

 University of Groningen

Lock-free parallel garbage collection
Gao, H.; Groote, J.F.; Hesselink, Willem

Published in:
PARALLEL AND DISTRIBUTED PROCESSING AND APPLICATIONS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gao, H., Groote, J. F., & Hesselink, W. H. (2005). Lock-free parallel garbage collection. In Y. Pan, D. Chen,
M. Guo, J. N. Cao, & J. Dongarra (Eds.), PARALLEL AND DISTRIBUTED PROCESSING AND
APPLICATIONS (pp. 263-274). (LECTURE NOTES IN COMPUTER SCIENCE; Vol. 3758). BERLIN:
Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/lockfree-parallel-garbage-collection(78f52bc2-b414-404c-bd9e-351ce3b8bb3a).html

Lock-Free Parallel Garbage Collection

H. Gao1, J.F. Groote2, and W.H. Hesselink1

1 University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
2 Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. This paper presents a lock-free parallel algorithm for garbage
collection in a realistic model using synchronization primitives offered
by machine architectures. Mutators and collectors can simultaneously
operate on the data structure. In particular no strict alternation between
usage and cleaning up is necessary, contrary to what is common in most
other garbage collection algorithms.

We first design and prove an algorithm with a coarse grain of atom-
icity and subsequently apply the reduction theorem developed in [11]
to implement the higher-level atomic steps by means of the low-level
primitives.

1 Introduction

A lock-free (also called non-blocking) implementation of a shared object guaran-
tees that within a finite number of steps always some process trying to perform an
operation on the object will complete its task, independently of the activity and
speed of other processes [12]. Since lock-free synchronizations are built without
locks, they do not suffer from performance bottlenecks, which are often caused
by locks and which can easily have a performance degrading effect of several
orders of magnitude. In addition, lock-free synchronizations can offer progress
guarantees. A number of researchers [1, 3, 12, 18] have proposed techniques for
designing lock-free implementations. Essential for such implementations are ad-
vanced machine instructions such as compare-and-swap (CAS), or load-linked
(LL)/store-conditional (SC).

In this paper we propose a lock-free implementation of mark&sweep garbage
collection (GC). Garbage collectors are employed to identify at run-time which
objects are no longer referenced by the mutators (i.e. user programs). The heap
space occupied by these objects is said to be garbage and must be re-cycled for
subsequent new objects. The garbage collectors reclaim all garbage by adding
them to a so called free-list, which keeps track of free memory.

There are several basic strategies for GC: reference counting, mark&sweep
and copying. Reference counting algorithms can do their job incrementally (re-
sulting in shorter collection pauses), but impose overhead on the mutators and
fail to reclaim circular garbage. Mark&sweep algorithms can reclaim circular
structures, and don’t place any burden on the mutators like reference counting
algorithms do, but tend to leave the heap fragmented. Copying algorithms can
reduce fragmentation, but add the cost of copying data from one space to another

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 263–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 H. Gao, J.F. Groote, and W.H. Hesselink

and require twice as much memory as a mark&sweep collector. Moreover, copy-
ing also requires that the programming language restrict address manipulation
operations, which isn’t true for C or C++.

One often encounters GC algorithms (e.g. [7, 8]) that employ stop-the-world
mechanisms, which suspend all normal running threads and then perform GC.
Such an algorithm introduces a global synchronization point between all threads
and tends to become a scaling bottleneck that limits program performance and
processor utilization. It is unacceptable when the system must guarantee re-
sponse time of interactive applications. Therefore, to achieve parallel speed-ups
on shared-memory multiprocessors, lock-free algorithms are of interest [17, 21].

