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INTRODUCTION

The life-history of most coral reef fishes consists of 2
distinct phases: relatively sedentary demersal adults
produce potentially dispersive pelagic eggs and larvae
(Sale 1980). The fate of the pelagic stages of coral reef
organisms is a matter of dispute. They may be dis-
persed among reefs by large-scale currents and finally
settle onto reefs hundreds of kilometres away that
could have environmental characteristics different to
the reefs from where they originated (Barlow 1981) or
contrastingly, they could be retained in local hydro-
graphic features and subsequently recruit into the
natal population (Johannes 1978). When larvae are
locally retained, the reproductive output of a popula-
tion can potentially impact local recruitment, whereas
dispersal of larvae may disrupt any relationship be-

tween reproduction and recruitment of a local popula-
tion (e.g. Warner & Cowen 2002). Insight into the
pelagic phase of reef organisms may be of critical
importance to coral reef conservation and fisheries
management (Stobutzki 2001). 

In populations of marine organisms, there are gen-
erally no pronounced barriers that prevent gamete
broadcasting, recruitment of individuals from distant
areas or adult migration (Ward et al. 1994). Although
coral reef fishes inhabit highly fragmented habitats,
many species have genetically homogeneous popula-
tions that inhabit large geographic ranges (e.g. Shak-
lee 1984, Lacson 1992, Planes et al. 1993). However, a
number of studies have shown that even in the sea,
gene flow can be sufficiently restricted to allow genetic
population substructuring: in sessile organisms such as
marine plants (e.g. Wright et al. 2000, Engelen et al.
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2001), marine invertebrates (Boisselier-Dubayle & Gofas
1999, Huang et al. 2000, Luttikhuizen et al. 2003, Star
et al. 2003), but also in vagile species such as temper-
ate fishes (e.g. Mamuris et al. 1998a,b) and coral reef
fishes (e.g. Doherty et al. 1995, Planes et al. 1996,
1998). Populations of many reef fishes resemble the
‘patchy population’ model that Harrison (1991) pro-
posed for subdivided populations that are stable
through time and where gene flow is sufficient to pre-
vent differential allele fixation in local populations, but
small enough for local differentiation in frequencies of
neutral alleles. For management purposes, it may
prove useful to apply the metapopulation concept to
coral reef fishes (Grimm et al. 2003).

The stoplight parrotfish Sparisoma viride (Bonna-
terre, 1788) is a large herbivore, common on Carib-
bean coral reefs (Böhlke & Chaplin 1993, Bernardi et
al. 2000), where it plays an important role in the
trophodynamics of the coral reef ecosystem (Brugge-
mann et al. 1996, van Rooij et al. 1998). S. viride is a
protogynous hermaphrodite (Reinboth 1968) with 2
distinct adult colour phases. Most initial phase S. viride
are female, they have a mottled brown and red body
colour. All terminal phase individuals are males that
have a green body colour and distinct yellow spots on
the caudal fin and gill covers. Adult S. viride seldom
stray far from the coral reef (Böhlke & Chaplin 1993, G.
J. Geertjes pers. obs.). S. viride reproduction has been
the subject of many studies (Munro et al. 1973, Robert-
son & Warner 1978, Cardwell & Liley 1991, Koltes
1993, van Rooij et al. 1996). The species shows a broad
repertoire of reproductive strategies and reproductive
systems differ among locations. Individual fish are pos-
sibly able to adjust their reproductive strategies to the
conditions into which they happened to recruit. The
potential for such phenotypic plasticity would be
highly adaptive when chances are high for progeny
not to recruit into the parental population, i.e. in the
case of random recruitment. In such cases, the levels of
gene flow among (sub)-populations at different reefs
will be high and there will be little genetic divergence.
Contrastingly, genetic adaptation of reproductive
strategies to local conditions may
have developed when many gener-
ations recruited into the natal pop-
ulation, i.e. when larval dispersal
and gene flow among sites with
different circumstances is highly
restricted. In that case, genetic
divergence among sub-popula-
tions at different sites is expected. 

Until recently, Sparisoma viride
was thought to occur on coral reefs
throughout the tropical Western
Atlantic (Böhlke & Chaplin 1993);

however, a study by De Moura et al. (2001) showed
that the populations inhabiting the reefs of Brazil actu-
ally constitute a distinct endemic species: Sparisoma
amplum. For the stoplight parrotfish, the freshwater
plumes of the Orinoco and Amazon rivers apparently
form an effective barrier to migration between the
Caribbean and the southwestern Atlantic.

The main objective of this study was to determine
the genetic population structure of Sparisoma viride
and by inference gain insight into the dispersal of the
early life-history stages and the phenotypic adaptation
of this species.

