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Computing Contour Generators of Evolving
Implicit Surfaces

SIMON PLANTINGA and GERT VEGTER

University of Groningen

The contour generator is an important visibility feature of a smooth object seen under parallel projection. It is the curve on the

surface which seperates front-facing from back-facing regions. The apparent contour is the projection of the contour generator

onto a plane perpendicular to the view direction. Both curves play an important role in computer graphics.

Our goal is to obtain fast and robust algorithms that compute the contour generator with a guarantee of topological correctness.

To this end, we first study the singularities of the contour generator and apparent contour for both generic views and generic

time-dependent projections, for example, when the surface is rotated or deformed. The singularities indicate when components

of the contour generator merge or split as time evolves.

We present an algorithm to compute an initial contour generator by using a dynamic step size. An interval test guarantees the

topological correctness. This initial contour generator can thus be maintained under a time-dependent projection by examining

its singularities.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation; I.3.5

[Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems; G.1.0

[Numerical Analysis]: General—Interval arithmetic

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Implicit surfaces, contour generators, silhouette, contour, guaranteed topology, interval

arithmetic, singularities, evolving surfaces

1. INTRODUCTION

An important visibility feature of a smooth object seen under parallel projection along a certain direction
is its contour generator, also known as outline or profile. The contour generator is the curve on the surface
that separates front-facing regions from back-facing regions. This curve may have singularities if the
direction of projection is nongeneric. The apparent contour is the projection of the contour generator
onto a plane perpendicular to the view direction. In many cases, drawing just the visible part of the
apparent contour gives a good impression of the shape of the object. In this article, we will not distinguish
between visible and invisible parts of the contour generator. Stated otherwise, we assume the surface
is transparent. Generically, the apparent contour is a smooth curve with some isolated singularities
(see Figure 1).
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1244 • S. Plantinga and G. Vegter

Fig. 1. A smooth surface (left), its apparent contour under parallel projection along the z direction (middle), and its contour

generator, seen from a different position (right). For generic surfaces (or generic parallel projections), the contour generator is a

smooth, possibly disconnected curve on the surface, whereas the apparent contour may have isolated cusp points.

The contour generator and apparent contour plays important role in computer graphics and computer
vision. Rendering a polyhedral model of a smooth surface yields a jaggy outline unless the triangulation
of the surface is finer in a neighbourhood of the contour generator. This observation has led to techniques
for view-dependent meshing and refinement techniques (see Alliez et al. [2001]).

Also, to render a smooth surface, it is sufficient to render only that part of the surface with front-
facing normals, so the contour generator, being the boundary of the potentially visible part, plays a
crucial role here. In nonphotorealistic rendering [Markosian et al. 1997], we just visualize the ap-
parent contour, which is perhaps enhanced by strokes indicating the main curvature directions of
the surface. This is also the underlying idea in silhouette rendering of implicit surfaces [Bremer and
Hughes 1998]. In computer vision, techniques have been developed for the partial reconstruction of a
surface from a sequence of apparent contours corresponding to a discrete set of nearby projection di-
rections. We refer to the work of Cipolla and Giblin [2000] for an overview and good introduction to the
mathematics underlying this article. Other applications use silhouette interpolation [Gu et al. 1999]
from a precomputed set of silhouettes to obtain the silhouette for an arbitrary projection. In computa-
tional geometry, rapid silhouette computation of polyhedral models under perspective projection with
moving viewpoints has been achieved by applying suitable preprocessing techniques [Barequet et al.
1999].

This article presents a method for the robust computation of contour generators and apparent con-
tours of implicit surfaces. For an introduction to the use of implicit surfaces for smooth deformable
object modeling we refer to Opalach and Maddock [1995] and Bloomenthal [1997].

We first consider generic static views, where both the surface and direction of projection are static.
Then we pass to time-dependent views, where the direction of projection changes with time. We
derive conditions that locate changes in the topology of the contour generator and apparent con-
tour. It turns out that generically, there are three types of events, or bifurcations, leading to such a
change in topology. These bifurcations have been studied from a much more advanced mathemati-
cal point of view, where they are known under the names lips, beak-to-beak, and swallowtail bifur-
cation (see also Bruce and Giblin [1985]). For a nice nonmathematical description we refer to the
beautiful book by Koenderink [1990]. Also, we refer to Arnol’d [1986] and Bruce [1984] for a sketch
of some of the mathematical details related to singularity theory. Arnol’d [1976] contains some of the
results of the article in a complex analytic setting. Our approach is somewhere in between the level of
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Koenderink’s book and the sophisticated mathematical approach. We use only elementary tools, like
the Inverse and Implicit Function Theorems, and finite order Taylor expansions. These techniques are
used to design algorithms in the same way as the Implicit Function Theorem gives rise to Newton’s
method.

Most curve tracing algorithms step along the curve using a fixed step size (see e.g., Bremer and Hughes
[1998] or Hoffman [1989]. For a good approximation, the user has to choose a step size that is “small
enough” to follow the details of the curve. Some algorithms predict a dynamic step size based on the
local curvature. Both methods cannot guarantee a correct approximation to the curve. Also, these curve
tracing algorithms assume there are no singularities. By examining the singularities before tracing
the curve, we can avoid them in the tracing process. For certain functions (e.g., algebraic surfaces) the
theory on local models, derived in this article, can be used to trace through the singular points. We
developed a condition, based on interval analysis, that guarantees topological correctness of the traced
curve.

An overview of the theory of singularities of the contour generator appeared in Plantinga and Vegter
[2003]. There, we only presented the main results, together with a topologically correct curve tracing
algorithm. In this article we present the full derivation of local models in Sections 5 and 6, and extend
Section 8 with details for adjusting the contour generators of time-dependent surfaces. We give more
results of an implementation for computing static contour generators (also for nonalgebraic surfaces),
and timing results for the 4D process to trace evolving surfaces without using algebraic methods.
Finally, we included Appendices B and C to summarize the theory required for the derivation of local
models.

This article presents the first explicit conditions for an implicit surface to exhibit generic singularities
in the contour generator and its associated apparent contour. The main result of this article is a general
framework to examine and approximate the contour generators of implicit surfaces. We present a new
derivation of the different types of singularities, together with local models. These local models capture
the behavior of the surface at singularities of the contour generator in “simple” expressions. For static
surfaces, we derive local models for folds and cusps (Propositions 5.1 and 5.2). For evolving surfaces
we have lips, beak-to-beak, and swallowtail bifurcations (Propositions 6.1 and 6.3). Using these local
models, we give precise conditions to determine the behavior of the contour generator of an implicit
surface. For algebraic surfaces, for example, the local models can be used to classify singularities.
As a first step to implementation, we present a new curve tracing algorithm. This is the first curve
tracing algorithm that guarantees the topological correctness of the piecewise linear approximation. We
implemented this algorithm to produce a topologically correct approximation of the contour generator
of static implicit surfaces. As a first step towards approximation of contour generators for dynamic
surfaces, we explain how “initial” points can be followed in 4D space. We also give timing results for
this process. However, current programming libraries are insufficient for an efficient implementation
of generic implicit functions. For special classes, such as algebraic surfaces, more efficient solvers are
available.

