \end{gathered}$
mOsOs	8.10	7.72	7.03	7.37	$\begin{gathered} 8.41(\mathrm{~s}), 7.32(\mathrm{t}), \\ 7.86(\mathrm{~d}) \end{gathered}$
mRuOs	$8.01{ }^{\text {b }}$	$7.88{ }^{\text {b }}$	$7.14{ }^{\text {b }}$	$7.49{ }^{\text {b }}$	8.38 (s), 7.64 (t),
	$7.95{ }^{\text {c }}$	$7.74{ }^{\text {c }}$	$7.06{ }^{\text {c }}$	$7.39{ }^{\text {c }}$	7.88 (d)
bpy rings	8.31-8.45	7.62-8.00	7.15-7.40	7.70-7.85	

${ }^{\mathrm{a}}$ Measured in $\left(\mathrm{CD}_{3}\right)_{2}(\mathrm{SO}) ;{ }^{\mathrm{c}}$ Osmium bound to pyridyltriazole arm

Table S2 ${ }^{1} H$-NMR data for the complexes with $H_{2} p L$, as measured in $C D_{3} C N$, unless otherwise indicated.. (f) and (b) refer to the free and bound pyridyltriazole arms, respectively.

Complex	$\mathrm{H}_{2} \mathrm{pL}$ Resonances				
	H3	H4	H5	H6	Phenyl
pRu (f)	8.16	8.10	7.47	8.63	7.95
(b)	8.32	7.97	7.25	7.58	
pOs (f)	8.18	7.95	7.48	8.68	7.76-7.77
(b)	8.04	7.75	7.06	7.41	
pRuRu	8.11	7.82	7.11	7.48	7.90
pRuRu ${ }^{\text {a }}$	8.12	7.96	7.25	7.69	7.85
pOsOs	8.10	7.72	7.05	7.39	7.90
pRuOs	$8.13{ }^{\text {b }}$	$7.83{ }^{\text {b }}$	$7.13{ }^{\text {b }}$	$7.50{ }^{\text {b }}$	7.90
	$8.11{ }^{\text {c }}$	$7.75{ }^{\text {c }}$	$7.05^{\text {c }}$	$7.39{ }^{\text {c }}$	
bpy rings	8.31-8.45	7.62-8.00	7.15-7.40	7.70-7.85	

${ }^{a}$ Measured in $\left(\mathrm{CD}_{3}\right)_{2}(\mathrm{SO}),{ }^{\mathrm{b}}$ Ruthenium bound to pyridyltriazole arm; ${ }^{\mathrm{c}}$
Osmium bound to pyridyltriazole arm.

Table S3 UV/Vis/NIR absorption data for the fully oxidized complexes of $\mathrm{H}_{2} m \mathrm{~L}$ and $\mathrm{H}_{2} \mathrm{pL}$ in their protonated and deprotonated forms. All measurements carried out using $\mathrm{CH}_{3} \mathrm{CN}$ with 0.1 M TEAP. Solutions were acidified using HClO_{4}.

Complex	\mathbf{M} (III) absorption bands/ $\mathbf{n m}\left(\varepsilon / \mathbf{M}^{-1} \mathbf{c m}^{-1}, v_{1 / 2} / \mathbf{c m}^{-1}\right)$
mRu	530 (3094, 3499); 923 (3698, 3541)
mRuH	520 (2310, 5323); $850(2140,5191)$
mOs	734 (2123, 4078); 1680 (222); 2320 (1235)
mOsH	573 (1395); 1674 (119); 2310 (800)
mRuRu	525 (8115, 3643); 927 (7540, 3945)
mRuRuH	500 (3210); 755 (3816, 5610)
mOsOs	730 (4183, 4003); 1700 (550); 2320 (2578)
mOsOsH	$566(2463,5319)$
mRuOs	741 (2369, 4170); 930 (4625, 3471);
	1685 (300); 2315 (1581)
mRuOsH	706 (1871, 4272); 912 (3994, 3996); 530 (4376);
	1750 (259); 2328 (1659)
pRu	578 (2743, 3418); 978 (5114,3200)
pRuH	550 (2608, 4293); $900(2643,4355)$
pOs	770 (3027, 4055); 1650 (548); 2271 (1370)
pOsH	624 (1278, 4623); 1678 (165); 2305 (850)
pRuRu	535 (5242); 998 (8733, 3988)
pRuRuH	537 (2593); 870 (3048, 6210)
pOsOs	800 (6593, 2654); 1700 (420); 2343 (3390)
pOsOsH	740 (2302, 4080); 1709 (224); 2320 (1531)
pRuOs	560 (3398); 782 (2808, 4760); 1018 (7883, 4058);
	1691 (358); 2316 (2050)
pRuOsH	772 (1877, 1305); 942 (6292, 1689);
	1816 (245); 2319 (1603)
$\begin{aligned} & {\left[\operatorname{Ru}(\mathrm{bpy})_{2}\right.} \\ & (\mathrm{pptr})]^{2+} \end{aligned}$	920 (4523, 3118)

Table S4 $\quad p K a$ values for the coordinated triazole rings in the complexes.

Complex	$\mathrm{pKa} \pm 0.1$
$\mathbf{m R u}$	3.3
$\mathbf{m O s}$	3.0
$\mathbf{m R u R u}$	3.5
$\mathbf{m O s O s}$	3.1
$\mathbf{m R u O s}$	3.2
$\mathbf{p R u}$	3.6
$\mathbf{p O s}$	3.3
$\mathbf{p R u R u}$	3.6
$\mathbf{p O s O s}$	3.4
$\mathbf{p R u O s}$	3.4
$\mathbf{H}_{\mathbf{2}} \mathbf{m L}$	9.5
$\mathbf{H}_{\mathbf{2}} \mathbf{p L}$	9.1

i F.H. Case, J. Org. Chem., 1965, 30, 931.
ii Aldrich Catalogue Handbook of Fine Chemicals 1992-1993.

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

