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Small-signal analysis and Weber's law 
 
Supplementary material to  J.H. van Hateren (2005) A cellular and molecular model of 
response kinetics and adaptation in primate cones and horizontal cells. J.Vision 
 
Basic model equations 
 
A low-pass filter with time constant yτ , transforming an input signal )(tx  into an output 

signal )(ty , is described by 

 yxyy −=&τ , (1) 

with the dot denoting time differentiation. Eq. (1) can be solved in the frequency domain. If 
)(~ ωy  denotes the Fourier transform of )(ty , the Fourier transform of y&  is given by yi ~ω . 

Fourier transforming both sides of Eq. (1) then gives 
 yxyiy

~~~ −=ωτ , (2) 

which yields the transfer function of the filter:  
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Note that the low-frequency gain ( 0at  )( ≈ωωH ) equals 1, thus low frequencies are not 
changed by the filter.   
 
In the cone/horizontal cell model (see article), light I activates the visual pigment according to 
first-order kinetics, represented by a low-pass filter Rτ . Activated pigment produces activated 

G-protein, and finally activated PDE, ∗E , again with first-order kinetics (Eτ ). PDE reduces 
the concentration of cGMP at a rate 

 ∗+= Ekc βββ ,  (4) 

with βc  and βk  constants. The concentration X of cGMP, produced at a rate α , is then given 

by 
 XX βα −=& , (5) 
or, equivalently, 

 XXX −=
β

ατ 1
&   with βτ /1=X . (6) 

Opening of membrane channels by X gives a photocurrent 

 XnXI =os , (7) 
partly consisting of calcium ions. Due to removal of calcium by an exchanger, the calcium 
concentration C  is a low-pass filtered version of the photocurrent  

 CICC −= os
&τ , (8) 

influencing the production of cGMP as 

 
Cn

CCa )(1

1

+
=α . (9) 

For the inner segment a membrane time constant mτ  is assumed, and its active membrane 

properties are modeled by assuming that the instantaneous conductance ig  approaches the 

steady-state conductance isg  according to first-order kinetics: 

 iisisiis )( gVgg −=&τ , (10) 
with  

 γ
isisisis )( VaVg = . (11) 
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The signal subsequently enters the cone - horizontal cell feedback loop, where the signal in 
the horizontal cell is linearly subtracted from the cone signal before it drives the horizontal 
cell. For details about this part of the model see the article. 
 
Small-signal analysis of the outer segment 
 
Up to the point where activated PDE is produced, the system is assumed to be essentially 
linear, thus β  is linearly related to the intensity I. I will below first analyze how the output of 

the outer segment, the photocurrent osI , depends on changes in β  if there would be no 
calcium feedback loop. This will give us a reference case with which we can compare the 
case when the calcium feedback loop is included. 
 
Assuming that the calcium feedback loop is not functioning implies that the production rate of 
cGMP, α , is not modulated. It will be taken as a constant 0α  below. The remaining 
equations are then Eqs. (5) and (7), which we will now expand using 
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 (12) 

Here, as below, the small case symbols or the symbols with ∆  represent small perturbations 
around a constant, steady-state value denoted by the subscript zero. Equation (5) then yields 
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where the steady state of Eq. (5) was used (0=X&  implies 0000 =− Xβα ), and xβ∆  was 
neglected, because it is the product of two small numbers. Eq. (7) yields 
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which gives, because Eq. (7)  implies XnXI 00,os = , 

 xXni Xn
X

1
0os

−= . (15) 
Subsequently, Eqs. (13) and (15) are transformed to the frequency domain, where variables 
are denoted by a tilde. Because differentiating in the time domain corresponds to multiplying 
by ωi  in the frequency domain, this yields 

 00

~~~ Xxxi ββω ∆−−= , (16) 
and 

 xXni Xn
X

~~ 1
0os

−= . (17) 
Therefore 
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This can be recognized as a low-pass filter with time constant 0, βτ  and gain 0,os0, InXβτ− . 

The time constant is the time constant Xτ  for 0XX = .  
 