There are several lock-free GC algorithms in the literature. The first one is due
to Herlihy and Moss [13]. They present a lock-free copying GC algorithm, which
uses excessive copying for moving objects to avoid blocking synchronization. In
their algorithm, the failure of a participating thread can indefinitely prevent the
freeing of unbounded memory. In [15], Hesselink and Groote give a wait-free (wait-
freedom is stronger than lock-freedom) GC algorithm using reference counting.
However, this collector applies only to a restricted programming model, in which
objects are not allowed to be modified between creation and deletion, and is there-
fore generally limited. Detlefs et. al. [5] provide a lock-free GC algorithm using
reference counting. The approach relies on a strong hardware primitive, namely
double-compare-and-swap (DCAS) for atomic update of two distinct words in
memory. Michael [20] presents an efficient lock-free memory management algo-
rithm that does not require special operating system or hardware support. How-
ever, his algorithm only guarantees an upper bound on the number of removed
nodes not yet freed at any time. This is undesirable because a single garbage node
might use a large amount of resources and might never be reclaimed.

Mark&sweep algorithms do not move objects. They can thus coexist well
with C/C++ code, where one never dares to move an object because of possible
address computations, and are gaining popularity. Our lock-free mark&sweep
algorithm is non-intrusive and features high-performance and reliability. More-
over, unlike most previously published Mark&sweep algorithms [2, 6, 7], we make
no assumption on the maximum numbers of mutators and collectors that can
operate concurrently. As far as we could find, no similar algorithm exist.

The correctness properties of any concurrent implementation are seldom easy
to verify. This is in general even harder for lock-free algorithms. Our previous
work [9] shows that providing correctness proofs for such algorithms require huge
amounts of effort, time, and skill. In [11], we have developed a reduction theorem
that enables us to reason about a lock-free program to be designed on a higher
level than the synchronization primitives. Using the reduction theorem, fewer
invariants are required and some invariants are easier to discover and formulate
without considering the internal structure of the final implementation.

2 Specification

We assume a fixed set Node of nodes (cf. Fig. 1), each of which is identified with a
unique label between 1 and N for some N ∈ N. The nodes in the set free are the

Lock-Free Parallel Garbage Collection 265

free nodes

source nodes

garbage
1

2

3

15

5

4

7

8

10

6

9

11

13

14

12

Fig. 1. A graph representation of the memory

free nodes. We model the heap as a finite directed graph of varying structure with
a set of non-free nodes. Each node in the graph points to zero or more children
(nodes), and the descendent relation may be circular. In the following context,
we regard the attributes of nodes as arrays indexed by 1 . . .N . The number of
children of a node x is indicated by its arity, which is denoted by arity[x]. We
let C be the upper bound of the arities of the nodes. The expression child[x, j]
stands for the pointer to the jth child of node x, where 1 ≤ j ≤ arity[x].

A node is called a root when some process has direct read access to it. Each
application process p maintains a private set rootsp that holds its root nodes.
The set Roots is the union of all rootsp for all processes p.

Access to nodes can be transferred between processes. We assume that there
is a two-dimensional array Mbox indexed with a pair of processes that serves as
mailboxes. If process p allows process q to access some node x, it writes x at
Mbox[p, q] using Send. Then, process q can claim the access by calling Receive.

We call a node a source node if the node is either in Roots or in some mailbox.
A node is called accessible iff it is reachable by following a chain of pointers from
a source node. Free nodes must not be accessible. Only nodes in the free set
are allowed to be allocated by the mutators. A node is said to be a garbage node
if it is neither accessible nor in the free set. Garbage collectors compute the set
of nodes reachable from a set of source nodes and reclaim all garbage nodes by
placing them into the free set. More formally, we define

R(p, x) ≡ (∃z ∈ rootsp: z
∗−→ x),

R(x) ≡ (∃z ∈ Roots: z
∗−→ x) ∨

(∃p, q ∈ Process: Mbox[p, q] ∗−→ x),

where the reachability relation ∗−→ is the reflexive transitive closure of relation
−→ on nodes defined by: z −→ x ≡ (∃k: 1 . . .arity[z]: child[z, k] = x). The
fact that a node x is a garbage node is formalized by: ¬R(x) ∧ x /∈ free.