In Section 2 we present the framework, and discuss the criteria for a point on the contour generator
and apparent contour to be regular. Section 3 examines singularities under some time-dependent views,
for example, when the viewpoint moves or the surface deforms. In Section 4 we explain the transfor-
mation to local models. Section 5 shows in detail how to derive local models near fold and cusp points.
In Section 6 we examine contours for time-dependent views. For the implementation, interval analysis
is used. A brief overview can be found in Section 7. The algorithm for computing the contour generator
is explained in Section 8. Finally, the appendices give an overview of the existing theory used in this
article.
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2. CONTOUR GENERATOR AND APPARENT CONTOUR

2.1 Contour Generators of Implicit Surfaces

To understand the nature of regular and singular points of the contour generator, and their projections
on the apparent contour, we assume that S is given as the zero set of a smooth function F : R3 → R,
so S = F −1(0). Smooth means that the required derivatives exist; for most of the results, C3 will be
sufficient. In the section on evolving surfaces, sometimes C5 is required. Furthermore, we assume that
0 is a regular value of F , that is, the gradient ∇F is nonzero at every point of the surface. The gradient
vector ∇F (p) is the normal of the surface at p, that is, it is normal to the tangent plane of S at p. This
tangent plane is denoted by Tp(S). If v is the direction of parallel projection, then the contour generator
� is the set of points at which the normal to S is perpendicular to the direction of projection, that is,
p ∈ � iff the following conditions hold:

F (p) = 0

〈∇F (p), v〉 = 0.
(1)

For convenience, we assume throughout the article that v = (0, 0, 1). Then the preceding equations
reduce to

F (x, y , z) = 0

Fz(x, y , z) = 0.
(2)

Here, and in the sequel, we shall occasionally write Fz instead of ∂F
∂z (p). We also use notation such as

Fx and Fzz with a similar meaning.
For arbitrary view directions, the formulae become more complicated. It is more convenient to instead

rotate the surface by applying a rotation transformation to the implicit function. Also, a linear skewing
transformation can be used. For view direction (α, β, 1) we consider the function F (x − αz, y − βz, z)
and use the inverse skewing to move the approximation of the contour generator back to the original
surface.

We assume that S is a generic surface, that is, there are no degenerate singular points on its contour
generator. Some functions can yield degenerate contour generators. For example, a cylinder has a 2D
contour generator for the view direction along its axis. Using a small perturbation, we can remove these
degeneracies. In the case of the cylinder, the 2D contour generator collapses to a 1D curve (see, e.g.,
Stander and Hart [1997]).

We now derive the conditions for contour generator � and apparent contour γ to be regular at a given
point. Recall that a curve is regular at a certain point if it has a nonzero tangent vector at this point.
The next result gives conditions in terms of the function defining the surface.

PROPOSITION 2.1. (1) A point p ∈ � is a regular point of the contour generator if and only if

Fzz(p) �= 0 or �(p) �= 0, (3)

where �(p) is a Jacobian determinant defined by

�(p) = ∂(F, Fz)

∂(x, y)

∣∣∣∣
p

=
∣∣∣∣∣ Fx(p) Fy(p)

Fxz(p) Fyz(p)

∣∣∣∣∣ .
(2) A point p ∈ γ is a regular point of the apparent contour if and only if

Fzz(p) �= 0. (4)
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PROOF. (1) The condition for p to be regular is

∇F (p) ∧ ∇Fz(p) �= 0.

Since Fz(p) = 0, a straightforward calculation yields

∇F (p) ∧ ∇Fz(p) = Fzz · (Fy, −Fx, 0) + ∂(F, Fz)

∂(x, y)
· (0, 0, 1). (5)

Here, all derivatives are evaluated at p. Since ∇F (p) = (Fx(p), Fy(p), 0) �= 0, we see that (Fy, −Fx, 0)
and (0, 0, 1) are linearly independent vectors. Therefore, the linear combination of these vectors in the
righthand-side of Eq. (5) is zero iff the corresponding scalar coefficients are zero. The necessity and
sufficiency of condition (3) is a straightforward consequence of this observation.

(2) Since ∇F (p) �= 0 ∈ R3, and Fz(p) = 0, we see that (Fx(p), Fy(p)) �= (0, 0). Assuming Fy(p) �= 0, we get

∂(F, Fz)

∂( y , z)

∣∣∣∣
p

=
∣∣∣∣∣ Fy Fz

Fyz Fzz

∣∣∣∣∣
p

= Fy(p)Fzz(p) �= 0. (6)

Let p = (x0, y0, z0). Then, the Implicit Function Theorem yields locally defined functions η, ζ : R → R,
with η(x0) = y0 and ζ (x0) = z0, such that Eq. (2) holds iff y = η(x) and z = ζ (x). The contour generator
is a regular curve parametrized as x 	→ (x, η(x), ζ (x)) locally near p, whereas the apparent contour is a
regular curve in the plane parametrized as x 	→ (x, η(x)) locally near (x0, y0).

2.2 Singular Points of Contour Generators

We apply the preceding result to detect the nondegenerate singularities of contour generators of implicit
surfaces. This result will be applied later in this section when we consider the contour generators of
time-dependent surfaces.

Again, let the regular surface S be the zero set of a C3-function F : R3 → R, for which 0 is a regular
value. We consider the contour generator � of S under parallel projection along the vector v = (0, 0, 1).
The equations for � are

F = Fz = 0.

We consider the contour generator as the zero set of the function Fz , restricted to S.

COROLLARY 2.2. Point p is a nondegenerate singular point of � iff the following two conditions hold:

F (p) = Fz (p) = Fzz(p) = ∂(F, Fz )

∂(x, y)

∣∣∣∣
p

= 0, (7)

and 
(p) �= 0, where for Fx(p) �= 0,


(p) = − F 2
x F 2

xzz F 2
y + 2 F 3

x Fxzz Fy Fyzz − F 4
x F 2

yzz

− 2 F 3
x Fxyz Fy Fzzz + 2 F 2

x Fxy Fxz Fy Fzzz

+ F 2
x Fxxz F 2

y Fzzz − Fx Fxx Fxz F 2
y Fzzz

− F 3
x Fxz Fyy Fzzz + F 4

x Fyyz Fzzz,

(8)

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



1248 • S. Plantinga and G. Vegter

whereas for Fy (p) �= 0, we have


(p) = − F 2
xzz F 4

y + 2 Fx Fxzz F 3
y Fyzz − F 2

x F 2
y F 2

yzz

− 2 Fx Fxyz F 3
y Fzzz + Fxxz F 4

y Fzzz

+ F 2
x F 2

y Fyyz Fzzz + 2 Fx Fxy F 2
y Fyz Fzzz

− Fxx F 3
y Fyz Fzzz − F 2

x Fy Fyy Fyz Fzzz.