MATERIALS AND METHODS

Sampling. We collected 319 stoplight parrotfish Spari-
soma viride at the islands Bonaire (3 sites on the lee-
ward coast: Slagbaai, Karpata and Salt City), Curaçao,
Jamaica, Tobago and Saba (Fig. 1, Table 1). Most of the
fish were captured alive at night using hand-nets and
Scuba gear, but 36 live or freshly killed fish were put at
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Table 1. Sparisoma viride. Samples collected for allozyme and RAPD analysis, number
of intial phase (Ip) and terminal phase (Tp) fish sampled and capture method used

Sample site               ———— Allozyme ———— ———— RAPD ————
Handnet Fishermen Total Handnet Fishermen Total

Karpata (Bonaire) 32 Ip, 13 Tp – 45 16 Ip, 4 Tp – 20
Salt City (Bonaire) 26 Ip, 18 Tp – 44 14 Ip, 6 Tp – 20
Slagbaai (Bonaire) 25 Ip, 27 Tp – 52 13 Ip, 7 Tp – 20
Curaçao 25 Ip, 34 Tp – 59 3 Ip, 17 Tp – 20
Jamaica 8 Ip, 8 Tp 7 Ip, 7 Tp 30 8 Ip, 4 Tp 4 Ip, 4 Tp 20
Tobago 20 Ip, 8 Tp – 28 14 Ip, 6 Tp – 20
Saba – 2 Ip, 6 Tp 08 – 05 Ip, 13 Tp 18

Fig. 1. Sparisoma viride. Map of the SE Caribbean showing
sampling sites of S. viride indicated by d. Arrows indicate the 

direction of the predominant surface ocean currents
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our disposal by local fishermen and returned to them
after sampling. Hand-caught fish were anaesthetised
in a 100 mg l–1 solution of the fish anaesthetic MS222 in
aerated seawater. Fish intended for human consump-
tion were stunned by a sharp blow to the head if nec-
essary. Blood samples of approximately 1.5 ml were
drawn from the caudal vein. To prevent re-capture of
the same individuals, sampled fish were marked by
clipping the upper lobe of the caudal fin. The fish were
placed in large containers with continually aerated
seawater to recover for at least 60 min and then
released at the location from where they were caught.

Sample preservation. Approximately 1 ml of blood
intended for enzyme electrophoresis was added to a
pre-sterilised cryotube containing 0.3 ml of ACG
buffer (0.48% citric acid; 1.32% sodium citrate; 1.47%
glucose [%weight] adapted after White & Densmore
1992) frozen at –20oC and stored at –80oC. Blood
intended for DNA extraction was preserved after
Aggarwal et al. (1992). Of each blood sample, 0.4 to
0.5 ml was smeared on a sterilised microscope slide.
The blood smears were air-dried at ambient tempera-
ture, which took about 1 to 4 h. Each dried sample was
covered with a second glass slide, wrapped in alu-
minium foil and stored in a desiccator with silica gel to
prevent hydration. All fin lobes that were removed for
tagging were stored in 2.5 ml 96% ethanol and served
as back-up tissue for DNA extraction in case a blood
sample was spoiled or not available.

Enzyme electrophoresis. Prior to electrophoresis,
appropriate amounts of blood were thawed over ice
and homogenised in a buffer solution (0.01 M Tris-
citrate pH 7.0; 0.3 mg ml–1 NAD+; ratio
± 1 ml buffer g–1 blood) using pre-
cooled pestles and mortars (diameter
5 cm) and ±2 mg of sand. Homo-
genates were subjected to horizontal
starch-gel (12% w/v) electrophoresis
as described by Geertjes et al. (2001).
After electrophoresis, gels were
stained using recipes of Hofman (1988)
and Murphy et al. (1996), with slight
modifications. The samples were
screened for 13 enzymes on the follow-
ing buffer systems: continuous Tris-cit-
rate pH 7.0 (Hofman 1988), continuous
Tris-citrate EDTA pH 7.5 (Murphy et
al. 1996), discontinuous LiOH-borate
pH 8.3 (Hofman 1988) and continuous
Tris-borate-EDTA pH 8.6 (van Dijk &
van Delden 1981, van Treuren et al.
1991) (Table 2). Patterns of allozyme
variation, consistent with the subunit
structure of each enzyme and with
simple models of Mendelian inheri-

tance, were recorded as genotypes. Locus designation
follows nomenclature for fish genes as proposed by
Shaklee et al. (1990). Alleles at the same locus were
designated as their migration distance relative to the
migration distance of the most common allele, which
was stated at 100.

DNA extraction. Before DNA extraction, each blood-
smeared slide was cut in half. One half was re-
wrapped and retained as a back-up. The other half was
placed in a cuvette containing 5 ml of TES/SDS lysis
buffer (30 mM Tris-HCl, 5 mM EDTA, 50 mM NaCl, pH
8.0, 0.5% SDS). After the blood had soaked for 3 min,
the blood-lysis buffer mixture was pipetted into a ster-
ile centrifuge tube and 50 µl of Proteinase K (10 mg ml–1)
were added. The sample was well mixed by repeated
inverting and incubated overnight at 55°C. DNA was
purified using standard phenol extraction followed by
ethanol precipitation. DNA was spooled on a thin glass
rod and washed twice in cold 70% ethanol, air-dried
and dissolved in 1 ml 0.1 × TE buffer (1 mM Tris-HCl,
0.1 mM EDTA, pH 7.5). DNA was extracted from the
ethanol-preserved fin clip of a few fish for which no
blood sample was available. The clip was dried with
filter paper and scraped clean with a sterile scalpel.
The remaining tissue was placed in a centrifuge tube
with 5 ml TES/SDS buffer, 50 µl of Proteinase K (10 mg
ml–1) were added and DNA extraction followed the
same protocol as extraction from blood.