Including the calcium feedback loop strongly changes the behaviour of the circuit. In addition 
to Eqs. (12) we have  

 
cCC +=
∆+=

0

0 ααα
 (19) 

Eq. (13) then becomes 
 00 Xxx ββα ∆−−∆≈&  (20) 
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or 
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and we find an expression for α∆  from Eq. (9): 
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thus  
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where the constant 1 c  was defined for convenience of notation. Finally, Eq. (8) gives 

 cicCiIcC −=−−+= os0os0,os &τ  (24) 

thus 
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From Eqs. (17), (21), (23), (25),  00 CX Xn = , and 0,os0 IX Xn =  we obtain 
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which finally yields the transfer function  
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In the next two paragraphs, two major consequences of the processing in the outer segment 
will be discussed: the outer segment contributes to contrast constancy, and it regulates the 
bandwidth of the passed signal. 
 
The calcium feedback loop corrects overshooting Weber's law 
 
Without the calcium control loop, i.e. with fixed 0αα = , the photocurrent generated by small 
modulations in β  at low frequencies ( 0≈ω ) follows from Eq. (18), using 

XX nnXI )/( 0000,os βα==  
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where the latter follows from Eq. (4) and writing ∗∗∗ += eEE 0 . The ~ sign should be read as 

"is proportional to". For not too low background illuminances we have ββ cEk >>∗
0 , which 

leads to 
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where we have used the fact that ∗E  is proportional to the illuminance iII += 0 , i.e., ∗
0E  is 

proportional to 0I , and ∗e  to i . For a value of 1=Xn , this shows that the current response 

os
~
i  to an illuminance modulation i

~
 declines as 2

0/1 I  with the background illuminance, and 

not as 0/1 I  as required by contrast constancy. In other words, without calcium feedback the 
cone strongly overshoots Weber's law. 
 
With a functioning calcium control loop, the photocurrent generated by small modulations in 
β  at low frequencies ( 0≈ω ) follows from Eq. (27): 
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In this equation both 0,osI  and 1 c  depend in a complicated way on 0β , with 0,osI  the solution 

of  

 0
/
0,os

/1
0,os /1 β=+ XCCX nnn

C
n IaI , (31) 

and 1 c  then given by 
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In general, the dependence of 0,osI  on 0β  as shown in Eq. (31) can only be analyzed 

numerically. However, some insight into the behaviour of Eq. (30) can be obtained for the 

special case that 1)( 0 >>Cn
CCa , corresponding to low to medium background illuminances. 

Then we find from Eq. (23) that 11 ≈c , and for 0,osI  

 
X

XC

X

XC

X

X

X

n

nn
C

n

nn
C

n

n
n IaCa

XI
0

0,os

0

0

0

0
00,os

))/(1())/(1(

βββ
α ==== , (33) 

and therefore 
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where the latter follows from assuming 1=Xn  and 4=Cn . Clearly, the steady-state current 

depends only weakly on 0β . Then Eq. (30) finally results in 
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using the same type of arguments that led to Eq. (29). This shows that the calcium feedback 
loop almost solves the problem of overshooting Weber's law. In the section "From linearity to 
contrast constancy" below I will show that the inner segment further alleviates the problem, 
and that it vanishes altogether when there is a suitable balance between βc  and βk , the 

coefficients determining the dark and light activity of PDE. 
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The calcium feedback loop increases the frequency bandwidth 
 
From Eq. (18) it is clear that without the calcium feedback loop, the small-signal transfer 
function from β to 0,osI  is a low-pass filter, with time constant depending on 0β : 

 00,
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With calcium feedback, the transfer function was derived in Eq. (27): 
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For large frequencies, with Cτω /1>> , the second term with 0β  in the denominator can be 
neglected, and the transfer function becomes identical to the case without calcium feedback. 
For ms 3=Cτ  this implies a frequency considerably larger than 50 Hz. For low frequencies, 

with Cτω /1<< , Ciωτ  can be neglected compared to 1, and the transfer function becomes 
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which is a low-pass filter with a time constant and gain )1( 1cnn CX+  times smaller than the 
one of Eq. (36). The calcium feedback therefore in effect increases the response speed and 
frequency bandwidth of the photocurrent. 
 