(9)

PROOF. Condition (7) reflects the fact that p is a singular point of Fz |S (see Eq. (3)), whereas Eq. (8)
expresses nondegeneracy of this singular point. Condition (8) is obtained by a straightforward expan-

sion1 of Eq. (46) (see Appendix A) with G = Fz and V = X , as in Eq. (47), where λ = F 0
xz

F 0
x

, F 0
z = F 0

zz = 0,

and F 0
yz = F 0

y

F 0
x

F 0
xz. Condition (9) is derived similarly.

2.3 Generic Projections: Fold and Cusp Points

In view of Proposition 2.1, regular points of the apparent contour are projections of points (x, y , z) ∈ R3

satisfying

F (x, y , z) = Fz(x, y , z) = 0, and Fzz(x, y , z) �= 0.

This being a system of two equations in three unknowns, we expect that the regular points of the
apparent contour form a 1D subset of the plane. Furthermore, the singular points of the apparent
contour are projections of points satisfying an additional equation, namely, Fzz(x, y , z) = 0, and are
therefore expected to be isolated. This is true for generic surfaces. To make this more precise, we
consider the set of functions F : R3 → R satisfying

(F (x, y , z), Fz(x, y , z), Fzz(x, y , z), �(x, y , z)) �= (0, 0, 0, 0), (10)

and

(F (x, y , z), Fz(x, y , z), Fzz(x, y , z), Fzzz(x, y , z)) �= (0, 0, 0, 0). (11)

If F satisfies Eq. (10), then Proposition 2.1 tells us that the contour generator � of S = F −1(0) under
parallel projection along v is a regular curve. Moreover, for a point (x, y , z) ∈ � there are two cases:

(1) Fzz(x, y , z) �= 0; in this case, the point projects to a regular point (x, y) of the apparent contour γ .
Such a point is called a fold point of the contour generator. This terminology is justified by the local
model of the surface near a fold point, namely,

x + z2 = 0. (12)

(see also Figure 2(a)). Here the contour generator is the y-axis in three space, so the apparent
contour is the y-axis in the image plane.

(2) Fzz(x, y , z) = 0; in this case, the point projects to a singular point (x, y) of γ . Such a point is called
a cusp point of the contour generator if, in addition to (10), condition (11) is satisfied, that is, if both
�(x, y , z) �= 0 and Fzzz(x, y , z) �= 0. In this case, the surface has the following local model near the
cusp point:

G(x, y , z) = x + yz + z3 = 0. (13)

1Using a computer algebra system.
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Fig. 2. (a) A local model of the surface at a fold point is x + z2 = 0. Both the contour generator � and the visible contour γ are

regular at the fold point and its projection onto the image plane, respectively. (b) A local model at a cusp point is x + yz + z3 = 0.

Here the contour generator is regular, but the apparent contour has a regular cusp.

(see also Figure 2(b)). The local model G is sufficiently simple to allow for an explicit computation
of its contour generator and apparent contour: The former is parametrized by z 	→ (2z3, −3z2, z),
while the latter is a regular cusp parametrized by z 	→ (2z3, −3z2).

Intuitively speaking, a local model of the surface near a point is a “simple” expression of the defining
equation in suitably chosen local coordinates. Usually, as in the cases of fold and cusp points, a local
model is a low-degree polynomial, which can be easily analyzed in the sense that the contour generator
and apparent contour are easily determined.

Thus, we have only considered parallel projection. The standard perspective transformation Hearn
and Baker [1994], which moves the viewpoint to ∞, reduces perspective projections to parallel projec-
tions. By deforming the surface using this transformation, the perspective projections can be computed
by using parallel projection on the transformed implicit function. Note that this perspective transform
does not influence the smoothness of the implicit surface function.

3. EVOLVING CONTOURS

As we have seen, generic surfaces satisfy conditions (10) and (11), since a violation of one of these
conditions would correspond to the existence of a solution of four equations in three unknowns. However,
evolving surfaces depend on an additional variable, say t. Evolving surfaces occur, for example, when
the viewpoint moves along a predetermined path, but also under deformation (or morphing) of the
surface. Time dependency is expressed by considering implicitly defined surfaces

St = {(x, y , z) ∈ R3 | F (x, y , z, t) = 0},
where F : R3 × R → R is a smooth function of the space variables (x, y , z) and time t. Generically, we
expect that exactly one of the conditions (10) and (11) will be violated at isolated values of (x, y , z, t).
For clarity, we assume (0, 0, 0, 0) is such a value.

Violation of Eq. (10) corresponds to a singularity of the contour generator. In this case the implicit
surfaces, defined by F (x, y , z, 0) = 0 and Fz (x, y , z, 0) = 0, are tangent at (x, y , z) = (0, 0, 0), but
the tangency is nondegenerate. Stated otherwise, the function G : R3 → R, defined by G(x, y , z) =
Fz (x, y , z), restricted to the surface S0, has a nondegenerate singularity at (0, 0, 0).

Generically, there are two types of bifurcations corresponding to different scenarios for changes in
topology of the contour generator. The beak-to-beak bifurcation corresponds to the merging or splitting of
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Fig. 3. The beak-to-beak bifurcation. With respect to the local model of Eq. (14) the bifurcation corresponds to t < 0 (left), t = 0

(middle), and t > 0 (right).

connected components of the contour generator. Under some additional generic conditions (inequalities),
a local model for this phenomenon is the surface, defined by

G(x, y , z, t) = x + (− y2 + t)z + z3. (14)

Here, the contour generator is defined by x = 2z3, − y2 + 3z2 = −t, (see also Figure 3).
Having Gt(x, y , z) = G(x, y , z, t), we check that G0 satisfies Eq. (7) at p = (0, 0, 0), and that

|
(p)| = −4 (in fact, G0
x = 1, so all higher-order derivatives of G0

x vanish identically, thus only the last
term in the righthand-side of Eq. (8) is not identically equal to zero). Therefore, G0

z |S
has a nondegenerate singular point of saddle type at p. According to the Morse Lemma (see Fomenko
and Kunii [1997] or Milnor [1963]), the level set of G0

z |S through p consists of two regular curves,
intersecting transversally at p, which concurs with Figure 3 (middle).

A second scenario due to the violation of Eq. (11) is the lips bifurcation, corresponding to the birth or
death of connected components of the contour generator. Again, under some additional generic condi-
tions, a local model for this phenomenon is the surface, defined by

G(x, y , z, t) = x + ( y2 + t)z + z3. (15)

Here, the contour generator is defined by x = 2z3, y2 + 3z2 = −t. In particular for t > 0 the surface St

has no connected component of the contour generator near (0, 0, 0) and for t = 0, the point (0, 0, 0) is
isolated on the contour generator. For t < 0, there is a small connected component growing out of this
isolated point as t decreases beyond 0 (see also Figure 4).

As for the beak-to-beak bifurcation, we show that G0|S has a nondegenerate singular point at (0, 0, 0),
which in this case is an extremum.

Violation of Eq. (11) involves the occurrence of a higher-order singularity of the apparent contour.
Note, however, that in this situation the contour generator is still regular at the point (x, y , z) (see Propo-
sition 2.1). Imposing some additional generic conditions a local model for this type of bifurcation is

G(x, y , z, t) = x + yz + tz2 + z4 = 0. (16)

Here, the apparent contour is parametrized as z 	→ (tz2 + z4, −2tz − 4z3) (see also Figure 5).