RAPD-PCR, DNA gel electrophoresis and visualisa-
tion. Ten arbitrary decamer primers (Operon Technolo-
gies) were used in RAPD-PCR amplification (Table 3),
essentially as described by Williams et al. (1990). PCR
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Table 2. Sparisoma viride. List of enzymes examined, Enzyme Commission
numbers (EC no.), subunit structure (ss), putative loci and buffer system yielding
best resolution (TC: tris-citrate pH 7.0; TCE: tris-citrate-EDTA pH 7.5; LB: LiOH-

borate/tris-citrate pH 8.3; TBE: tris-borate-EDTH pH 8.6)

Enzyme EC no. ss Locus Buffer

Acid phosphatase 3.1.3.2 1
ACP-1* TC
ACP-2* TC

Esterase 3.1.1.- 2 EST* LB
Fumarate hydratase 4.2.1.2 4 FH* TCE
Glucose-6-phosphate dehydrogenase 1.1.1.49 2 GPDH* LB
Glucose-6-phosphate isomerase 5.3.1.9 2 GPI* LB
Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 4 GAPDH* TBE
Isocitrate dehydrogenase 1.1.1.42 2 IDHP* TC

Lactate dehydrogenase 1.1.1.27 4
LDH-1* TCE
LDH-2* LB

Malate dehydrogenase 1.1.1.37 2 MDH* TCE

Malic enzyme (NADP+) 1.1.1.40 4
MEP-1* LB
MEP-2* LB

Phosphogluconate dehydrogenase 1.1.1.44 2 PGDH* TC
Superoxide dismutase 1.15.1.1 2 sSOD* TCE

Triose phosphate isomerase 5.3.1.1 2
TPI-1* LB
TPI-2* LB



Mar Ecol Prog Ser 279: 225–235, 2004

reactions were carried out in 25 µl reaction volume
containing 2.5 µl 10× SuperTaq reaction buffer (H. T.
Biotechnologies), 1.5 mM MgCl2, 100 µM dNTPs (Phar-
macia LKB), 60 ng primer, 0.25 unit SuperTaq DNA
polymerase (H. T. Biotechnologies) and 30 ng genomic
DNA. The reaction mix was overlaid with a drop of
mineral oil to prevent evaporation and centrifuged
briefly. Amplification was carried out in a Perkin Elmer
Cetus DNA Thermal Cycler 480 programmed for 3 min
at 94°C followed by 43 cycles each consisting of 1 min
denaturation at 94°C, 1 min annealing at 36°C and
2 min elongation at 72°C. Blank reaction mixes without
template DNA were run with all RAPD amplifications.
To check the reproducibility of the reactions, duplicate
reactions were performed. PCR products were re-
solved by electrophoresis in 1.5% TAE buffered agarose
gels for 4 h at 3 V cm–1 and stained with ethidium-
bromide following standard methods (Sambrook et al.
1989). RAPD patterns were visualised by UV-fluores-
cence and photographed on Polaroid 665 positive/
negative Instant Pack film.

Data analysis. Enzyme allele frequencies, percent-
age of polymorphic loci (99% criterion), mean number
of alleles per locus, and mean observed and expected
heterozygosity per locus per individual (Ho and He,
respectively) were calculated. Genotype frequencies
were tested for agreement with Hardy-Weinberg
expectations using chi-squared statistics. In addition,
Fis values were calculated. 

Nei’s unbiased genetic distance (Nei 1978) was cal-
culated between pairs of sample sites. The significance
levels of the calculated D values were tested by 10 000
permutations of individuals between locations.

We quantified the effects of genetic population subdi-
vision of Sparisoma viride using the fixation index FST

(Wright 1951), estimated by θ of Weir & Cockerham
(1984). Single locus FST values were calculated over the
entire population, in 4 different groupings: all 7 sites sep-
arately, the 3 Bonairean sites pooled, Bonaire and Cu-

raçao pooled, and all Southern sites pooled. Multi-locus
FST values were computed between locations. The prob-
abilities of random departure from zero of the calculated
FST values, both single- and multi-locus, were read from
the distribution of 10 000 randomised matrices computed
by permutation of individuals between locations.

The level of gene flow among populations was esti-
mated as the absolute number of migrants exchanged
per generation at equilibrium (Nem), using an island
model at low levels of migration, where Nem = (1 – FST)/
4FST (Wright 1951).

To test for possible sex-determined allelic differentia-
tion, a preliminarily analysis of all initial phase versus
all terminal phase individuals was carried out. No ge-
netic differentiation was found among the life-history
phases; therefore, the life-history phases were pooled
per sample site for the population genetic analysis.

The level of RAPD polymorphism (P) was calculated
per location as the percentage of the total number of
loci that were polymorphic. The level of genetic popu-
lation subdivision was estimated using Φ statistics,
which are directly analogous to Wright’s F statistics
(Excoffier et al. 1992). Analysis of molecular variance
(AMOVA) (Excoffier et al. 1992) was used to estimate
variance components for the RAPD phenotypes.
Assumptions of population structure were tested and
compared. Values of ΦST between locations were cal-
culated and their significance level tested by 5000
permutations of individuals between locations.

All tables of probabilities were adjusted for the num-
ber of simultaneous tests using a sequential Bonferroni
correction (Rice 1989) to reduce the chance of type I
errors.

Data analysis of allozymes was carried out using the
computer packages GENETIX version 4.01 (Belkhir et
al. 1997) and FSTAT 2.9.3.2 (Goudet, 1994). To analyse
the RAPD data, we used the program ARLEQUIN, ver-
sion 1.1 (Schneider et al. 1997). To determine possible
correlations among geographic distance and genetic
differentiation, Mantel tests (Mantel 1967) were per-
formed on matrices of allozyme-FST and RAPD-ΦST

values and geographic distances using the computer
package GENETIX version 4.01 (Belkhir et al. 1997).