The general behaviour of Eq. (37) can be studied by rewriting it as 
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where the numerator has high-pass characteristics only relevant for high frequencies 
( Cτω /1> ), and the denominator can be recognized as a resonator with resonance frequency 

0ω  and damping constant 0γ . The quality factor Q of this resonator is then 
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The Q factor of a resonator quantifies the strength of resonance, where 5.0<Q  signifies an 
overdamped resonator, which shows no overshoots in response to a step and attains its steady-
state slowly; 5.0>Q  signifies an underdamped resonator, which shows overshoots or even 
ringing in response to a step, and a clear resonance peak in the frequency transfer function; 
and 5.0=Q  signifies a critically damped resonator, which attains its steady-state in the 

fastest possible way without producing overshoots. Because 11 ≤c  (Eq. 32), the first factor in 

Eq. (40) is not larger than 5 , assuming 1=Xn  and 4=Cn . The second factor is not larger 

than 0.5, for any value of Cτ  and 0,βτ , and therefore 1.155.0 =≤Q , indicating only mild 

underdamping at most. The actual value of Q  depends, through 1c , in a intricate way on the 
steady-state value of the photocurrent (Eq. 32). Figure 1 shows how the resonance frequency 

πω 2/0  and Q  factor depend on background intensities between 1 and 1000 td, using the 
generic model parameters (defined in Table 1 of the article). The resonance frequency 
increases with background intensity, and the Q  factor settles to values only slightly higher 
than the critically damped case. 
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Figure 2. The control loop of the 
inner segment. 
 

  
Figure 1. The resonance frequency and Q factor 
of the calcium control loop regulating the 
photocurrent generated in the cone outer 
segment. 
  

Small-signal analysis of the inner segment 
 
The inner segment acts as a lead-lag element  
 
The model of the inner segment is shown again in Figure 2, where a few additional variables 
are defined aiding the analysis. The equations describing this system are 
 isism VWV −=&τ , (41) 

 γ
isisVaU = , (42) 

 VUV −=&isτ , (43) 

 VIW /os= . (44) 

Writing os0,osos iII += , wWW += 0 , is0,isis vVV += , uUU += 0 , and  vVV += 0 , we can 

express the steady state value of 0,isV  in terms of that of 0,osI  as 

 )1/(1
is0,os0,is )/( γ+= aIV . (45) 

The small-signal expansion proceeds along similar lines as for the outer segment, and leads, 
after transforming to the frequency domain, to 
 isism

~~~ vwvi −=ωτ , (46) 
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1

0,isis
~~ vVau −= γγ , (47) 

 vuvi ~~~
is −=ωτ , (48) 
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Eliminating u~ , v~ , and w~  from these equations gives the transfer function 
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where in the latter step γ
0,isis0 VaV =  and 0,is0,os0 /VIV =  were used. From the fits presented in 

the article we know that mis ττ >> , and we can therefore study the behaviour of this transfer 
function by approximating it as 
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The second part of the right hand side of this equation acts as a lead-lag filter, with a low-
frequency gain )1/(1 γ+  and a high-frequency gain of 1. With a value 7.0=γ  it thus acts as 
a mild high-pass filter, reducing low frequencies, and producing response sagging and 
rebounds in response to block-shaped stimuli. 
 
Combining Eqs. (37) and (51) yields, to good approximation, for the combined transfer 
function of outer and inner segment 
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From linearity to contrast constancy 
 

Assuming 1)( 0 >>Cn
CCa , we derived Eq. (34) 
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and Eq. (45) showed 

 )1/(1
0,os0,is ~ γ+IV . (54) 

Combining these two equations yields 
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where the latter follows from assuming 1=Xn , 4=Cn  and 7.0=γ . Thus the steady-state 

voltage depends even more weakly on 0β  than the steady-state current (Eq. 34).  
 
Whether the system is linear or displays contrast constancy is in fact critically tuned by the 
activity of PDE. For low frequencies, using Eqs. (4), (52) and (55) we have 
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For the lowest background intensities ββ cEk <<∗
0 , and this leads to 

 iev
~

