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Abstract. We consider general properties of brane solutions of gravity-dilaton-axion systems. We
focus on the case of 7-branes and instantons. In both cases we show that besides the standard so-
lutions there are new deformed solutions whose charges take value in any of the three conjugacy
classes of SL(2,R). In the case of 7-branes we find that for each conjugacy class the 7-brane solu-
tions are 1/2 BPS. Next, we discuss the relation of the 7-branes with the DW/QFT correspondence.
In particular, we show that the two (inequivalent) 7-brane solutions in the SO(2) conjugacy class
have a nice interpretation as a distribution of (the so-called near horizon limit of) branes. This sug-
gests a way to define the near-horizon limit of a 7-brane.

In the case of instantons only the solutions corresponding to the R conjugacy class are 1/2
BPS. The solutions corresponding to the other two conjugacy classess correspond to non-extremal
deformations. We first discuss an alternative description of these solutions as the geodesic motion of
a particle in a two-dimensional AdS2 space. Next, we discuss the instanton-soliton correspondence.
In particular, we show that for two of the conjugacy classes the instanton action in D dimensions is
given by the mass of the corresponding soliton which is a (non-extremal) black hole solution in D+1
dimension. We speculate on the role of the non-extremal instantons in calculating higher-derivative
corrections to the string effective action and, after a generalization from a flat to a curved AdS5
background, on their role in the AdS/CFT corresopondence.

INTRODUCTION

Gravity coupled to the two scalars (dilaton and axion) that parametrise an
SL(2,R)/SO(2) coset space is an important subsector of the low-energy limit of
type IIB superstring theory. Among the different solutions of this system are seven-
brane solutions that carry magnetic charges with respect to the three generators of
SL(2,R). These magnetic charges combine into a traceless 2 x 2 charge matrix Q which
transforms in the adjoint representation of SL(2,R). The combination det(Q), being
invariant under these transformations, labels the three different conjugacy classes of
SL(2,R). Each pair of solutions in the same conjugacy class is related via SL(2,R).
On the other hand, two solutions that belong to two different conjugacy classes can not
be related via SL(2,R). The “circular” 1/2 BPS D7c–brane of [1] is represented by the
detQ= 0 conjugacy class.
It is well-known that the electric-magnetic dual of the D7–brane is the D-instanton

[2]. The D-instanton is a half-supersymmetric solution of the Euclidean gravity-dilaton-
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axion system, and carries electric charge with respect to the Euclidean SL(2,R) sym-
metry. In complete analogy to the case of seven-branes, the three Euclidean SL(2,R)
charges combine into a 2 x 2 charge matrix Q that transforms in the adjoint representa-
tion of the Euclidean SL(2,R). The D-instanton is represented by the same conjugacy
class that represents the circular D7c–brane, i.e. the one with det(Q) = 0.
It is natural to ask whether there exist 7-branes and instantons with SL(2,R) charges

corresponding to the other two conjugacy classes of SL(2,R). It is the aim of this work
to construct and investigate such solutions. This talk is a summary of [3, 4, 5, 6, 7].

GRAVITY-DILATON-AXION SYSTEMS

In this section we briefly review some basic properties of the gravity-dilaton axion
system. The basic fields are the metric gµν , the dilaton φ and the axion χ . An axion,
as opposed to a dilaton, only occurs via its spacetime derivative in the Lagrangian. In
D-dimensional Minkowski spacetime this Lagrangian is given by

LM = 1
2

√

|g| [R− 1
2(∂φ)2− 1

2e
bφ (∂ χ)2] , (1)

where b 6= 0 is an arbitrary dilaton coupling parameter. The Lagrangian (1) is invariant
under a nonlinear SL(2,R) symmetry. For b= 0 this symmetry reduces to

SL(2,R) → ISO(2) . (2)

From now on we will assume that b 6= 0. The case b = 0 should be treated separately
and has been discussed in [8].
The two scalars φ and χ parametrize the coset

SL(2,R)

SO(2)
. (3)

This can be made manifest by combining φ and χ into the following SL(2,R)matrixM:

M = ebφ/2

(
1
4b

2χ2+ e−bφ 1
2bχ

1
2bχ 1

)

. (4)

In terms of M the SL(2,R) symmetry is given by

M → ΩMΩT with Ω ∈ SL(2,R) . (5)

Note that we defined the gravity-dilaton-axion system in Minkowski spacetime. One can
show that similar formulae hold in Euclidean space. In the Euclidean case the axion and
dilaton parametrise the coset

SL(2,R)

SO(1,1)
. (6)
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TABLE 1. The three conjugacy
classes of SL(2,R)

detQ< 0 detQ= 0 detQ> 0

SO(1,1) R SO(2)

For more details, see [7].
In the following discussion we will keep the dimension D and the dilaton coupling

parameter b 6= 0 arbitrary. The standard example is D = 10 and b = 2 corresponding to
IIB supergravity. Other cases may correspond to (truncations of) compactifications of
N=2 supergravity. For instance, the Euclidean Lagrangian for the universal hypermul-
tiplet that arises from a Calabi-Yau compactification of type II strings [9, 10] can be
truncated to a D=4 Euclidean gravity-dilaton-axion system with b= 1 or b= 2.
Given the SL(2,R) symmetry one can define corresponding Noether currents

Jµ ∼ (∂µM)M−1 . (7)

For the 7-brane and instanton solutions that we study here one can define corresponding
Noether charges1

7−branes : Q∼
∫

S1
J ,

instantons : Q∼
∫

SD−1
J .