RESULTS

Allozyme electrophoresis

Of the 17 enzyme loci tested, 16 appeared to be poly-
morphic (Table 4); only the locus TPI-1* was fixed for
the same allele in all populations.

The mean number of alleles per locus in the 7 sam-
ples ranged from 1.4 for the smallest sample (Saba,
mean n = 6.8) to 2.4 for the largest sample (Curaçao,
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Table 3. Sparisoma viride. RAPD primers used, primer sequence
and number of bands found for each primer (number of poly-

morphic bands in parentheses)

Primer Primer sequence 5’ to 3’ Number of bands

OPF-03 CCTGATCACC 7 (3)
OPF-05 CCGAATTCCC 14 (12)
OPF-09 CCAAGCTTCC 12 (7)
OPF-12 ACGGTACCAG 20 (17)
OPF-15 CCAGTACTCC 11 (8)
OPF-16 GGAGTACTGG 13 (9)
OPF-18 TTCCCGGGTT 4 (3)
OPF-20 GGTCTAGAGG 10 (10)
OPG-06 GTGCCTAACC 16 (15)
OPG-07 GAACCTGCGG 11 (7)

Total 118 (91)
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mean n = 58.7) and was 3.5 over all samples (mean
n = 250.3). The percentage of enzyme loci that were
polymorphic under the 0.99 criterion ranged from
29.4% (Saba) to 76.5% (Salt City) and was 64.7% over-
all. The values for Ho ranged from 0.087 (SE 0.025,
Curaçao) to 0.118 (SE 0.036, Tobago) and was 0.091
(SE 0.026) over all samples, while the values for He

ranged from 0.076 (SE 0.023, Curaçao) to 0.126
(SE 0.037, Tobago) and was 0.094 (SE 0.025) overall
(Table 5). No significant deviations from Hardy-Wein-
berg proportions were observed in any of the samples
after applying the sequential Bonferroni correction
(significance level α = 0.05). This is confirmed by the
fact that Fis values, which measure the reduction in

heterozygosity of an individual due to non-random
mating within its sub-population, did not significantly
differ from zero (Table 6) for any of the sampling sites,
and yielded a multi-locus value of Fis = 0.001 (95% CI
–0.083 to 0.109). It should be noted, however, that Fis

values for the population of Slagbaai are at the verge
of significance. 

Nei’s genetic distances among the 7 sample sites
ranged from >0.0001 to 0.012 (Table 7). Several pair-
wise genetic distances appeared to differ significantly
from zero (see Table 7) when tested using the permu-
tations method of the GENETIX computer package
(Belkhir et al. 1997) and after applying the sequential
Bonferroni correction for multiple tests (Rice 1989).
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Table 4. Sparisoma viride. Allele frequencies for 17 enzyme loci at 7 sampling locations (in parentheses: no. of specimens per locus)

Locus Kar- Salt Slag- Cura- Jam- To- Saba
pata City baai çao aica bago

ACP-1* (45) (44) (52) (58) (30) (28) (8)
084 – – – – 0.033 – –
092 0.044 0.023 0.038 0.069 0.050 0.054 –
100 0.867 0.886 0.885 0.871 0.883 0.821 0.938
104 – – 0.010 0.009 – – –
112 0.089 0.091 0.067 0.052 0.033 0.125 0.063

ACP-2* (43) (42) (50) (58) (28) (27) (8)
080 – – – – – – 0.063
085 0.012 – – – – – –
093 0.151 0.131 0.100 0.216 0.071 0.093 –
100 0.837 0.845 0.900 0.776 0.911 0.907 0.875
103 – 0.024 – 0.009 0.018 – 0.063

EST* (45) (44) (52) (59) (30) (28) (8)
088 – – – 0.025 – – –
093 0.022 – – – – – –
098 0.011 0.011 0.029 0.025 – – –
100 0.967 0.989 0.971 0.949 1.000 1.000 1.000

FH* (39) (36) (42) (59) (26) (17) (5)
060 – – – 0.008 – – –
080 – 0.014 0.012 0.017 – – –
100 1.000 0.972 0.988 0.975 1.000 1.000 1.000
132 – 0.014 – – – – –

G6PDH* (45) (44) (51) (59) (27) (25) (6)
100 0.800 0.920 0.843 0.932 0.833 0.840 1.000
108 0.200 0.080 0.157 0.068 0.167 0.160 –

GAPDH* (45) (44) (52) (59) (30) (28) (5)
080 – – – 0.017 0.017 – –
093 – – – – – 0.018 –
100 0.989 1.000 1.000 0.983 0.983 0.982 1.000
120 0.011 – – – – – –

GPI* (42) (41) (47) (59) (26) (18) (5)
040 – – – – – 0.028 –
080 – – – 0.008 – – –
084 – 0.012 – 0.008 – – –
088 – – 0.011 – – – –
092 0.012 – 0.011 – 0.038 – 0.100
100 0.988 0.976 0.947 0.949 0.923 0.972 0.900
112 – – 0.011 0.025 0.038 – –
116 – 0.012 0.021 0.008 – – –

Locus Kar- Salt Slag- Cura- Jam- To- Saba
pata City baai çao aica bago

IDHP* (45) (44) (52) (59) (30) (28) (8)
069 – 0.011 – – – – –
100 0.989 0.989 1.000 0.991 1.000 1.000 1.000
125 0.011 – – – – – –
144 – – – 0.009 – – –