The interface of the mutators consists of a shared data structure of nodes,
and a number of procedures that can be called in the application processes. We
assume there are in total P concurrently executing sequential processes. In the

266 H. Gao, J.F. Groote, and W.H. Hesselink

text of the procedures specified as follows, we use me to stand for the process that
invokes the procedure. We use angular brackets 〈 〉 to indicate that embraced
statements are (thought to be) executed atomically.

proc Create(): Node
local x : Node;
〈 when available extract x from free;
arity[x] := 0; rootsme := rootsme ∪ {x}; 〉

return x;
proc AddChild(x, y: Node): Bool
{ R(me, x) ∧ R(me, y) }

local suc : Bool;
〈 suc := (arity[x] < C);
if suc then arity[x]++; child[x, arity[x]] := y; fi 〉

return suc;
proc GetChild(x: Node, rth: N): Node ∪ {0}
{ R(me, x) }

local y : Node ∪ {0};
〈 if 1 ≤ rth ≤ arity[x] then y := child[x, rth]; else y := 0; fi 〉
return y;

proc Make(c: array [] of Node, n: 1 . . . C): Node
{ ∀j: 1 ≤ j ≤ n: R(me, c[j]) }

local x : Node; j : N;
〈 when available extract x from free;
for j := 1 to n do child[x, j] := c[j] od;
arity[x] := n; rootsme := rootsme ∪ {x}; 〉

return x;
proc Protect(x: Node)
{ R(me, x) ∧ x /∈ rootsme }

〈 rootsme := rootsme ∪ {x}; 〉
return;

proc UnProtect(z: Node)
{ z ∈ rootsme }

〈 rootsme := rootsme \ {z}; 〉
return;

proc Send(x: Node, r: Process)
{ R(me, x) ∧ Mbox[me, r] = 0 }

〈 Mbox[me, r] := x; 〉
return;

proc Receive(r: Process): Node
{ Mbox[r, me] �= 0 }

local x : Node;
〈 x := Mbox[r, me];
Mbox[r, me] := 0; rootsme := rootsme ∪ {x}; 〉

return x;

The application programmers are responsible for ensuring that an offered
procedure is called only when its precondition (enclosed by braces { } if there
is any) holds. The condition “available” in Create and Make is implementation
dependent. When an allocation request cannot be met from the free memory,

Lock-Free Parallel Garbage Collection 267

the mutator either waits, or invokes a new round of GC to free more garbage.
The threshold value that determines whether or not to invoke a new round of
GC can be customized by the user.

Behind this abstract “user system” there is a collection of garbage collect-
ing processes. A garbage collector does not modify the memory graph but only
manipulate the free set. To specify that GC does happen and is eventually ex-
haustive, we give the liveness property, i.e. every garbage node will be eventually
put into the free set by a garbage collector.

3 A Higher-Level Implementation

The idea behind most GC algorithms in use is to first recursively trace all reach-
able nodes starting from root nodes, then nodes not reached are considered
garbage and can be collected. We present a lock-free implementation that comes
close to the classical mark&sweep algorithms.

We first extend the specification to a high-level implementation, where all
actions on shared variables are separated into distinct atomic accesses except
for some special commands enclosed by angular brackets 〈. . .〉. In order to be
able to finally transform the higher-level algorithm into the low-level algorithm
using our reduction theorem developed in [11], we require that every labeled
atomic group of statements in the higher-level algorithm refer to at most one
shared node.

3.1 Data Structure

The data structure we use in the higher-level implementation is shown in Fig. 2.
Besides fields arity and child, each node has one of three colors: white, black
and grey. All black nodes reachable from a source node are interpreted as ac-
cessible nodes, and all other black nodes are garbage. Grey is a transient color
that only occurs during GC. The free set is implemented as a virtual set that
contains all white nodes.

Since any accessible node must not be freed as garbage, the system needs
to keep track of source nodes that are created by a process and may still be
referred to by other processes. We introduce a field srcnt for each node to
count all references (processes and mailboxes) to the node as a source node.

To avoid possible interference between mutators and collectors, the updates
of the field srcnt of the node, upon deletion from the roots set, is postponed.
We use the field freecnt to count the postponed decrementings of srcnt. The
fields ari and father record the number of children a node has at the beginning
of GC and the parent node of a node in a tree traversed from a source node by
collectors, respectively.