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.
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Fig. 4. The lips bifurcation (left: t < 0; middle: t = 0 right: t > 0).

Fig. 5. The swallowtail bifurcation (left: t < 0; middle: t = 0; right: t > 0).

4. TRANSFORMATIONS AND NORMAL FORMS

In Section 2 we presented local models of various types of regular and singular points on contour
generators and apparent contours, both for generic static surfaces, and for surfaces evolving generically
in time. These local models are low-degree polynomials which are easy to analyze, and yet which capture
the qualitative behavior of the contour generator and apparent contour in a neighborhood of the point
of interest. In this section we explain more precisely what we mean by capturing local behavior.

Consider two regular implicit surfaces S = F −1(0) and T = G−1(0). An invertible smooth map
� : R3 → R3, for which

F ◦ � = G (17)

maps T to S. In fact, we consider � to be defined only locally near some point of T , but we will not
express this in our notation. The map � need not map the contour generator of T onto that of S,
however. To enforce this, we require that � maps vertical lines onto vertical lines, that is, � should be
of the form

�(x, y , z) = (h(x, y), H(x, y , z)), (18)

where h : R2 → R2 and H : R3 → R are smooth maps. The map h is even invertible, since � is invertible.
To allow ourselves even more flexibility in the derivation of local models, we relax condition (17) by
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requiring the existence of a nonzero function ϕ : R3 → R such that

F (�(x, y , z)) = ϕ(x, y , z)G(x, y , z). (19)

Definition 4.1. Let S = F −1(0) and T = G−1(0) be regular surfaces near p = (0, 0, 0) ∈ R3. An
admissible local transformation from T to S, locally near p, is a pair (�, ϕ) where ϕ : R3 → R is nonzero
at p, and � : R2 × R → R3 is locally invertible near p, and of the form of Eq. (18) such that (19) holds.
We also say that � brings F in the normal form G.

If the surfaces S and T depend smoothly on k parameters, that is, they are defined by functions
F : R3 × Rk → R and G : R3 × Rk → R, respectively, then we require that the parameters are not mixed
with the (x, y , z)-coordinates, that is, we require that Eq. (19) is replaced with

F (�(x, y , z, μ)) = ϕ(x, y , z, μ) G(x, y , z, μ),

where � : R3 × Rk → R3 × Rk is of the form

�(x, y , z, μ) = (h(x, y , μ), H(x, y , z, μ), ψ(μ)).

Then �μ, defined by �μ(x, y , z) = �(x, y , z, μ), maps Tμ to Sψ(μ) and preserves contour generators.
Furthermore, the map hμ : R2 → R2, defined by hμ(x, y) = h(x, y , μ), maps the apparent contour of Tμ

onto that of Sψ(μ).

PROPOSITION 4.2. If � is an admissible local transformation from T to S, locally near a point p on the
contour generator of T, where � is of the form of Eq. (18), then

(1) � maps T to S, locally near p ∈ S;
(2) � maps the contour generator of T to the contour generator of S, locally near p;
(3) h maps the apparent contour of T to the apparent contour of S, locally near the projection π (p) ∈ R2.

PROOF. From Eqs. (18) and (19) it is easy to derive

F (�(p)) = ψ(p) G(p),

Fz(�(p)) Hz(p) = ψz(p) G(p) + ψ(p) Gz(p).

Since ψ(p) �= 0 and Hz(p) �= 0, we conclude that G(p) = Gz(p) = 0 iff F (�(p)) = Fz(�(p)) = 0.

4.1 Example: Local Model at a Truncated Cusp Point

We now illustrate the use of admissible transformations by deriving a local model for the class of implicit
surfaces. These are defined as the zero set of a function of the form:

F (x, y , z) = a(x, y) + b(x, y)z + c(x, y)z2 + z3, (20)

with a(0, 0) = b(0, 0) = c(0, 0) = 0, and

∂(a, b)

∂(x, y)

∣∣∣∣
0

�= 0. (21)

Note that the local model x + yz + z3 = 0, derived in Section 2 for a cusp point, belongs to this class.
Our goal is to show that the latter is indeed a local model for all surfaces of the type in Eq.(20). Since
F (0) = Fz(0) = Fzz(0) = 0, and

∂(F, Fz)

∂(x, y)

∣∣∣∣
0

= ∂(a, b)

∂(x, y)

∣∣∣∣
0

�= 0,
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we see that 0 ∈ R3 is a regular point of the contour generator of S, whereas (0, 0) is a singular point of
the apparent contour (see Proposition 2.1).

As a first step towards a normal form of the implicit surface, we apply the Tschirnhausen transfor-
mation z 	→ z − 1

3
c(x, y) to transform the quadratic term (in z) in F away. More precisely,

F (x, y , z − 1

3
c(x, y)) = a(x, y) − 1

3
b(x, y) c(x, y) + 2

27
c(x, y)3 + (b(x, y) − 1

3
c2(x, y)) z + z3

= G(ϕ(x, y), z),

where G(x, y , z) = x + yz + z3, and

ϕ(x, y) = ( a(x, y) − 1

3
b(x, y) c(x, y) + 2

27
c(x, y)3, b(x, y) − 1

3
c(x, y)2 ).

It is not hard to check that the Jacobian determinant of ϕ at 0 ∈ R2 is equal to

∂(a, b)

∂(x, y)

∣∣∣∣
0

,

so ϕ is a local diffeomorphism near 0 ∈ R2. Let ϕ be its inverse. Then, putting

�(x, y , z) = (ϕ(x, y), z − 1

3
c(ϕ(x, y)),

we get

F ◦ �(x, y , z) = G(x, y , z).

In other words, the admissible transformation � brings F into the normal form G. In particular, it
maps the surface T = G−1(0) and its contour generator onto S = F −1(0), and ϕ maps the apparent
contour of T onto the apparent contour of S.

5. DERIVING LOCAL MODELS

In this section, we derive local models of an implicit surface near the fold and cusp points of contour
generators. The local model for the fold point is as stated in Section 2, while that of the cusp point
is slightly weaker in the sense that it includes terms of higher order. To derive these models, we use
only elementary means, such as the Implicit Function Theorem and Taylor expansion up to finite
order. Although these tools are strong enough to derive the essential qualitative features of the contour
generator and apparent contour at a fold or cusp point, they are not strong enough to obtain the simple
polynomial form for the cusp, as stated earlier. Although the cubic model for the cusp (see Figure 2b) can
be obtained by elementary means, the derivation is quite involved, (see Whitney [1955]). Even worse,
the polynomial models of the contour generator of evolving surfaces (see Figures 3, 4, and 5) can only
be obtained using sophisticated methods from singularity theory. Therefore, our more modest goal will
be to obtain a local model only for the lower order part of the implicit function, which is sufficient for
our purposes. See Proposition 5.2 for a more precise statement.

5.1 Local Model at a Fold Point

PROPOSITION 5.1. Let p ∈ S be a regular point of the contour generator of S, and let its image under
parallel projection along v be a regular point of the apparent contour of S. Then there is an admissible
transformation, bringing S into the normal form x ± z2 = 0 (see also Figure 2(a)).