LDH-1* (29) (27) (38) (58) (23) (11) (4)
067 – – – – 0.022 – –
100 0.931 0.963 0.908 0.991 0.978 0.909 1.000
167 0.069 0.037 0.092 0.009 – 0.091 –

LDH-2* (45) (44) (52) (59) (30) (28) (8)
074 0.044 0.057 0.067 0.017 0.117 0.125 0.313
084 0.089 0.148 0.135 0.051 0.117 0.232 0.188
100 0.844 0.773 0.779 0.932 0.767 0.643 0.500
111 0.022 0.023 0.019 – – – –

MDH* (41) (39) (45) (59) (30) (24) (6)
100 0.951 0.936 0.944 1.000 0.933 0.896 0.750
144 0.049 0.064 0.056 – 0.050 0.104 0.250
222 – – – – 0.017 – –

MEP-1* (43) (43) (51) (57) (19) (26) (8)
079 0.081 0.012 0.029 0.026 0.053 0.038 –
095 – – – 0.009 0.026 – –
100 0.919 0.988 0.971 0.965 0.921 0.962 1.000

MEP-2* (38) (40) (49) (59) (22) (28) (8)
090 – – – 0.017 – – –
100 0.987 0.975 0.969 0.983 1.000 0.839 1.000
124 0.013 0.025 0.031 – – 0.161 –

PGDH* (45) (40) (47) (59) (24) (17) (5)
093 – – 0.011 0.008 – 0.029 –
100 1.000 1.000 0.989 0.992 1.000 0.971 1.000

sSOD* (45) (44) (52) (59) (30) (28) (8)
100 1.000 0.989 1.000 1.000 1.000 1.000 1.000
215 – 0.011 – – – – –

TPI-1* (45) (41) (50) (59) (30) (28) (8)
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TPI-2* (45) (44) (52) (59) (30) (28) (7)
094 – – – 0.009 – – –
100 1.000 1.000 1.000 0.991 1.000 1.000 1.000
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The multi-locus fixation index over the entire popula-
tion was FST = 0.0188 and significantly different from
zero (95% CI 0.004 to 0.032), indicating a low level of
genetic differentiation among sub-populations at the
5 islands. The overall number of effective migrants
(Nem) was 13.05 ind. per generation. Significant values
for multi-locus pairwise FST distinguish Curaçao from
each of the other islands (Table 7). 

The Bonairean samples were pooled for the allozyme
data analysis as the values for pairwise single locus FST

did not show a single significant difference between
any of the sites at Bonaire for any locus (Table 7).
Pairwise single locus FST values showed significant
differentiation between sample sites for several loci
(Table 7). Curaçao is distinguished from all the other
islands by significant FST values for the locus LDH-2*
and either of the loci MDH* or TPI-2*. Tobago is dis-
tinguished from Bonaire, Curaçao and Jamaica by sig-
nificant FST values for the locus MEP-2*. No significant
correlation was found between values of pairwise FST

and geographic distance (Mantel test, Z = 1048.05,
r = 0.158; p = 0.344).

RAPDs

RAPD analysis resolved 118 bands
of which 91 were polymorphic at the
99% criterion. The number of bands
per primer varied from 4 to 20
(Table 3). Each individual fish showed
a unique RAPD phenotype.

Twenty-three location-specific bands
were found, all but 2 of them were
singly occurring rare alleles. The level
of polymorphism in the 7 samples was
similar (Table 5), ranging from 33.9%
(Saba and Curaçao) to 43.2% (Kar-
pata).

The fixation index ΦST for all 7 sam-
ples was 0.0438 and highly significant

(p < 0.0001). AMOVA showed that a very small amount
of variation is partitioned in the ‘among samples or
sample groups’ category and more than 95% of the
RAPD variation was partitioned within samples, or
sample groups. The amount of variation among sam-
ples within groups increased when the samples were
placed in different groups according to increasing geo-
graphic distance, except when Karpata was grouped
with Salt City and Slagbaai (the Bonaire sampling site
nearest to Curaçao) with Curaçao (Fig. 1, Table 8)
When the individuals from Karpata were pooled with
those from Salt City and the ones from Curaçao with
those from Slagbaai, the values of pairwise ΦST among
all sub-populations differed significantly from zero,
also after applying sequential Bonferroni correction
(significance level α = 0.05), although the values of ΦST

were very low (Table 9). There was no significant rela-
tionship between values of pairwise ΦST and geo-
graphic distance (Mantel test, Z = 1681.66, r = 0.390;
p = 0.193).

We found no correlation between the values of pair-
wise FST from the allozyme electrophoresis and of pair-
wise ΦST from the RAPD analysis (Mantel test, Z = 0.05,
r = –0.009, p = 0.860).