(8)

These charges transform under SL(2,R) as follows:

Q→ ΩQΩ−1 . (9)

We now come to an important point that will be crucial for the remaining part of
this work. From the above transformation rule we see that the determinant detQ is
invariant under the SL(2,R) transformations. This means that we have a family of
distinct conjugacy classess which are labelled by the value of detQ. It is natural to
distinguish between the three cases indicated in table 1. In this table we have also
indicated the one-dimensional subgroup of SL(2,R) associated to each of the three types
of conjugacy classes. This association means that each element g of the given conjugacy
class can be written as an element h of the corresponding subgroup conjugated with an
arbitrary SL(2,R) group element Ω, i.e.

g= ΩhΩ−1 . (10)

1 For nonlinear symmetries, like SL(2,R), it is a priori not guaranteed that the integrals of the currents are
finite. In our case, where the solutions depend on only one coordinate, the integrals are finite. We thank
E. Ivanov for a discussion on this point.
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Any 7-brane or instanton solution of the gravity-dilaton-instanton system will carry
SL(2,R) charges that fall into one of the three types of conjugacy classes of table 1. Let
us first consider the standard D7-brane solution of IIB string theory. In general we wish
to consider branes with two transverse directions, i.e. (D− 3)-branes in D dimensions.
For simplicity we will often call these branes just 7-branes instead of (D− 3)-branes.
The position of the D7-brane is often indicated by the diagram

D7 : ×| ××××××× −− (11)

where ×(−) indicates a worldvolume (transverse) direction. The first × before the |
indicates the worldvolume time direction. A (D−3)-brane naturally couples to aCD−2-
form which is just the dual of the axion:

∂ χ ∼ (∂CD−2)
? . (12)

The special thing about a brane with two transverse directions is that the harmonic
function over this space is given by a logarithm

H(r) ∼ lnr , (13)

where r indicates the radial transverse direction. This solution is half-supersymmetric.
It turns out that it is not possible to reduce this brane solution over one of the two
transverse directions to a half-supersymmetric domain wall solution in one dimension
lower. Neither can one define the near-horizon limit of the standard D7-brane solution.
Nevertheless, as we will see, the analysis below will suggest a way to define the near-
horizon limit which brings the 7-branes on the same footing with the other branes in the
so-called DW/QFT correspondence [11, 12].
In order to dualize the 7-brane to, for instance, the D8 brane solution of type IIA

string theory it is necessary to introduce the so-called circular D7c-brane [1] which has
an extra isometry in one of the two transverse directions. The harmonic in the remaining
single direction r is given by

H(r) ∼ r . (14)

Indeed, one can show that this D7c-brane solution is T-dual to the D8-brane of type IIA
string theory. It turns out that both the D7-brane and the circular D7c-brane have charges
that are in the detQ= 0 conjugacy class of SL(2,R).
We next consider the Euclidean D-instanton solution of [2]. The D-instanton can be

viewed as the extreme case of a D(-1) brane in the family of T-dual Dp-brane solutions
with only transverse and no worldvolume directions. The corresponding diagram is
given by

D−1 : −−−−−−−−−− (15)

The solution can be given in terms of a harmonic over the D-dimensional Euclidean
transverse space:
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H(r) ∼ 1/rD−2 . (16)

One can define Euclidean SL(2,R) charges for the D-instanton. Like the D7-brane and
the D7c-brane these charges take value in the detQ= 0 conjugacy class.
Clearly, by performing arbitrary SL(2,R) rotations on a detQ = 0 solution one only

obtains solutions that fall into the same conjugacy class. The following obvious question
arises that will be central theme of this investigation:

What about 7−branes and instantons with detQ> 0 and detQ< 0 ?

We will show that both for the 7-branes and the D-instantons deformations can be
found which carry charges that belong to the detQ > 0 or detQ < 0 conjugacy classes.
Apart from this there are also major differences between the 7-brane and instanton case.
We first discuss the 7-brane solutions.