~~~~
is

∗ , (57) 

showing that the cone voltage is
~v responds linearly to a modulation i

~
of the illuminance. For 

high background illuminances ββ cEk >>∗
0 , which leads to 
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which is quite close to Weber's law, i.e., contrast constancy. Intermediate cases for the ratio of 
∗
0Ekβ  and βc  may then be approximated by a dependence ρ

0/1~ I , with ρ  gradually shifting 

from 0 to 1.12 depending on light intensity. Thus the balance between βc , the dark activity of 

PDE, and ∗
0Ekβ , the light-driven activity of PDE, is a major determinant of whether the 

system is linear ( 0=ρ ), is in a DeVries-Rose regime ( 5.0=ρ ), or displays full contrast 
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constancy ( 1=ρ ). Obviously, this analysis is only approximate, because the assumption 

1)( 0 >>Cn
CCa  that led to Eq. (34) as implicitly used here is only valid for low to intermediate 

intensities. 
 
The small-signal transfer function of cone and horizontal cell 
 
Combining the appropriate equations above, we find for the overall transfer function of the 
cone 
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with 
 00 Ikc βββ += , (60) 

where 0I  is the background illuminance, and 0,isV  and 1c  are given by Eqs. (45) and (32), 

using 0,osI  as the solution of Eq. (31). 

 
The small-signal transfer function of the cone - horizontal cell gain control loop (Figure 3) is 
analyzed as follows. For small signals, Ia  (defined in the article) is constant to good 

approximation, and therefore also 22 ττ Ia=′  and hh ττ Ia=′  are constants. The gain sg  for 

small signals around a fixed value 0,sV  follows from the derivative of the function 
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which yields a constant value for sg : 
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In the frequency domain one then finds for small signals 
 hiss

~~~ vvv −= , (63) 

 sh21sh
~~ vHHHgv = . (64) 

The transfer function of the low-pass filter 1τ  is )1/(1 11 ωτiH += , with similar transfer 

functions for 2τ ′  and hτ ′ . Eliminating s
~v  from these equations yields for the transfer function 

)(ch ωH  from cone to horizontal cell 
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The overall transfer function of the horizontal cell is then given by 
 

Figure 3. Linear version of the cone - 

horizontal cell feedback loop. isV  is the 

presynaptic membrane voltage in the 

cone, hV  the membrane voltage of the 

horizontal cell. 
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Figure 4. Sensitivity (response per unit illuminance modulation) as a function of frequency at various 
stages in the model (upper panels), and corresponding transfer functions (lower panels), at a 

background illuminance of 10 td (left column) and 1000 td (right column); β : PDE activity; osi : 

photocurrent; isv : membrane potential of cone; hv : membrane potential of horizontal cell; os,βH : 

transfer function from β  to osi ; isos,H : transfer function from osi  to isv ; chH : transfer function 

from isv  to hv . 

 
)1)(1)(1( h21s

s
conehor.cell τωτωωτ ′+′+++

=
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Figure 4 shows how the various components in the model contribute to building the transfer 
function of the cone and of the horizontal cell, where the parameters were used obtained from 
the fit to Figure 14A of the article. The left column was calculated for  td100 =I , the right 

column for  td10000 =I . The upper panels show the sensitivity, defined as the signal per unit 

illuminance modulation, of β , osi  (the photocurrent), isv  (the membrane potential of the 

cone inner segment) and hv  (the membrane potential of the horizontal cell). The amplitude of 

the corresponding transfer functions are shown in the lower panels, with os,βH  the transfer 

function from β  to osi  (Eq. 37), isos,H  the transfer function from osi  to isv  (Eq. 50), and 

chH  the transfer function from isv  to hv  (Eq. 65). Note that os,βH  is the main factor 

responsible for the difference in transfer functions between 10 td and 1000 td, with a strong 
reduction in gain and increase in bandwidth at 1000 td compared with 10 td. The slight low-
frequency fall-off in the sensitivity of isv  and hv  is due to isos,H . Finally, the resonance 

observed at frequencies around 30-40 Hz is produced by chH . The latter is also responsible 

for the much steeper high-frequency fall-off of hv  compared with isv . 