DISCUSSION

The low fixation index values detected by both
methods indicate little population genetic substructur-
ing in the Caribbean stoplight parrotfish. Apparently
the island (sub)-populations generally form a near-
homogeneous assemblage. Neither method produced
markers that specifically discriminate populations. The
level of gene diversity detected by allozyme elec-
trophoresis was somewhat higher than that found by
RAPDs; both methods produced patterns of slight
genetic population substructuring.
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Table 5. Sparisoma viride. Gene variability for 7 sampling sites, n: sample size
per enzyme locus (mean and SE); A: number of alleles per enzyme locus (mean
and SE); P99: percentage allozyme loci polymorphic at the 99% criterion; Ho: ob-
served allozyme heterozygosity (mean and SE); He the expected allozyme het-
erozygosity (mean and SE); P0-RAPD: percentage of polymorphic RAPD loci at 

the 100% criterion

Sample n A P99 Ho He P0-RAPD

Karpata 42.6 (1.0) 2.0 (0.2) 70.6 0.102 (0.029) 0.098 (0.028) 43.2
Salt City 41.2 (1.1) 2.1 (0.2) 76.5 0.089 (0.031) 0.085 (0.027) 40.7
Slagbaai 49.1 (1.0) 2.1 (0.3) 70.6 0.087 (0.025) 0.096 (0.027) 41.5
Curaçao 58.7 (0.1) 2.4 (0.3) 58.8 0.077 (0.027) 0.076 (0.023) 33.9
Jamaica 27.4 (0.8) 1.9 (0.2) 52.9 0.093 (0.031) 0.092 (0.029) 41.5
Tobago 24.5 (1.3) 1.8 (0.2) 64.7 0.118 (0.036) 0.126 (0.037) 36.4
Saba 06.8 (0.4) 1.4 (0.2) 29.4 0.093 (0.042) 0.096 (0.045) 33.9

All 250.3 (4.9)0 3.5 (0.4) 64.7 0.091 (0.026) 0.094 (0.025) 77.1

Table 6. Sparisoma viride. F is values for the 7 sampling sites,
n: sample size per enzyme locus (mean and SE); Proplarger:
proportion of randomisations that gave a larger F is than the
observed; Propsmaller: proportion of randomisations that gave a
smaller F is than the observed, based on 2380 randomisations. 

Indicative adjusted nominal level (5%): 0.00042

Sample n Fis Proplarger Propsmaller

Karpata 42.6 (1.0) –0.108 1.0000 0.0067
Salt City 41.2 (1.1) –0.042 0.8655 0.1752
Slagbaai 49.1 (1.0) –0.106 0.0092 0.9912
Curaçao 58.7 (0.1) –0.001 0.5479 0.4601
Jamaica 27.4 (0.8) –0.012 0.5345 0.4706
Tobago 24.5 (1.3) –0.071 0.1197 0.8832
Saba 06.8 (0.4) –0.037 0.4248 0.7256
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The level of allozyme polymorphism in Sparisoma
viride is relatively high compared to published data on
other fish species. The Ho, which ranges from 0.087 in
Curaçao to 0.118 in Tobago, with an overall value of
0.091 (SE 0.026), is high compared to the average
value of heterozygosity (H–) of 0.055 ± 0.036 (SD)
reported by Smith & Fujio (1982) for 89 marine teleosts
and the H– of 0.064 ± 0.004 (SE) found for 113 fish spe-
cies by Ward et al. (1994). Although not statistically
significant, this relatively high allozyme polymorphism
may indicate that S. viride has a large effective popu-
lation size, as levels of polymorphism in fish are more
closely related to effective population size than to any
known ecological factor (Rasmuson 1981) and marine
fishes that have large populations have higher gene
diversity levels than organisms with much smaller pop-
ulations (Gyllensten 1985).

In Sparisoma viride, each allozyme locus shows a
most common allele that is prevalent at all locations
and 1 or more relatively rare alleles that are often
restricted to a single island or are present at low fre-
quencies in several island sub-populations. 

The exchange among sub-populations of more than
1 reproductive migrant per generation is theoretically
sufficient to ensure the presence of identical alleles,
while higher migration rates maintain homogeneous
allele frequencies (Allendorf & Phelps 1981, Slatkin
1987). Genetic homogeneity in coral reef fish popula-
tions is usually attributed to levels of gene flow esti-
mated to exceed Nem = 5 (Shulman 1998).

Recent colonisation of new reefs from a single
source area could also have resulted in the high
genetic similarity of sub-populations; however, the
high observed heterozygosity value of the Caribbean
stoplight parrotfish population probably indicates a
relatively long history undisturbed by significant pop-
ulation bottlenecks that are usually associated with
colonisation events.

The Sparisoma viride data yielded several significant
FST values, which indicates that gene flow in S. viride,
although high, is not without restriction. Between Cura-
çao and the other islands, multi-locus FST values were
statistically significant. Significant single locus FST val-
ues were found among some of the other sample sites.
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Table 7. Sparisoma viride. Allozyme analysis. Above the diagonal: values of multi-locus FST pairwise between samples (Weir &
Cockerham 1984), *: significant at Bonferroni adjusted p ≤ 0.05; the number of migrants per generation (Nem,) exchanged under
the island model hypothesis: Nem = (1 – FST)/4FST (Wright 1951), •: no Nem can be calculated due to a negative value of FST; loci
which show significant differentiation between the 2 compared samples (significance levels Bonferroni adjusted). Below the 

diagonal: values of Nei’s unbiased genetic distance D (Nei 1978)

Karpata Salt City Slagbaai Bonaire Curaçao Jamaica Tobago Saba

0.0065 –0.0025 0.0173 0.0008 0.0215 0.0842 FST

Karpata – 38 • 14 301 11 3 Nem
MDH MEP-2 PGDH LDH-2 loci

–0.0028 0.0158 0.0032 0.0141 0.0490 FST

Salt City D 0.001 – • 16 79 18 5 Nem
LDH-2 MDH GAPDH MEP-2 GAPDH PGDH loci

0.0257* –0.0051 0.0051 0.0471 FST

Slagbaai D 0.000 0.000 – 10 • 49 5 Nem
LDH-1 LDH-2 MDH GAPDH MEP-2 GAPDH loci

0.0183* –0.0009 0.0016 0.0605 FST

Bonaire – 13 • 159 4 Nem
LDH-2 TPI-2 LDH-2 MEP-2 LDH-2 MDH loci

0.0298* 0.0698* 0.1345* FST

Curaçao D 0.002 0.002* 0.002* 0.002 – 8 3 2 Nem
LDH-2 MDH LDH-2 MDH MEP-2 LDH-2 MDH loci