PROOF. Let p = 0 ∈ R3 be a regular point of the contour generator of S = F −1(0), and let its projection
(0, 0) be a regular point of the apparent contour. Then, F (0) = Fz(0) = 0, and Fzz(0) �= 0. Consider F
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as a two-parameter family of real-valued univariate functions that depends on the parameters (x, y),
that is,

F(x,y)(z) = F (x, y , z).

Then, F(0, 0) has a nondegenerate singularity at 0 ∈ R, and hence the function F(x, y) has a nondegenerate
singularity z = ζ (x, y), depending smoothly on the parameters (x, y) such that ζ (0, 0) = 0. According
to the Morse Lemma with parameters (see Appendix B) there is a local diffeomorphism (x, y , z) 	→
(x, y , Z (x, y , z)) on a neighborhood of 0 ∈ R3 such that

F (x, y , Z (x, y , z)) = α(x, y) ± z2,

where α(x, y) = F (x, y , ζ (x, y)). Since (α0
x , α0

y ) = (F 0
x , F 0

y ) �= (0, 0), let us assume that α0
x �= 0. Then

there is a local diffeomorphism ϕ : R2 → R2 of the form ϕ(x, y) = (ξ (x, y), y) such that

α(ϕ(x, y)) = x.

In fact, ξ (x, y) is the solution of the equation α(ξ, y) − x = 0, with ξ (0, 0) = 0. The existence and local
uniqueness follows from the Implicit Function Theorem. Furthermore, ξ0

x α0
x = 1, which proves that ϕ

is a local diffeomorphism. Therefore,

F ◦ �(x, y , z)) = x ± z2,

where the local diffeomorphism � : R3 → R3 is defined by

�(x, y , z) = (ξ (x, y), y , Z (ξ (x, y), y , z)).

Now, � is an admissible transformation, so it maps the surface T , defined by x ± z2 = 0, and its
contour generator, namely, the line x = z = 0, onto S and its contour generator. Furthermore, the
diffeomorphism ϕ : R2 → R2 maps the apparent contour x = 0 of T onto the apparent contour of S.

5.2 Local Model at a Cusp Point

PROPOSITION 5.2. Let p ∈ S be a point of the contour generator of S, satisfying conditions (10) and
(11). Then, p projects onto a cusp point of the apparent contour of S under parallel projection along v.
More precisely, there is an admissible transformation, defined on a neighborhood of p, transforming S
into a local model of the form

G(x, y , z) = x + yz + z3 + z4 R(x, y , z) = 0,

where R is a smooth function (see also Figure 2(b)).

Before giving the proof, we observe that this result involves the existence of a map h : R2 → R2,
that maps the apparent contour of T = G−1(0) onto the apparent contour of S = F −1(0). The apparent
contour of T is easily determined by solving x and y from the following system of equations:

G(x, y , z) = x + yz + z3 + z4 R(x, y , z),

Gz (x, y , z) = y + 3z2 + z3( 4R(x, y , z) + z Rz(x, y , z) ).
(22)

Using the Implicit Function Theorem, it is easy to see that we can solve x and y from Eq. (22), yielding

x(z) = 2z3 + O(z4)

y(z) = −3z2 + O(z3).
(23)

Therefore, the apparent contour of S has a cusp at (0, 0).
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PROOF. We follow the same strategy as in the example of the truncated cusp in Section 4 by trans-
forming the quadratic term of F in z away. For general (not necessarily polynomial) functions F , the
Tschirnhausen transformation is obtained as follows. Since Fzzz(p) �= 0, the Implicit Function Theorem
guarantees that

Fzz(x, y , z) = 0 (24)

has a solution z = z(x, y), locally near (0, 0) with z(0, 0) = 0. In this situation, Taylor expansion yields

F (x, y , z + z(x, y)) = C(x, y)(U (x, y) + V (x, y) z + z3 + z4 R4(x, y , z)), (25)

where R4 is a smooth function, and

C(x, y) = 1

6
Fzzz(x, y , z(x, y)).

U (x, y) = F (x, y , z(x, y))/C(x, y)

V (x, y) = Fz(x, y , z(x, y))/C(x, y).

(26)

Note that C(0, 0) �= 0. Furthermore, U (0, 0) = V (0, 0) = 0. Note that there is no quadratic term in
Eq. (25) because Fzz(x, y , z(x, y)) = 0.

The righthand-side of Eq. (25) is in fact the form of F after the parameter-dependent change of
coordinates (x, y , z) 	→ (x, y , z +z(x, y)). We try to polish (25) further by applying additional admissible
transformations of the parameters (x, y) and variable z. To this end, observe that

∂(U, V )

∂(x, y)

∣∣∣∣
(0,0)

= 6

F 0
zzz

∂(F, Fz )

∂(x, y)

∣∣∣∣
(0,0)

�= 0.

Therefore, there is an invertible smooth local change of x, y-coordinates ϕ : R2 → R2 such that

U ◦ ϕ(x, y) = x, and V ◦ ϕ(x, y) = y . (27)

Therefore

F ( ϕ(x, y), z + z( ϕ(x, y))) = C(x, y) G(x, y , z),

where

G(x, y , z) = x + y z + z3 + z4 R(x, y , z),

with R(x, y , z) = R4(ϕ(x, y), z). In other words: G is a local model of F .

6. TIME-DEPENDENT CONTOURS

If we allow the direction of projection to change over time or equivalently, if we fix the direction of
projection and allow the surface to depend on time, the implicit function that defines the surface de-
pends on the four variables (x, y , z, t), where t corresponds to time. In this situation, we expect one of
the conditions (10) and (11) to be violated at isolated values of (x, y , z, t) (see also the description of
evolving contours in Section 2). In this section, we derive approximate local models for these degenerate
situations (see Figures 3, 4, and 5).

As stated earlier, we consider a smooth function F : R3 × R → R, that defines a time-dependent
surface St = (F t)−1(0), where F t : R3 → R is defined by F t(x, y , z) = F (x, y , z, t).

6.1 Lips and Beak-to-Beak Bifurcations

The occurrence of lips and beak-to-beak bifurcations are associated with a violation of condition (10).
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Fig. 6. A beak-to-beak bifurcation. Top row: a sequence of views of a smooth surface. Middle row: the corresponding apparent

contours. Bottom row: blow up of the apparent contour near the bifurcation event.

PROPOSITION 6.1. Let p be a nondegenerate singular point of the contour generator for t = t0, that is,

F (p, t0) = Fz(p, t0) = Fzz(p, t0) = ∂(F, Fz)

∂(x, y)

∣∣∣∣
(p,t0)

= 0, and Fzzz(p, t0) �= 0, (28)

and


(p) �= 0,

where 
(p) is as in Eqs. (8) or (9). Moreover, assume that the matrix(
F 0

x F 0
y F 0

t

F 0
xz F 0

yz F 0
tz

)
has rank two. (29)

Then the surface has a local model at (p, t0) of the form

G(x, y , z, t) = x + (σy2 + α(x, t)) z + z3 + z4 R(x, y , z, t),
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where σ = sign(
(p)) with 
(p) defined by Eqs. (8) or (9), R is a smooth function for (x, y , z, t) near
(0, 0, 0, 0), and ∂α

∂t (0, 0) �= 0.