7-BRANES AND THE DW/QFT CORRESPONDENCE

It is indeed possible to find generalizations of the D7c-brane solution. This extended
class of solutions is characterized by two arbitrary holomorphic functions f (z) and g(z).
Here z= x+ iy is the complex coordinate parametrizing the two-dimensional transverse
space. We have found the following class of 1/2 BPS 7-brane solutions [3, 13]:

ds2 = ds2D−2+ℑm f (z)e−ℜeg(z)dzdz̄ ,

τ ≡ χ + ie−φ = f (z) .
(17)

All solutions are half-supersymmetric with the Killing spinor given by

ε = eiℑmgε0 with Γz ε = 0 . (18)

These solutions have been obtained by first considering the 1/2 BPS domain wall solu-
tions of the maximally gauged supergravities in D=9 dimensions. These gauged super-
gravities can be obtained from IIB supergravity by a so-called twisted reduction over a
circle with radius R. Assuming that x parametrizes the circle this means that the fields at
x and x+2πR are related to each other via an SL(2,R) matrix Ω that takes value in the
one-dimensional subgroup corresponding to one of the three conjugacy classes, i.e.

Φ(x) = ΩΦ(x+2πR) with Ω ∈ SO(1,1),R or SO(2) (19)

for any field Φ. These twisted reductions of IIB supergravity lead to maximally-
supersymmetric SO(1,1),R or SO(2) gauged supergravities in D=9 dimensions. Note
that this construction method implies that we only find 1/2 BPS 7-brane solutions in
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D=10 dimensions that can be reduced to 1/2 BPS domain wall solutions in D=9 dimen-
sions. For instance, this method will not lead to the D7-brane solution since that solution
can not be reduced to a 1/2 supersymmetric domain wall solution.
For branes with two transverse directions one usually calculates the monodromy

matrix Λ instead of the charge matrix Q. We assume that the two-dimensional space
has the topology of a cilinder and that x,y are cylindrical coordinates with x the circle
direction parametrizing a circle of radius R. The two matrices Λ and Q are related via
[13]

Λ =

(
a b
c d

)

︸ ︷︷ ︸

monodromy

= e2πR

charge
⇓
Q . (20)

For a given set of holomorphic functions f (z),g(z) it is straightforward to calculate the
monodromy matrix and hence the charge matrix. For example, the circular D7c-brane
solution is specified by

f (z) = mz , g(z) = 0 . (21)

This leads to the monodromy matrix

Λ =

(
1 2πmR
0 1

)

. (22)

Following (20) the corresponding charge matrix is given by

Q=

(
0 m
0 0

)

, (23)

which belongs to the detQ= 0 conjugacy class.
It is not too difficult to find choices of holomorphic functions that lead to 1/2 BPS

7-branes with charges corresponding to the other two conjugacy classes. We found these
solutions by first constructing the domain wall solutions they give rise to after a twisted
reduction over the circular x direction. The result is given in table 2 [3]. Note that in the
SO(2) conjugacy class we find two inequivalent solutions. The second one is a locally
flat spacetime which in the transverse directions has a cone-like structure, i.e. there is a
non-trivial deficit angle.
Sofar we did not consider any quantization conditions. String theory requires that we

must impose the following condition on the monodromy matrix Λ:

Λ ∈ SL(2,Z) . (24)

This is in general a diophantine equation which in the case of the detQ = 0 conjugacy
class has the following simple general solution:

Λ = 2πR

(
1 n
0 1

)

, n ∈ Z . (25)

228

Downloaded 29 Nov 2012 to 129.125.63.113. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



TABLE 2. The choices of f (z),g(z) corre-
sponding to the three conjugacy classes of
SL(2,R). The last column indicates the one-
dimensional subgroup characterizing each con-
jugacy class.

class f(z) g(z) group

detQ= 0 mz 0 R

detQ< 0 iemz mz SO(1,1)

detQ> 0 tan 1
2mz lncos 12mz SO(2)
i imz SO(2)

The integer n specifies howmany circular 7-branes we have. For the other two conjugacy
class the quantization conditions are much more difficult to work out. The general
solution can be found in [14, 15].
The two solutions given in table 2 corresponding to the SO(2) conjugacy class are

especially interesting in the context of the AdS/CFT correspondence since after reduc-
tion over x they lead to 1/2 supersymmetric domain wall solutions in SO(2) gauged
supergravity theories. The general scheme in the DW/QFT correspondence is that the
near horizon limit of a brane with n transverse directions leads, after spherical reduc-
tion, to domain wall solutions of SO(n) gauged supergravities. We will show below that
7-branes naturally fit this picture in the special case that n= 2.
The DW/QFT correspondence is a non-conformal generalization of the AdS/CFT

correspondence [16]. The standard example of the AdS/CFT correspondence is the D3-
brane, see table 3. The near-horizon geometry of the D3-brane is the AdS5×S5 vacuum
configuration. After compactification over the spherial part this leads to a SO(6) gauged
supergravity in D=5 dimensions. This supergravity allows a maximally supersymmetric
AdS5 vacuum configuration. At the boundary of this AdS5 spacetime lives the dual
conformal N=4 supersymmetric Yang-Mills theory.
There are two ways to break the conformal symmetry. In each of these two cases the