We use a shared variable shRnd to hold the round number of the current
GC, together with an additional field round in the record of a node. The private
variable rnd is a private copy of the shared variable shRnd. The global private
variable toBeC is used to transfer information about checked nodes between

268 H. Gao, J.F. Groote, and W.H. Hesselink

Constant
P = number of processes; N = number of nodes;
C = upper bound of number of children;

Type
colorType: {white, black, grey};
nodeType: record =

arity, srcnt, freecnt, ari, round: N;
child: array [1 . . . C] of 1 . . . N ;
color: colorType; father: N ∪ {−1};

end
Shared variables

Mbox: array [1 . . . P, 1 . . . P] of 0 . . . N ;
Node: array [1 . . . N] of nodeType; shRnd: N;

Private variables
roots, toBeC : a subset of 1 . . . N ; rnd: N;

Initialization:
shRnd = 1 ∧ ∀x: 1 . . . N : round[x] = 1;

Fig. 2. Data Structure

internal calls. There is also a local private variable toBeD for representing the
set of source nodes to be tracked from.

3.2 Algorithm

In this section, we give a higher-level implementation for the collectors and the
mutators. Since the same sequential program can be executed by all processes,
we adopt the convention that every private variable name can be subscripted
by the process identifier. In particular, pcp is the program counter of process p.
We do not write Node[x].f but f [x]. We denote color[x] = white by white(x),
and similarly for the other two colors. Brackets � � and the actions between
parenthesis � � can be ignored in the implementation. They only serve in the
proof of correctness. We will explain this in section 4.

Collectors. Our garbage collectors are encoded in the procedure GCollect as
shown in Fig. 3. It consists of three phases: (1) initialization: paint all black
nodes grey, (2) marking: paint all grey nodes reachable from the source nodes
back to black after traversing the memory graph, and (3) sweeping: reclaim all
garbage by painting all remaining grey nodes white.

In the first phase, the processes only need to paint the black nodes grey since
the white nodes can not be garbage. Moreover, we let the field father of each
node with positive srcnt be 0, and that of other nodes be −1. As the algorithm
allows parallel use of mutators, being a source node is not stable. For simplicity,
we call a node x with father[x] = 0 an old source node.

In line 108, a delayed initialization on node x will be skipped since round[x] is
never decreased. As usual with version numbers, here we assume that sufficient

Lock-Free Parallel Garbage Collection 269

proc GCollect() =
local x: 1 . . . N ; toBeD: a subset of 1 . . . N ;

100: rnd := shRnd; toBeC := {1, . . . , N};
101: while shRnd = rnd ∧ toBeC �= ∅ do

choose x ∈ toBeC ;
108: 〈 if round[x] = rnd then

round[x] := rnd + 1; ari[x] := arity[x];
if black(x) then color[x] := grey ; fi;
if srcnt[x] > 0 then father[x] := 0; else father[x] := −1; fi; fi; 〉

toBeC := toBeC \ {x}; od;
121: toBeC := {1, . . . , N}; toBeD := {1, . . . , N};
122: while shRnd = rnd ∧ toBeD �= ∅ do

choose x ∈ toBeD;
126: toBeD := toBeD \ {x};

〈 if father[x] = 0 then Mark stack(x); fi; 〉 od;
129: while shRnd = rnd ∧ toBeC �= ∅ do

choose x ∈ toBeC ;
134: 〈 if round[x] = rnd + 1 ∧ grey(x) then

color[x] := white;
� assert ¬R(x) ∧ x /∈ free; free := free ∪ x; � fi; 〉

toBeC := toBeC \ {x}; od;
135: 〈 if rnd = shRnd then shRnd := rnd + 1; fi; 〉
137: return
end GCollect.

Fig. 3. Procedure GCollect

bits are allocated for the version numbers to ensure that they cannot “wrap
around” during the interval of a process’s GC cycle.

In the second phase, lines 121-126, the processes build a forest in the set
of all reachable nodes starting from the old source nodes. Trees in the forest
are mutually disjoint. Each of them is rooted by a chosen old source node,
and is established via calling Mark stack (see Fig. 4) in a while loop. During
Mark stack, all the grey nodes on the tree are painted black in the order from
the leaf to the root.