Remark 6.2. Before giving the proof, we observe that the contour generator is determined by the
equations G = Gz = 0, that is,

x + (σy2 + α(x, y)) z + z3 = O(z4),

(σy2 + α(x, y)) z + 3z2 = O(z3).

Solving this system for x and y yields

x = 2z3 + O(z4)

σy2 + 3z2 = −α(x, t) + O(z3).

Since α(0, 0) = 0, it is easy to see that the singularity of the contour generator for t = 0 is of saddle
type if σ = −1, and corresponds to an extremum if σ = +1. The former case corresponds to a beak-to-
beak bifurcation, the latter to a lips bifurcation. We have a scenario like those depicted in Figures 3
and 4, respectively, where it depends on the sign of ∂α

∂t (0, 0) whether we have to read the figure from
left-to-right or from right-to-left as t passes zero from negative to positive values.

PROOF. For ease of notation we assume that p = (0, 0, 0) and t0 = 0. Our approach is as in the
derivation of the local normal form near a cusp point, that is, we again consider the equation

Fzz(x, y , z, t) = 0 (30)

(see Eq. (24)). Since Fzzz(0, 0, 0, 0) �= 0, there is a locally unique solution z = ζ (x, y , t) of Eq. (30), with
ζ (0, 0, 0) = 0. Also in this situation, Taylor expansion yields:

F (x, y , z + z(x, y), t) = C(x, y , t)(U (x, y , t) + V (x, y , t) z + z3 + z4 R4(x, y , z, t)),

where R4 is a smooth function, and

C(x, y , t) = 1

6
Fzzz(x, y , z(x, y , t)).

U (x, y , t) = F (x, y , z(x, y , t), t)/C(x, y , t)
V (x, y , t) = Fz(x, y , z(x, y , t), t)/C(x, y , t).

Also in this case, C(0, 0, 0) �= 0 and U (0, 0, 0) = V (0, 0, 0) = 0. To avoid superscripts, we introduce the
functions u, v : R2 → R, defined by u(x, y) = U (x, y , 0) and v(x, y) = V (x, y , 0). In this case we have

∂(U, V )

∂(x, y)

∣∣∣∣
(0,0)

= 6

F 0
zzz

∂(F, Fz )

∂(x, y)

∣∣∣∣
(0,0)

= 0, (31)

so, unlike the situation at a cusp point, we don’t have the normal form (x, y) for the pair (u, v). Yet, we
can obtain a normal form as stated in the proposition. To this end, we introduce the map � : R2×R → R2,
defined by

�(x, y , t) = (U (x, y , t), V (x, y , t)). (32)

It follows from Eq. (32) that the Jacobian determinant J = Ux Vy − U y Vx of � satisfies

J (0, 0, 0) = 0. (33)

Since, moreover,

(u0
x , u0

y ) = 6

F 0
zzz

(
F 0

x , F 0
y

) �= (0, 0), (34)
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the derivative of the map ψ : R2 → R2, defined by ψ(x, y) = (u(x, y), v(x, y)) at (0, 0) ∈ R2 has rank
one.

This observation brings us to the context of singularity theory, in particular, the theory of normal
forms of generic maps from plane to plane. Whitney [1955] presents a local normal form for the two
types of generic singularities of this type of map namely, the fold and cusp. As said before, although (or
perhaps, because) our article uses elementary tools, the technical details are quite involved. We refer
the reader to Appendix C for a rather self-contained derivation of the Whitney fold, fine-tuned to our
current context.

To make the link with Whitney’s result more precise, observe that the Jacobian determinant j of ψ

satisfies the identity j (x, y) = J (x, y , 0). Since ∇u(0, 0) �= (0, 0) (see Eq. (34)), Proposition C.3, or rather,
its parametrized version presented in Section C.3, guarantees the existence of a change of parameters
ϕ(x, y , t) of the form ϕ(x, y , t) = (·, ·, t) such that

U ◦ ϕ(x, y , t) = x, and V ◦ ϕ(x, y , t) = σy2 + α(x, t).

Here, α is a smooth function with α(0, 0) = 0, and

σ = sign(〈∇u(0, 0), ∇ j (0, 0)⊥〉) = sign
(− u0

x j 0
y + u0

y j 0
x

)
.

A straigthforward, but tedious—hence preferably automated—computation shows that

−u0
x j 0

y + u0
y j 0

x = 
(p),

where 
(p) is defined by Eqs. (8) or (9). Therefore,

F ( ϕ(x, y , t), z + z( ϕ(x, y , t) ) ) = C(x, y , t) G(x, y , z, t),

where

G(x, y , z) = x + (σy2 + α(x, t)) z + z3 + z4 R(x, y , z)

with R(x, y , z) = R4(ϕ(x, y , t), z). In other words: G is a local model of F .

6.2 The Swallowtail Bifurcation

In this section we study the discontinuous change of the apparent contour associated with a violation
of Eq. (11), whereas (10) still holds. In this case the contour generator is regular.

PROPOSITION 6.3. Let F : R3 × R → R be such that at (p, t0) ∈ R3 × R the following conditions are
satisfied:

F (p, t0) = Fz(p, t0) = Fzz(p, t0) = Fzzz(p, t0) = 0. (35)

If at (p, t0) the generic conditions

Fzzzz(p, t0) �= 0,
∂(F, Fz)

∂(x, y)

∣∣∣∣
(p,t0)

�= 0, and
∂(F, Fz, Fzz)

∂(x, y , t)

∣∣∣∣
(p,t0)

�= 0 (36)

are satisfied, then F has a local model at (p, t0) of the form

G(x, y , z, t) = x + yz + w(x, y , t) z2 + z4 + z5 R(x, y , z, t) (37)

with w(0, 0, t) = α t + O(t2), where

α = 4!

�0 F 0
zzzz

∂(F, Fz, Fzz)

∂(x, y , t)

∣∣∣∣
(0,0,0)

�= 0. (38)
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Fig. 7. A swallowtail bifurcation. Top row: a sequence of views of a smooth surface. Middle row: the corresponding apparent

contours. Bottom row: blow up of the apparent contour near the bifurcation event.

In particular, there is a time-dependent change of coordinates ht : R2 → R2 that maps the apparent
contour of St onto the apparent contour of (Gt)−1(0), which has a parametrization of the form z 	→
( x(z, t), y(z, t) ),

where

x(z, t) = w0(t) z2 − 2w0(t) w0
x (t) z3 − (3 + w0(t) W (t)) z4 + X (z, t) z5

y(z, t) = −2w0(t)z + 4w0(t) w0
y (t) z2 − (2 + w0(t) W (t)) z3 + Y (z, t) z4
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with

w0(t) = w(0, 0, t) = α t + O(t2)

w0
x (0) = − 4!

�0 F 0
zzzz

∂(Fz, Fzz)

∂(x, y)

∣∣∣∣
0

,

w0
y (0) = 4!