maximally supersymmetric AdS5 space is replaced by a 1/2 BPS domain wall solution.
Such a solution requires the coupling of a dilaton to the cosmological constant. We
distinguish between two kinds of dilatons. First we have the volume dilaton φ which
occurs as an overall factor in the potential of the gauged supergravity. This dilaton
is absent in the potential, and hence does not couple to the cosmological constant,
if the corresponding brane is conformal, i.e. D3, M2 and M5. The activation of this
dilaton is required if we consider one of the other non-conformal branes. The maximally
supersymmetric AdS space is in these cases replaced by a 1/2 BPS domain wall solution
with a non-trivial profile for the volume dilaton. The field theory living at the boundary
of this domain wall spacetime is not a conformal field theory but a non-conformal
quantum field theory. Second, we have the remaining so-called distribution dilatons.
These always couple to the cosmological constant. Each of these dilatons specifies
whether the corresponding brane, be it a conformal brane or not, is distributed in a
given transverse direction. It turns out that a brane with n transverse directions can be
distributed in maximal n− 1 directions. In the conformal case, the distribution of the
branes means that in the dual conformal field theory some scalars have obtained a non-
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TABLE 3. The standard example of the AdS/CFT cor-
respondence: the D3-brane

brane vacuum configuration gauged supergravity

D3 AdS5×S5 D=5 SO(6)

TABLE 4. Branes and the DW/QFT correspon-
dence. The third column indicates whether the volume
dilaton occurs in the potential yes or no.

D n volume dilaton φ supergravity Brane

8 3
√

IIA on S2 D6

7 5 - 11D on S4 M5

6 5
√

IIA on S4 D4

5 6 - IIB on S5 D3

4 8 - 11D on S7 M2

3 8
√

IIA on S7 F1A

2 9
√

IIA on S8 D0

vanishing expectation value, i.e. we are in the (non-conformal) Coulomb branch of the
gauge theory [17, 18, 19].
It is natural to extend the AdS/CFT correspondence of the conformal branes to a

DW/QFT correspondence for the non-conformal branes [11, 12]. In both cases the
branes can be distributed depending on whether some of the distribution dilatons are
activated. This leads to the relations of table 4 which is a generalization of table 3 to the
general brane case2

The point we want to make is that 7-branes can naturally be added to the top of tabel
4 if, instead of performing an ordinary circle reduction we perform a SO(2) twisted
reduction. This leads to the extension given in table 5, where from now on we assume
that b = 2 for the remaining part of this section. The two solutions of table 2 are
now naturally interpreted as distributions of 7-branes. To see this it is instructive to
first consider the case of D5-branes and D6-branes. D5-branes have a 4-dimensional
transverse space and can be distributed into at most 3 independent transverse directions.

TABLE 5. The D7-brane and the DW/QFT correspondence

D n volume dilaton φ supergravity Brane

9 2
√

IIB with SO(2) twist D7

2 We have not indicated the branes of string theory that follow fromM-branes by so-called direct or double
dimensional reduction. In D=3 there is furthermore an independent possibility with the fundamental string
F1B of type IIB string theory. This leads to an inequivalent maximally supersymmetric SO(8) gauged
supergravity in D=3 dimensions, compare to [20].
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This happens when all three distribution dilatons are activated in the domain wall
solution of the D=7 SO(5) gauged supergravity. The branes are distributed as branes
with positive (+) charge on the surface of a 3-dimensional ellipsoid and as branes with
negative (-) charge inside this ellipsoid, see the first picture in figure 1. Note that the
volume dilaton is always activated since the D5-brane is not a conformal brane.

+
+

+

+

−−

− −

+ ++

+ + +

+

+
+

+
+ +

FIGURE 1. Distribution of D5-branes in 3, 2, 1 and 0 directions

Setting one of the distribution dilatons equal to zero corresponds to undoing the
distribution in one of the three directions. Due to a cancellation of + branes on the
boundary, except the ones at the equator, with - branes in the bulk one is left with a
two-dimensional distribution with + branes only positioned at the boundary of a two-
dimensional ellipsoid, see the second picture in figure 1. This undoing of the distribution
in a given direction can be done two more times, see the third and fourth picture in figure
1. At the end one ends up with a set of stacked branes with no distribution at all.
We next consider the case of D6-branes, see figure 2. Since D6-branes have a 3-

dimensional transverse space, we start with a maximal distribution in 2 directions, see
the first picture in figure 2. The + branes are positioned at the boundary of a two-
dimensional ellipsoid while the - branes are distributed inside this ellipsoid. Undoing
the distribution in one of the 2 directions we end up with a two-centred solution. The
uplifting of this solution to M-theory leads to the Eguchi-Hanson metric which is the
near-horizon limit of the two-centred Kaluza-Klein monopole solution. Undoing the
distribution in the second direction we end up with (the near-horizon limit of) a set
of stacked D6-branes.