The procedure Mark stack is mainly a form of graph search, and it was ini-
tially designed as a recursive procedure. Since we want to prove the correctness
of our algorithm with PVS, we eliminated the recursion in favor of an explicit
stack. The private variable toBeC serves to ensure that the search of a col-
lector traverses every node at most once. This is important since the memory
graph may have cycles and nodes may be reachable from different old source
nodes.

In Mark stack, lines 151-163, the tree is established by setting the father
pointers. Since the memory graph may have cycles, the processes must reach
consensus about the tree. The processes starting from the same old source node
cooperate with each other, and are in competition with others to expand the
tree to all nodes reached.

270 H. Gao, J.F. Groote, and W.H. Hesselink

proc Mark stack(x: 1 . . . N) =
local w, y: 1 . . . N ; suc: Bool; j, k: N;
stack: Stack; head: N; set: a subset of 1 . . . N ;
ch: [1 . . . C] of 1 . . . N ;

150: toBeC := toBeC \ {x}; set := {x}; head := 0;
151: while shRnd = rnd ∧ set �= ∅ do
157: choose w ∈ set; set := set \ {w};

〈 if grey(w) ∧ round[w] = rnd + 1 then
k := ari[w];
for j := 1 to k do ch[j] := child[w, j] od; 〉
head++; stack[head] := w; j := 1;

158: while shRnd = rnd ∧ j ≤ k do
y := ch[j];
if y /∈ toBeC then j++;
else

163: 〈 if father[y] ∈ {−1, w} ∧ grey(y)
∧round[y] = rnd + 1 then

father[y] := w; 〉 set := set ∪ {y};
toBeC := toBeC \ {y}; fi;

j++; fi; od; fi; od;
168: while shRnd = rnd ∧ head �= 0 do
175: y := stack[head]; head--;

〈 if grey(y) ∧ round[y] = rnd + 1 then
srcnt[x] := srcnt[x] − freecnt[x];
color[y] := black; freecnt[x] := 0; fi; 〉 od;

180: return
end Mark stack.

Fig. 4. Procedure Mark stack

The order for choosing an element from the local variable set is irrelevant for
correctness, but relevant for efficiency. The search is a depth first search if the
order is first in last out. The search is a breadth first search if the order is first
in first out. Starting from the chosen old source node, all nodes on the tree are
pushed onto the local stack after their children have been stored. The order of
the elements pushed onto the stack is essential for correctness.

After the tree has been established, the process paints all grey nodes black in
the order in which they are popped from the stack (lines 168-175). When a node
in the tree is painted black, its descendants (with respect to the father relation)
in the tree must have been painted black already. So the other processes need not
trace or paint the subtree starting from that node. At the end of Mark stack, the
process returns to the procedure GCollect to traverse another tree from another
old source node.

In the third phase, lines 129-134, processes try to re-cycle all remaining grey
nodes by coloring them white (i.e. adding them to the free set). The main proof
obligation for the algorithm is that all nodes being freed are not accessible. When
the fastest process executes line 135, the shared variable shRnd is incremented
to notify all other collectors that this round of GC is completed.

Lock-Free Parallel Garbage Collection 271

Mutators. The higher-level implementations of the procedures for the mutators
are relatively easy. For reasons of space, in Fig. 5 we only provide the code for
procedure Make (see [10] for the remainning). In the code, “time to do GC”
indicates that some variable, like time or the amount of free memory, reaches a
threshold value.

proc Make(c: array [] of 1 . . . N, n: 1 . . . C): 1 . . . N =
{ ∀ j: 1 . . . n: R(me, c[j]) }

local x: 1 . . . N ; j: N;
while true do

300: choose x ∈ [1 . . . N];
306: 〈 if white(x) then

color[x] := black; srcnt[x] := 1;
� assert x ∈ free; free := free \ x; �
� for j := 1 to n do child[x, j] := c[j]; od
arity[x] := n; roots := roots ∪ {x}; � 〉

break;
308: elseif time to do GC then GCollect(); fi; od;
310: � return x �
end Make.