0.0131 0.0413 FST

Jamaica D 0.000 0.001 0.000 0.000 0.003* – 19 6 Nem
MEP-2 PGDH loci

0.0144 FST

Tobago D 0.002 0.003 0.000 0.001 0.006* 0.001 – 17 Nem
loci

Saba D 0.008* 0.003 0.005 0.007* 0.012* 0.004 0.004 –
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The use of RAPD analysis in combination with
AMOVA has proven useful in detecting population
structure of natural populations (e.g. see Marmuris et
al. 1998b, Lougheed et al. 2000, Hellberg et al. 2002)
The FST values found by the RAPD analysis are gener-
ally of the same order as those found for allozymes; the
values are rather low but some differ significantly from
zero even after adjusting probabilities by a sequential
Bonferroni correction for simultaneous tests. In con-
trast to the allozyme analysis, RAPDs detected signifi-
cant FST values between the southern and northern
area of Bonaire and among 5 sub-populations when
Karpata was pooled with Salt City, and the northern-
most Bonaire sample (Slagbaai) with Curaçao. This
could imply that gene flow is slightly restricted, even
along the coast of a single island; however, the absence
of allozyme divergence among any of the 3 locations at
Bonaire contradicts such a conclusion.

Both methods show the same general picture, rela-
tively high genetic variability and a rather low level of
genetic population substructuring, but some differ-
ences in details. Most notably, the allozyme elec-
trophoresis slightly discriminates between Curaçao
and all the other islands (which pool together), while
the RAPD analysis shows low levels of differentiation,
more evenly distributed over the entire range of the
studied islands. It is not uncommon to find some discor-
dance between the results of different methods in pop-
ulation genetic studies of marine organisms (Hellberg
et al. 2002). Marmuris et al. (1998a,b) found different
patterns of genetic heterogeneity with their allozyme
and RAPD studies of the Mediterranean red mullet
Mullus barbatus. In a study of Mediterranean dusky
grouper Epinephelus marginatus, the value of FST ob-
tained by allozyme analysis was 10 times higher than
that found using microsatellites (de Innocentiis et al.
2001). Lemaire et al. (2000) found far higher FST values
with allozymes than with microsatellites for 8 samples
of Mediterranean sea bass Dicentrarchus labrax and
they interpret this difference as evidence of non-neu-
trality of part of the analysed allozymes. Without fur-
ther study, we can only speculate on the cause of the
slight discrepancy between the results of both methods
in our study. An explanation may be found in the dif-
ferent sample sizes used in this study; however, both
methods studied the same individuals (i.e. the smaller
sample was always drawn from the larger sample). It
seems unlikely that this random re-sampling could re-
sult in such a specific distinction of 1 sample (Curaçao)
at several enzyme loci. Allozyme electrophoresis de-
tects DNA differences in transcribed regions of the
genome, which cause differences in the net electric
charge of the enzymatic products of these regions. Evi-
dence exists that enzyme polymorphisms in fishes can
sometimes be maintained by locus-specific natural se-

232

T
ab

le
 8

. S
p

ar
is

om
a 

vi
ri

d
e.

 R
A

P
D

: a
n

al
ys

is
 o

f 
m

ol
ec

u
la

r 
va

ri
an

ce
 (

A
M

O
V

A
) 

of
 1

38
 in

d
iv

id
u

al
s 

(d
iv

id
ed

 in
to

 7
 p

op
u

la
ti

on
s)

 o
r 

su
b

se
ts

 t
h

er
eo

f 
an

d
 p

la
ce

d
 in

to
 d

if
fe

re
n

t 
g

eo
-

g
ra

p
h

ic
al

 g
ro

u
p

in
g

s.
 S

h
ow

n
 a

re
 t

h
e 

su
b

se
ts

 t
es

te
d

, d
eg

re
es

 o
f 

fr
ee

d
om

, s
u

m
 o

f 
sq

u
ar

ed
 d

ev
ia

ti
on

s 
(S

S
D

),
 v

ar
ia

n
ce

 c
om

p
on

en
t 

es
ti

m
at

e,
 p

er
ce

n
ta

g
e 

of
 t

ot
al

 v
ar

ia
ti

on
 c

on
-

tr
ib

u
te

d
 b

y 
ea

ch
 c

om
p

on
en

t,
 th

e 
p

ro
b

ab
il

it
y 

of
 o

b
ta

in
in

g
 a

 m
or

e 
ex

tr
em

e 
va

ri
an

ce
 c

om
p

on
en

t a
n

d
 Φ

-s
ta

ti
st

ic
 th

an
 th

e 
ob

se
rv

ed
 v

al
u

es
 b

y 
ch

an
ce

 a
lo

n
e 

(p
),

 a
n

d
 th

e 
fi

xa
ti

on
 

in
d

ic
es

 Φ
S

T
, Φ

C
T

an
d

 Φ
S

C
(E

xc
of

fi
er

 e
t 

al
. 1

99
2)

S
am

p
le

s 
S

ou
rc

e 
of

 v
ar

ia
ti

on
d

f
S

S
D

V
ar

ia
n

ce
%

 o
f

p
-v

al
u

e
Φ

-s
ta

ti
st

ic
s

an
al

ys
ed

co
m

p
on

en
t

va
ri

at
io

n

C
ar

ib
b

ea
n

A
m

on
g

 a
ll

 s
am

p
le

s
6

71
.9

29
0.