+ +

+

+
+

+

+

+−
−

−

FIGURE 2. Distribution of D6-branes in 2,1 and 0 directions

Finally, we consider the case of interest, i.e. 7-branes, see figure 3. 7-branes have two
transverse directions and therefore we would like to interpret the first picture of figure 3,
representing the first SO(2) conjugacy class solution of table 2, as a distribution of branes
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in one direction with + branes positioned at the end of the line and - branes distributed
along the line. Somewhat to a surprise, this is indeed possible provided we view the
first picture in figure 3 as a distribution of D7-branes, which themselves belong to the R

conjugacy class and cannot be reduced to 1/2 supersymmetric domain walls! The reason
that this is possible is related to the fact that the product of two monodromy matrices
in the R conjugacy class can yield a monodromy matrix in the SO(2) conjugacy class,
i.e. one can view the SO(2) conjugacy solution as a bound state of R conjugacy class
solutions. Undoing the distribution in the single direction leads to the second picture in
figure 3 which represents the second SO(2) solution of table 2. Due to a cancellation
of charges one is left with no charge at all! Indeed, this is consistent with the fact that
the second solution is a locally flat spacetime where the two transverse directions have
a cone-like structure with quantized deficit angle. It is very suggestive to define this
configuration as the near-horizon limit of the D7-brane solution.

+

+

−

−
x

FIGURE 3. Distribution of D7-branes in 1 and 0 directions.

This concludes our discussion of the relation between 7-branes and the DW/QFT cor-
respondence. In the remaining part of this work we will discuss the instanton solutions
and their relation to the AdS/CFT corrspondence.

INSTANTONS AND THE ADS/CFT CORRESPONDENCE

To construct generalizations of the D-instanton we allow in the Ansatz for conformally
flat metrics. Allowing a non-zero conformal factor in the Euclidean spacetime metric
leads to the following class of solutions:

ds2 =

(

1− ~q2

r
2

(D−2)

) 2
(D−2)

(dr2+ r2dΩ2
D−1) ,

ebφ(r) =

(
q−
q

sinh(H(r)+C

)2

,

χ(r) =
2

bq−
(q coth(H(r)+C)−q3) .

(26)
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Here H(r) is the harmonic over the conformally Euclidean metric in (26) which is given
by

H(r) =
bc

2
log( f+(r)/ f−(r)) , f±(r) = 1± q

rD−2
. (27)

Remember that b is the dilaton coupling parameter. The numerical constant c is given
by

c=
√

2(D−1)/(D−2) . (28)

The solutions (26) contain 4 integration constants. The integration constant C is related
to the fact that one can perform special SL(2,R) transformations

Ω = eλQ (29)

that commutes with the charge matrix Q. The other 3 integration constants~q2 ,q3 ,q− are
related to the SL(2,R) charge matrix Q in the following way:

Q=

(
q3 iq+
iq− −q3

)

, detQ= −~q2 , q≡
√

~q2 . (30)

Similar solutions have been discussed in [21]. Note that q ≡
√

~q2 can be imaginary for
negative~q2. In that case a real solution can be obtained by analytic continuation in which
the hyperbolic functions in (26) get replaced by goniometric ones. It is easiest to discuss
the three cases~q2 > 0, ~q2 = 0 and ~q2 < 0 separately. We do this below.

•~q2 > 0 : Black Holes

In this case there is a curvature singularity for rc ∼~q2. There are two ways in which
the singularity might be resolved. It could be that string effects will soften the singularity
since eφ → ∞ at r → rc. For certain values of the dilaton coupling parameter b the
singularity is resolved by uplifting the solution to a p-brane solution in D+ p+ 1
dimensions, see later in this section. Note that for ~q2 > 0 the limit q− → 0 is well-
defined. It leads to a special case in which the axion decouples.

•~q2 = 0 : Extremal Instantons

This is the case of the 1/2 BPS D-instanton [2]. In this limit the solution is given by

ds2 = dr2+ r2 dΩ2
D−1 ,

ebφ(r)/2 = g
b/2
s +

bcq−
rD−2

,

χ(r) =
2

b
(e−bφ(r)/2− q3

q−
) .

(31)
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This limiting case can be obtained either by starting from~q2 > 0 or~q2 < 0 and taking
the limit~q2 → 0. This limit is facilitated by first making the redefinition

C→ q

q−
C . (32)

•~q2 < 0 : Wormholes

To obtain a real solution we redefine q → i q̃ such that q̃2 > 0. After an analytic
continuation the solution for this case is given by

ds2 = (1+
q̃2

r2(D−2) )
2

(D−2) (dr2+ r2 dΩ2
D−1) ,

ebφ(r) =

(
q−
q̃

sin(bc arctan(
q̃

rD−2
)+C)

)2

,

χ(r) =
2

bq−
q̃ cot(bc arctan(

q̃

rD−2
)+C)−q3) .