Fig. 5. Procedure Make

4 Correctness

The main issue of the algorithm is how to ensure the correct execution of col-
lectors and mutators when they concurrently compete with each other for the
same data structure. The algorithm is correct if it behaves properly for all in-
terleavings. Here we only give a sketch of the correctness of the algorithm. For
the complete mechanical proof, we refer to [14].

We need to distinguish safety properties and liveness properties. The main
aspect of safety is functional correctness and atomicity, say in the sense of [19].
We prove partial correctness of the implementation by showing that each pro-
cedure of the implementation executes its specification command exactly once
and that the resulting value of the implementation equals the resulting value in
the specification. As shown in Fig. 3 to Fig. 5, we extend the implementations
with auxiliary variables and commands used in the specification. For simplicity,
we use brackets � � to enclose the specification commands that perform the same
actions as the implementation, and parenthesis � � to enclose the specification
commands that can be deleted in the implementation.

GC is an internal affair not relevant for the users of the routines. GCollect
cannot be invoked explicitly, but will only be invoked implicitly in, e.g. Make.
This means we only need to prove the match of the specifications and imple-
mentations for all user programs, but not for GCollect. Instead, the main safety
property we have proved for GCollect is that the system only collects garbage,

272 H. Gao, J.F. Groote, and W.H. Hesselink

i.e. that an accessible node is never freed. This is expressed in the invariant I1:
white(x) ⇒ ¬R(x).

Furthermore, we also need to prove that all preconditions of the interface
procedures are stable under the actions of the other processes. Process p can
ensure its rights to have access to node x by checking the predicate R(p, x),
independently.

A liveness property asserts that program execution eventually reaches some
desirable state. In our case, we want to ensure it is always the case that every
garbage node is eventually collected. That is, ¬R(x) � white(x), where � is
the “leads-to” relation defined by: (P � Q) ≡ �(P ⇒ �Q).

We actually prove something stronger, viz., that, every inaccessible node is
painted white within two rounds of GC.

Theorem 1. For any integer m,
shRnd = m ∧ ¬R(x) � shRnd ≤ m + 2 ∧ white(x).

5 The Low-Level Implementation

Synchronization primitives LL and SC , proposed by Jensen et. al. [16], have
found widespread acceptance in modern processor architectures (e.g. MIPS II,
PowerPC and Alpha architectures). These instructions are closely related to the
CAS, and together implement an atomic Read/Write cycle.

At the cost of copying an object’s data before an operation, Herlihy [12]
introduced a general methodology to transfer a sequential implementation of
any data structure into a lock-free synchronization by means of synchronization
primitives LL and SC .

In [11], we formalize Herlihy’s methodology [12] and develop a reduction the-
orem that enables us to reason about a general lock-free algorithm to be designed
on a higher level than the synchronization primitives. A reduction theorem is a
general rule for deriving an “equivalent” higher-level specification from a lower-
level one in some suitable sense [4]. The big advantage is that substantial pieces
of the concrete program can be dealt with as atomic statements on the higher
level and thus the correctness can be more easily verified.

In the higher-level implementation (from Fig. 3 to Fig. 5), instruction 135 is
simply a CAS instruction offered by machine architectures. Each of all other spe-
cial commands enclosed by angular brackets 〈. . .〉 only refer one shared node and
some private variables, and therefore can be transformed into low-level lock-free
implementations using our reduction theorem. The transformation is straight-
forward, and we refer the reader to [14].

6 Conclusions

We present a lock-free parallel algorithm for mark&sweep GC in a realistic
model by means of synchronization primitives compare-and-swap (CAS) and
load-linked (LL)/store-conditional (SC) offered by machine architectures. Our

Lock-Free Parallel Garbage Collection 273

algorithm allows to collect a circular data structure and makes no assumption on
the maximum number of mutators and collectors that can operate concurrently
during GC. The efficiency of GC can be enhanced when more processors are
involved in it.

Formal verification is desirable because there could be subtle bugs as the
complexity of algorithms increases. To ensure our correctness proof presented in
the paper is not flawed, we use the higher-order interactive theorem prover PVS
for mechanical support. For the complete mechanical proof, we refer the reader
to [14].