28
87

04
.3

8
<

0.
00

00
10

Φ
S

T
=

 0
.0

43
8

In
d

iv
id

u
al

s 
w

it
h

in
 a

ll
 7

 p
op

u
la

ti
on

s
13

1
82

5.
07

80
6.

29
83

95
.6

2

C
ar

ib
b

ea
n

A
m

on
g

 5
 s

am
p

le
 g

ro
u

p
s:

 S
ou

th
-B

on
ai

re
, S

la
g

b
aa

i 
an

d
 C

u
ra

ça
o;

4
56

.1
04

0.
23

06
03

.4
9

0.
00

11
9

Φ
C

T
=

 0
.0

34
9

Ja
m

ai
ca

; T
ob

ag
o 

an
d

 S
ab

a

A
m

on
g

 s
am

p
le

s 
w

it
h

in
 S

ou
th

-B
on

ai
re

, S
la

g
b

aa
i 

an
d

 C
u

ra
ça

o;
2

15
.8

25
0.

08
07

01
.2

2
0.

10
21

8
Φ

S
C

=
 0

.0
12

7
Ja

m
ai

ca
; T

ob
ag

o 
an

d
 S

ab
a

In
d

iv
id

u
al

s 
w

it
h

in
 a

ll
 7

 p
op

u
la

ti
on

s
13

1
82

5.
07

80
6.

29
83

95
.2

9
<

0.
00

00
10

Φ
S

T
=

 0
.0

47
1

B
on

ai
re

A
m

on
g

 K
ar

p
at

a,
 S

al
t 

C
it

y 
an

d
 S

la
g

b
aa

i
2

19
.9

17
0.

19
34

03
.0

8
0.

00
22

8
Φ

S
T

=
 0

.0
30

8

In
d

iv
id

u
al

s 
w

it
h

in
 K

ar
p

at
a,

 S
al

t 
C

it
y 

an
d

 S
la

g
b

aa
i

57
34

7.
15

00
6.

09
04

96
.9

2

B
on

ai
re

 a
n

d
B

et
w

ee
n

 S
ou

th
-B

on
ai

re
 a

n
d

 S
la

g
b

aa
i 

an
d

 C
u

ra
ça

o
1

10
.0

62
0.

11
03

01
.8

1
<

0.
00

00
10

Φ
C

T
=

 0
.0

18
1

C
u

ra
ça

o
A

m
on

g
 s

am
p

le
s 

w
it

h
in

 S
ou

th
-B

on
ai

re
 a

n
d

 S
la

g
b

aa
i 

an
d

 C
u

ra
ça

o
2

11
.3

00
–

0.
01

80
–

–
0.

30
0.

58
08

9
Φ

S
C

=
 –

0.
00

30

In
d

iv
id

u
al

s 
w

it
h

in
 K

ar
p

at
a,

 S
al

t 
C

it
y,

 S
la

g
b

aa
i 

an
d

 C
u

ra
ça

o
76

45
6.

80
00

6.
01

05
98

.4
9

0.
11

25
7

Φ
S

T
=

 0
.0

15
1



Geertjes et al.: Population genetics of Sparisoma viride

lection (Utter 1991). RAPDs on the other hand ran-
domly sample the entire genome including the non-
coding regions (Williams et al. 1990), which often
make up the largest part of the DNA. It is far less likely
that DNA regions sampled by RAPDs encode for phe-
notypic characters that are subject to natural selection
than are DNA regions sampled by allozyme analysis.
Thus, the population genetic structure that is resolved
by RAPDs may reflect patterns caused by migration
and genetic drift, while the structure resolved by al-
lozyme electrophoresis may also reflect the effects of
selection. As different environmental conditions may
exist at all scales within a tropical ocean, selection
pressures are probably not geographically uniform
(Shulman 1998). However, it seems odd that the popu-
lation at Curaçao should encounter such specific selec-
tion that it slightly differentiated from all others, even
from nearby and environmentally very similar Bonaire,
whereas no difference should exist among Bonaire and
the other geographically distant and environmentally
different islands.

Neither method found a relationship between values
of pairwise FST and geographic distance. Ocean cur-
rents probably strongly influence dispersal of Spari-
soma viride larvae and may promote exchange of alle-
les among populations that are situated along the
current while hindering it across the current. This
seems to be reflected by the RAPD analysis, which
shows that the effective number of migrants is larger
along the prevailing Caribbean current than across it.

Our results indicate that the local Sparisoma viride
sub-populations are relatively open and highly con-
nected. The effective number of migrants among each
of the island pairs exceeds 1 per generation. With such
migration rates, it is unlikely that the differences in
reproductive strategies that were found at different
locations could have evolved as adaptations to differ-
ent local conditions. Although the heritability of alter-

native reproductive strategies is not determined, it
seems far more plausible that S. viride evolved a high
intrinsic flexibility allowing individuals to adjust to the
conditions encountered in the surroundings into which
they happened to recruit.
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