The metric is regular for 0 < r < ∞ and the scalars are regular for bc < 2. It turns out
that the singularity in the scalars for bc ≥ 2 can be understood from the fact that, after
the Wick rotation from Minkowski spacetime to Euclidean space the dilaton and axion
do not define a global coordinate system for the AdS2 scalar sigma manifold. This is due
to the fact that the Poincare coordinates they define do cover the Euclidean AdS2 space
but only half of theMinkowskian AdS2 space. For more details, see [22].
We mention that, unlike the case of 7-branes only the D-instanton, belonging to the

detQ = 0 conjugacy class, is 1/2 BPS. The instantons with charges in the other two
conjugacy classes, i.e. the ones with detQ > 0 and detQ < 0, are not supersymmetric.
For this reason, and others, see below, we call these instantons non-extremal.
It is well-known that the D-instanton has a wormhole geometry in the string frame

metric [2]. This wormhole is asymptotically flat with a neck of physical radius ρ = ρsd
positioned at the fixed point r = rsd , see figure 4.
It turns out that the non-extremal q̃2 < 0 instantons also have a wormhole geometry in

the Einstein frame. This can be deduced from the fact that the metric given in (33) has a
Z2 isometry corresponding to the reflection

rD−2 → q̃r2−D (33)

which interchanges the two asymptotically flat regions. This reflection has a fixed point,
corresponding to the selfdual radius

rD−2sd = q̃ . (34)

The thickness of the neck was computed to be [7]

ρD−2sd = 2q̃ . (35)
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r
r=0 r=r r=∞sd

ρ=ρsd

Figure 4. The geometry of a wormhole. The two asymptotically flat regions at r = 0
and r = ∞ are connected via a neck with a minimal physical radius ρsd at the self-dual
radius rsd .

The q̃2 > 0 instantons, on the other hand, have a wormhole geometry in the so-called
dual frame only when the dilaton coupling parameter b is given by bc= 2. In summary,
wormhole geometries occur in the following frames:

•~q2 > 0 : dual frame (only if bc= 2)

•~q2 = 0 : string frame

•~q2 < 0 : Einstein frame

Similar wormhole geomtries have been studied in the eighties, see e.g. [23]. The new
thing about the situation here is that we have been able to construct regular wormhole
solutions for~q2 < 0 and bc < 2. In type IIB string theory in ten dimensions this is not
satisfied. Toroidal compactifications of string theory only lead to values of b for which
bc≥ 2, so no wormholes exist for these cases. However, for the universal hypermultiplet,
which descends from a Calabi-Yau compactification of type II strings, one can have the
value b = 1 in D = 4, and so bc =

√
3 < 2. The solution is then characterized by the

dilaton and the RR scalar that descends from the RR three-form gauge potential in type
IIA string theory in D = 10 dimensions. Since the extremal case ~q2 = 0 corresponds
to a wrapped type IIA Euclidean membrane over a (supersymmetric) three-cycle, it is
natural to suggest that the regular wormhole, with ~q2 < 0, corresponds to a wrapped
non-extremal Euclidean D2–brane [24].
It turns out that there is an interesting alternative way of describing the instantons

as the geodesic motion of a particle in a Minkowskian AdS2 spacetime. The technique
described below is taken from a similar particle description in the case of accelerating
cosmologies [25]. In fact, the same technique can be applied to domain walls as well,
see [22].
Our starting point is the following Lagrangian and Ansatz:
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L̂ = R̂+(∂ φ̂)2+ ebφ̂ (∂ χ̂)2 ,

dŝ2 = ecϕ(r)e(r)2dr2+ ecϕ(r)/(D−1)dS2D−1 ,

φ̂(r) = φ(r) , χ̂(r) = χ(r).

(36)

Remember that the numerical constant c is defined in (28). The above Ansatz is a
standard Kaluza-Klein Ansatz for a spherical reduction to 1 dimension. The metric
contains two functions: The function ϕ(r) is the would-be conformal factor of the
instanton solution and the function e(r) is the einbein in 1 dimension with r playing
the role of Euclidean time. After reduction the Lagrangian is given by

L ∼ e−1
(
φ̇2+ ebφ χ̇2

)
+ e−1ϕ̇2+ e(D−1)(D−2)e2ϕ/c

︸ ︷︷ ︸

Liouville equation

. (37)

As indicated in this equation the Kaluza-Klein scalar decouples and its equation of
motion is given by the Liouville equation

ϕ
˙̇−2(D−1)(D−2)/ce2ϕ/c = 0 . (38)

After a coordinate transformation

dr̃ = edr (39)

the general solution for the conformal factor is given by

e2ϕ/c =
−8q2

(D−2)
[
1+ cosh

(
2
c

√

8(D−1)q2 r̃
)] . (40)

After substituting this solution back into the action we obtain

L ∼ e−1
(
φ̇2+ ebφ χ̇2

)

︸ ︷︷ ︸

AdS2

+e~q2 . (41)

We deduce that the dilaton coupling parameter b can be identified with the radius R of
the AdS2 space:

b= 2/R . (42)

Moreover the nature of the geodesic (spacelike, timelike or null) or, equivalently, the
mass of the particle (tachyonic, massless or massive) is determined by the value of~q2,
i.e. by the conjugacy class. In summary, we obtain the following relations:

•~q2 > 0 : Black Holes ↔ Tachyonic Particle
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TABLE 6. The D-instanton and the DW/QFT correspon-
dence