�0 F 0
zzzz

∂(F, Fzz)

∂(x, y)

∣∣∣∣
0

,

W (0) = w0
x + 4 (w0

y )2.

Remark 6.4. The parametrization of the apparent contour is of the form

x(z, t) = (α t + O(t2)) z2 + O(t) z2 − (3 + O(t)) z4 + O(z5),

y(z, t) = (−2 α t + O(t2)) z + O(t) z2 − (2 + O(t2)) z3 + O(z4).

For α > 0, the evolution of the apparent contour is as that depicted in Figure 5, whereas for α < 0, the
evolution corresponds to reading the latter figure from right-to-left.

PROOF. As before, we assume that p = (0, 0, 0) and t0 = 0. As in the Tschirnhausen transformation,
we try to transform the cubic term away by considering the equation

Fzzz(x, y , z, t) = 0. (39)

Since Fzzzz(0, 0, 0, 0) �= 0, there is a locally unique solution z = ζ (x, y , t) of Eq. (39) with ζ (0, 0, 0) = 0.
Also in this situation, Taylor expansion yields

F (x, y , z + ζ (x, y , t), t) = C(U + V z + W z2 + z4 + z5 R(x, y , z, t)),

where R is a smooth function, and

C = C(x, y , t) = 1

4!
Fzzzz(x, y , ζ (x, y , t), t),

U = U (x, y , t) = F (x, y , ζ (x, y , t), t)/C(x, y , t),

V = V (x, y , t) = Fz(x, y , ζ (x, y , t), t)/C(x, y , t),

W = W (x, y , t) = 1

2
Fzz(x, y , ζ (x, y , t), t)/C(x, y , t).

In particular, U (0, 0, 0) = 0, V (0, 0, 0) = 0, W (0, 0, 0) = 0, and C(0, 0, 0) �= 0. Since, according to Eq. (35),

∂(U, V )

∂(x, y)

∣∣∣∣
(0,0,0)

= 4!

F 0
zzzz

∂(F, Fz)

∂(x, y)

∣∣∣∣
(0,0,0,0)

= 4! �0

F 0
zzzz

�= 0,

we see that the map ψ : R2 × R → R2 × R, defined by

ψ(x, y , t) = (U (x, y , t), V (x, y , t), t),

is a local diffeomorphism, which has an inverse of the form

ϕ(x, y , t) = (ξ (x, y , t), η(x, y , t), t),

that is,

U ◦ ϕ(x, y , t) = x and V ◦ ϕ(x, y , t) = y . (40)
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Putting

�(x, y , z, t) = (ξ (x, y , t), η(x, y , t), z, t),

we see that � is an admissible transformation that brings F into the normal form G = F ◦ �, which is
of the form

G(x, y , z, t) = x + yz + w(x, y , t)z2 + z4 + O(|z|5),

where

w(x, y , t) = W (ξ (x, y , t), η(x, y , t), t) = Fzz(ξ (x, y , t), η(x, y , t), t).

Therefore w(0, 0, 0) = 0. Furthermore,

wt(0, 0, 0) = 4!

F 0
zzzz

(
F 0

xzz ξ0
t + F 0

yzz η0
t + F 0

tzz

)
.

From Eq. (40) we derive

U 0
x ξ0

t + U 0
y η0

t + U 0
t = 0,

V 0
x ξ0

t + V 0
y η0

t + V 0
t = 0.

In other words, (
F 0

x F 0
y

F 0
xz F 0

yz

) (
ξ0

t

η0
t

)
=

(−F 0
t

−F 0
zt

)
.

Using Cramer’s rule, we obtain

ξ0
t = − 1

�0

∣∣∣∣∣ F 0
t F 0

y

F 0
zt F 0

yz

∣∣∣∣∣ , and η0
t = − 1

�0

∣∣∣∣∣ F 0
x F 0

t

F 0
xz F 0

zt

∣∣∣∣∣ .
Therefore,

w0
t = − 4!

�0 F 0
zzzz

(
F 0

xzz

∣∣∣∣∣ F 0
t F 0

y

F 0
zt F 0

yz

∣∣∣∣∣ + F 0
yzz

∣∣∣∣∣ F 0
x F 0

t

F 0
xz F 0

zt

∣∣∣∣∣ − F 0
tzz

∣∣∣∣∣ F 0
x F 0

y

F 0
xz F 0

yz

∣∣∣∣∣
)

= 4!

�0 F 0
zzzz

∣∣∣∣∣∣∣∣
F 0

x F 0
y F 0

t

F 0
xz F 0

yz F 0
zt

F 0
xzz F 0

yzz F 0
zzt

∣∣∣∣∣∣∣∣
= 4!

�0 F 0
zzzz

∂(F, Fz, Fzz)

∂(x, y , z)

∣∣∣∣
0

. (41)

By a similar computation, we obtain

w0
x = − 4!

�0 F 0
zzzz

∂(Fz , Fzz)

∂(x, y , z)

∣∣∣∣
0

(42)

and

w0
y = 4!

�0 F 0
zzzz

∂(F, Fzz)

∂(x, y , z)

∣∣∣∣
0

. (43)

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



1262 • S. Plantinga and G. Vegter

Finally, we can solve x and y as functions of (z, t) from the set of equations G(x, y , z, t) = Gz (x, y , z, t) =
0, with G as in Eq. (37). A straightforward, preferably automated, computation yields

x(0, t) = 0

y(0, t) = 0

xz (0, t) = 0

yz (0, t) = −2 w(0, 0, t)

xzz(0, t) = 2 w(0, 0, t)

yzz(0, t) = 8 w(0, 0, t) wy (0, 0, t)

xzzz(0, t) = − 12 w(0, 0, t) wy (0, 0, t)

yzzz(0, t) = − 12 (2 + 4 w(0, 0, t) wy (0, 0, t)2 + 2 w(0, 0, t)2 wyy(0, 0, t)

+ w(0, 0, t) wx(0, 0, t))

xzzzz(0, t) = 24 (3 + 4 w(0, 0, t) wy (0, 0, t)2 + 2 w(0, 0, t)2 wyy(0, 0, t)

+ w(0, 0, t) wx(0, 0, t)).

The low-order Taylor expansions of x(z, t) and y(z, t), as stated in Proposition 6.3, are obtained by
combining these expressions with the identities for w0

t , w0
x , and w0

y in Eqs. (41), (42), and (43), respec-
tively.

7. INTERVAL ANALYSIS

One way to prevent rounding errors due to finite precision numbers is to use interval arithmetic.
Instead of numbers, intervals containing the exact solution are computed. An inclusion function f
for a function f : Rm → Rn computes for each m-dimensional interval I (i.e., an m-box) an n-dimensional
interval f (I ) such that

x ∈ I ⇒ f (x) ∈ f (I ).

An inclusion function is convergent if

width(I ) → 0 ⇒ width( f (I )) → 0,

where the width of an interval is the largest width of I .
For example, if f : R → R is the square function f (x) = x2, then a convergent inclusion function is

f ([a, b]) =
{

[min(a2, b2), max(a2, b2)], a · b < 0

[0, max(a2, b2)], a · b ≥ 0.