In the interface we did not provide a procedure for deleting a child of a node.
However, this extension is rather straightforward after we have done the following
two steps. First, introduce an additional field of a boolean array in the record of
a node to record whether a child of a node is deleted. The boolean array should
restrict only the mutators not the collectors from accessing a “deleted”child
via the pointers of children. Secondly, similarly to what we did with unpro-
tecting a source node, we need to modify line 175 to let the deletions of some
“deleted”children be really operated. Since we don’t think deleting a child is a
main operation of GC, we didn’t incorporate it. However, the correctness of this
extension should not be difficult to verify.

The entrenched problem inherited from classical mark&sweep algorithms is
that our algorithm may also result in severe memory fragmentation, with lots of
small blocks. It is possible that there will be no block of memory on the free list
large enough to hold a large object, such as an array. Thus, it is important to
move free blocks that happen to be adjacent in memory. We plan in the future
to incorporate some appropriate copying technique in our algorithm.

References

1. G. Barnes. A method for implementing lock-free data structures. In Proceedings of
the 5th ACM Symposium on Parallel Algorithms and Architectures, pages 261–270,
June 1993.

2. M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions on
programming Languages and Systems, 6(3):333–344, 1984.

3. B.N. Bershad. Practical considerations for non-blocking concurrent objects. In
Proceedings of the Thirteenth International Conference on Distributed Computing
Systems, pages 264–274, 1993.

4. E. Cohen and L. Lamport. Reduction in TLA. In Proceedings of the 9th Interna-
tional Conference on Concurrency Theory, pages 317–331, 1998.

5. D.L. Detlefs, P.A. Martin, M. Moir, and G.L. Steele Jr. Lock-free reference count-
ing. Distributed Computing, 15(4):255–71, December 2002.

6. E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Steffens. On-
the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966–975, November 1978.

7. T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep garbage collector
on large-scale shared-memory machines. In Proceedings of the 1997 ACM/IEEE
conference on Supercomputing (CDROM), pages 1–14. ACM Press, 1997.

274 H. Gao, J.F. Groote, and W.H. Hesselink

8. C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage collection for
shared memory multiprocessors. In Usenix Java Virtual Machine Research and
Technology Symposium (JVM ’01), Monterey, CA, April 2001.

9. H. Gao, J.F. Groote, and W.H. Hesselink. Almost wait-free resizable hashtables
(extended abstract). In Proceedings of 18th International Parallel & Distributed
Processing Symposium (IPDPS), April 2004.

10. H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free parallel garbage collection by
mark&sweep. Technical Report CS-Report CSR-04-31, Eindhoven University of
Technology, The Netherlands, 2004.

11. H. Gao and W.H. Hesselink. A formal reduction for lock-free parallel algorithms.
In Proceedings of the 16th conference on Computer Aided Verification (CAV), July
2004.

12. M. Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745–770, November
1993.

13. M.P. Herlihy and J.E.B. Moss. Lock-free garbage collection for multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 3(3):304–311, 1992.

14. W.H. Hesselink. http://www.cs.rug.nl/~wim/mechver /garbage_collection
15. W.H. Hesselink and J.F. Groote. Wait-free concurrent memory management by

Create, and Read until Deletion. Distributed Computing, 14(1):31–39, January
2001.

16. E.H. Jensen, G.W. Hagensen, and J.M. Broughton. A new approach to exclusive
data access in shared memory multiprocessors. Technical Report UCRL-97663,
Lawrence Livemore National Laboratory, January 1987.

17. P.C. Kanellakis and A. A. Shvartsman. Fault-Tolerant Parallel Computation.
Kluwer Academic Publishers, 1997.

18. V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In
Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, pages 314–323. ACM Press, 2003.

19. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
20. M. M. Michael. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 21–30. ACM Press, 2002.

21. H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries. In Pro-
ceedings of the 2004 ACM Symposium on Applied computing, pages 1438–1445,
2004.

	Introduction
	Specification
	A Higher-Level Implementation
	Data Structure
	Algorithm

	Correctness
	The Low-Level Implementation
	Conclusions