D n volume dilaton φ supergravity Brane

1 10
√

IIA on S9 D-instanton

•~q2 = 0 : Extremal Instantons ↔ Massless Particle

•~q2 < 0 : Wormholes ↔ Massive Particle

The spherical reduction from D to 1 dimension naturally triggers the question whether
the D-instanton plays a similar role in the AdS/CFT and DW/QFT correspondence like
the other branes do. In other words, it is natural to extend table 4 not only with 7-branes,
as indicated in table 5 but also with instantons, see table 6. Whether or not this analogy
with the other branes can be made remains to be seen. For an earlier reference to this
suggestion, see [26]. Below we will investigate the relation between (extremal and non-
extremal) D-instantons and the AdS/CFT correspondence from a quite different point of
view.
The non-extremal instanton solutions we have constructed fall naturally in the class

of non-extremal Dp-brane (0 ≤ p ≤ 6) solutions which have been constructed in the
literature. In fact, there are two classes of non-extremal branes available in the literature.
In the first class the isometries of the worldvolume and transverse space are broken.
These solutions are given by [27]

ds2 = eαH
(
−e2 f dt2+dx2p

)
+ eβH

(
e−2 f dr2+ r2dΩ2

)
(43)

for some constants α and β . The function H is harmonic and f is the non-extremality
function. In the second class the isometries remain unbroken [28]

ds2 = eA
(
−dt2+dx2p

)
+ eB

(
dr2+ r2dΩ2

)
(44)

Here A ∼ B is harmonic in the extremal case but A 6= B and not harmonic in the non-
extremal case. The above formulae are only valid for 0 ≤ p ≤ 6. However, they can be
analytically continuated to p= −1 as well. It turns out that the non-extremal instantons
we constructed just fits in as the p = −1 member of the second class of non-extremal
Dp-branes given in (44). In fact in all cases there are two non-extremal deformations,
one corresponding to~q2 > 0 and one corresponding to~q2 < 0. Only when p = −1 has
~q2 an interpretation in terms of SL(2,R) charges.

At the other side of the chain, it is not clear how to define non-extremal 7-branes.
Note also that the double Wick rotation of the~q2 > 0 non-extremal Dp-branes leads to
Sp-branes. Recently this exercise has been repeated, via a single Wick rotation, to the
non-extremal~q2 > 0 D-instanton leading to a “S-1-brane” solution [29].
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We nowwish to discuss another aspect of the instanton solutions. It is well-known that
there is an intricate relation between instantons and solitons in one dimension higher.
The uplifting of the gravity-dilaton-axion system leads to the following Lagrangian in
D+1 dimensions containing a metric, a dilaton and a vector:

LD+1 ∼ R̂+(∂ φ̂)2+ eaφ̂ F̂2 (45)

The constant a defines the dilaton coupling in D+1 dimensions. The reduction of this
Lagrangian over time leads to the gravity-dilaton-axion system (1) with bc ≥ 2. The
case bc= 2 corresponds to zero dilaton coupling in D+1 dimensions, i.e. a= 0.
It is instructive to consider the instanton-soliton correspondence for the case bc = 2.

It turns out that for that case the uplift of the instantons are given by the (non-extremal)
Reissner-Nordström black hole with mass M and charge Q. We find the following
relations between the different cases:

extremal BH : M2 = Q2 ⇔ ~q2 = 0 ,

non− extremal BH : M2 > Q2 ⇔ ~q2 > 0 ,

singular BH : M2 < Q2 ⇔ ~q2 < 0 .

(46)

The relation between M,Q and the SL(2,R) charges is as follows:

M ∼
√

q2− +~q2 , Q∼ q− . (47)

Inverting these relations we find that

~q2 ∼M2−Q2 (48)

This relation shows that~q2 acts as the non-extremality parameter.
The above uplifting can easily be extended to the uplift of the instantons to p-branes

with p> 0. The condition fot uplifting to a p-brane, i.e. the analogue of bc= 2, becomes

(bc)2 =
4(p+1)(D−1)

D+ p−1
. (49)

We are thus led to the Instanton Scan given in table 7.

The value of the action, evaluated on the instanton solution, is a key ingredient in the
semiclassical approximation of the euclidean path integral. Using the relations between
instantons and black holes we have obtained an elegant answer for the~q2 ≥ 0 instanton
action: the action is just the mass of the black hole! More precisely, we have found that
(for more details, see [7])
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TABLE 7. The Instanton Scan

bc Dimension Regular Solutions

<2 D wormholes with~q2 < 0

=2 D+1 RN black hole with~q2 ≥ 0

>2 D+1 dilatonic BH with~q2 = 0

= (49) D+p+1 non-dilatonic p-branes with~q2 ≥ 0

> (49) D+p+1 dilatonic p-branes with~q2 = 0

Sinst =
4

b2
(D−2)Vol(SD−1)bc

√

q2−
gbs

+~q2 (50)

There are two interesting limits to consider. First, the extremal limit is given by~q2 = 0
in which case the action reaches its lowest value and reduces to that of the D-instanton:

Sinst ∼
1

g
b/2
s

|q−| =
1

g
b/2
s

Q . (51)

The D-instanton of ten-dimensional IIB string theory corresponds to taking b= 2. Other
cases in D=4 dimensions include the membrane instanton (b=1) and the NS-fivebrane
instanton (b=2) [9, 10]. The other limit is the Schwarzschild limit q− → 0. In that case
the action is given by

Sinst ∼ |q| . (52)

A natural question to ask is whether the non-extremal instantons we have been con-
structing give rise to extra corrections to the string effective action like the D-instanton
case does. It is well-known that the D-instantons, together with contributions from tree-
level graviton scattering and one-looop contributions, give rise to terms of the form
[30, 31]

f (τ, τ̄)R4 . (53)

Based on a field theory analysis one can argue that the non-extremal instantons con-
structed in this work give rise to terms of the form

f (τ, τ̄)R8 (54)

for some SL(2,Z) modular forms f (τ, τ̄). This remains to be investigated.
Finally, we would like to make some comments about the dual picture of the non-

extremal instantons in the AdS/CFT correspondence. It is well-known that the D-
instanton with a flat metric can be generalized to an instanton in a AdS5× S5 back-
ground. One can view this configuration as the near-horizon limit of a D3-D(-1) bound
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state configuration. Such AdS5× S5 instantons exactly correspond to the standard self-
dual Yang-Mills instanton in N=4, D=4 supersymmetric Yang-Mills theory. To obtain
such instanton solutions one should consider the following deformation of the gravity-
dilaton-axion system 3

LM ∼ R+(∂φ)2+ ebφ (∂ χ)2+Λ (55)

The extremal instantons of this system, i.e. for~q2 = 0, have been constructed sometime
ago and are given by [32]

ds2 = dρ2+ l2sinh2(ρ/l)dΩ2
4 , (56)

ebφ/2 = H(ρ) , (57)

χ(r) = 2/b
(
H−1(ρ)−q3/q−

)
, (58)

with l =
√

12/|Λ|.
We have now instantons with~q2 6= 0,Λ = 0 and instantons with~q2 = 0,Λ 6= 0. The

natural question to ask is: are there instantons with Λ 6= 0 and~q2 6= 0? Indeed they do
exist and are given by [8, 23, 33]

ds2 =
(
1+ r2/l2+~q2/r2(D−2)

)−1
+ r2dΩ2

4 , (59)

ebφ(r) =
(
q−/q sinh(H(r)+C)

)2
, (60)

χ(r) = 2/bq−
(
qcoth(H(r)+C)−q3

)
. (61)

It would be interesting to see whether such bulk solutions correspond to non-selfdual
instantons of N=4, D=4 supersymmetric Yang-Mills theory [34].

CONCLUSIONS

In this work we discussed the properties of brane solutions to the gravity-dilaton-axion
system in string theory. A central theme was played by the underlying SL(2,R) duality
symmetries underlying this system. In particular we exploited the fact that the group
SL(2,R) has three conjugacy classes. Our results and conclusions can be summarized as
follows.

• 7−branes

Each conjugacy class is represented by a 1/2 BPS 7-brane solution. Using the mon-
odromy relations one can view the detQ > 0 and detQ < 0 7-branes as bound states

3 We assume that a spherical reduction has been performed. The flux of the selfdual 5-form curvature
leads to the cosmological constant Λ in (55).
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of 7-brane solutions belonging to the detQ = 0 conjugacy class. Our work shows that
7-branes fit nicely with the other branes in a general DW/QFT correspondence as far as
the supergravity description goes. It led us to make a conjecture for a sensible definition
of the near-horizon limit of a D7-brane. Whether all these nice features survive in a more
rigorous string theory approach to the AdS/CFT correspondence remains to be seen. It
would be interesting to see whether there is some better understanding of our results
from a F-theory perspective.

• Instantons

Only the detQ = 0 conjugacy class is represented by a 1/2 BPS D-instanton. The
instantons in the detQ > 0 and detQ < 0 conjugacy classes are represented by non-
supersymmetric non-extremal instantons. Whether or not these non-extremal instantons
play an important role in string theory remains to be seen. Apart from the fact whether
or not they give rise to corrections in the string effective action, it is also of interest to
investigate what their picture is in the dual gauge theory. For the extremal D-instanton
there is a well-established relation with the selfdual YM instanton. For the non-extremal
instantons one is tempted to consider the idea of non-selfdual instantons. These and
other issues are presently under investigation [34].

• S−branes

A third class of solutions that we did not consider in this work are the so-called S-
branes. They are related, via a double Wick rotation to the non-extremal Dp-branes with
~q2 > 0 and 0 ≤ p ≤ 6. Recently, it has been shown that the single Wick rotation of the
~q2 > 0 D-instanton leads to a S-1-brane [29]. Another issue is whether S7-branes exist
for each of the three conjugacy classes. Their existence is related to the fact whether
non-extremal 7-branes for~q2 > 0 can be defined. We expect that each 1/2 BPS 7-brane
solution indeed has such a non-extremal deformation. We hope to come back to this
point in [22].
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