Inclusion functions exist for basic operators and functions. To compute an inclusion function, it is often
sufficient to replace the standard number type (e.g., double) by an interval type. Therefore, in practice,
almost all functions have convergent inclusion functions that can be easily computed by using the same
code, together with an interval library.

We assume there are convergent inclusion functions for our implicit function F and its derivatives,
and will denote these by F (and similarly for the derivatives). From the context it will be clear when
the inclusion function is meant.

Interval arithmetic can be implemented using demand-driven precision. For the interval bounds,
ordinary doubles can be used for fast computation. In the rare case that the interval becomes too small
for the precision of a double, a multiprecision number type can be used.
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7.1 Interval Newton Method

For precision, small intervals around the required value are used. Another use of interval arithmetic
is to compute function values over larger intervals. If for an implicit surface F = 0 and box I we have
0 /∈ F (I ), we can be certain that I contains no part of the surface. This observation can be extended
to the Interval Newton Method that finds all roots of a function f : Rn → Rn in box I .

The first part of the algorithm recursively subdivides the box, discarding parts of space that contain
no roots. If the boxes are “small enough,” a Newton method refines the solutions and guarantees that
all roots are found. Determining when a box is small enough influences the speed of the algorithm, but
is arbitrary for the guarantee to find all solutions. For the Newton step, we solve

f (x) + J (I )(z − x) = 0,

where x is the center of I , J is the Jacobian matrix of f , and J (I ) is the interval matrix of J over
interval I , resulting in an interval Y that contains all roots z of f . This interval can be used to refine
I . Also, if Y ⊂ I , there is a unique root of f in I .

We refer the reader to Hansen and Greenberg [1983] for the mathematical details. A more practical
introduction can be found in Snyder [1992] or Stander and Hart [1997].

8. TRACING THE CONTOUR GENERATOR

Our goal is to approximate the contour generator by a piecewise linear curve. This initial approximation
can then be maintained under some time-dependent view. To this end, the singularities of the contour
generator for an evolving view or surface can be precomputed using interval analysis. Since the topology
doesn’t change between these singularities, the initial contour generator can be updated continuously
until we reach a time wherein a singularity arises. The local model at this singularity indicates how
the topology has to be updated (see Section 4).

Note that for a singularity of the contour generator of a time-dependent surface, we have⎛⎜⎜⎜⎝
F (x, y , z, t)

Fz (x, y , z, t)

Fzz(x, y , z, t)

�(x, y , z, t)

⎞⎟⎟⎟⎠ = 0

with �, as in Proposition 2.1.
These singularities can therefore be considered as the zeroes of a function from R4 to R4. Using the

Interval Newton Method, we can find all t for which a singularity occurs.
For the initial contour generator, generically, there are no singularities. The construction consists of

two steps.
First, for each component of the contour generator, we have to find an initial point at which to start the

tracing process. Interval analysis enables us to find points on all components of the contour generator
(see the following for details). These (regular) points serve as starting points for the tracing process.

Second, we trace the component by stepping along the contour generator. For each starting point,
we trace the component by moving from a point pi to the next point pi+1. We take a small step in the
direction of the tangent to the contour generator at pi. Then, we move the resulting point back to the
contour generator, giving us pi+1. An interval test guarantees that we stay on the same component
without skipping a part. If the test fails, we decrease the step size, and try again until the interval test
succeeds. If we reach the initial point p0, the component is fully traced.
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8.1 Finding Initial Points

A tangent vector to the contour generator at p can be found by computing

w(p) = ∇F (p) ∧ ∇Fz (p) =

⎛⎜⎝ Fy Fzz

−Fx Fzz

Fx Fyz − Fy Fxz

⎞⎟⎠ .

Since the components of the contour generator are bounded and closed curves, there are at least two
points on each component where the x-component of w(p) disappears, that is, where Fy Fzz = 0.

Let R, S : R3 → R3 be the functions

R(p) =

⎛⎜⎝ F (p)

Fz (p)

Fy (p)

⎞⎟⎠ and S(p) =

⎛⎜⎝ F (p)

Fz (p)

Fzz(p)

⎞⎟⎠ .

The Interval Newton Method finds all roots of R and S. These roots are used to create a list of (regular)
initial points.

8.2 Tracing Step

Let T (x) be the normalized vector field

T (x) = ∇F (x) ∧ ∇Fz (x)

‖∇F (x) ∧ ∇Fz (x)‖ .

For x on the contour generator, T (x) is a tangent vector at x. From pi we first move to q0 = pi + δT (pi),
where δ is the step size. To move back to the contour generator, we alternately move towards F = 0
and Fz = 0 by replacing qi by⎧⎪⎪⎪⎨⎪⎪⎪⎩

qi+1 = qi − F (qi)∇F (qi)

‖∇F (qi)‖2
towards F

qi+2 = qi+1 − Fz (qi+1)∇Fz (qi+1)

‖∇Fz (qi+1)‖2
towards Fz

until ‖qi+2 − qi‖ is sufficiently small. The resulting point is the next point on the contour generator,
pi+1. For this new point we perform the interval test (explained next) to determine whether pi pi+1 is a
good approximation of the contour generator. If not, we decrease δ (e.g., by setting it to δ/2), and repeat
the tracing step from pi. To prevent δ from converging to 0, we multiply it by 1.2 after each successful
step.

8.3 Interval Test

For a fixed step size, there is always the possibility of accidentally jumping to another component of the
contour generator or of skipping a part (Figure 8).

To assure that pi pi+1 is a good approximation for the contour generator, we first construct a sphere
S, with center pi, that contains pi+1. Then we take the bounding box B of S:

B = [
pi

x − D, pi
x + D

] × [
pi

y − D, pi
y + D

] × [
pi

z − D, pi
z + D

]
,

where D = ‖pi+1 − pi‖. Over this box, we compute the interval

I = 〈T (pi), T (B)〉,
where T (B) contains all normalized vectors ∇F (s)∧∇Fz (t)

‖∇F (s)∧∇Fz (t)‖ with s, t ∈ B.
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Fig. 8. (left) T (pi) is a tangent to the intersection of F = 0 and Fz = 0; (right) a fixed step size can miss part of the contour

generator.

Fig. 9. The sphere containing the line segment, and its bounding box.

LEMMA 8.1. If I > 1
2

√
2, (i.e., ∀i ∈ I : i > 1

2

√
2), then the part of the contour generator within S consists

of a single component (Figure 9).

PROOF. We define G(x) = 〈x − pi, T (pi)〉. The level sets of G are planes perpendicular to T (pi). Let
f : R3 → R3 be the function

f (x) =

⎛⎜⎝ F (x)

Fz (x)

G(x)

⎞⎟⎠ .

Suppose there are two points, x and y , of the contour generator in B that lie in a plane perpendicular
to T (pi), that is, f (x) = f ( y) = (0, 0, θ ) for some θ . According to the Mean Value Theorem, there are
points s and t on xy where ⎛⎜⎝∇F (s)

∇Fz (t)

T (pi)

⎞⎟⎠ ( y − x) =

⎛⎜⎝0

0

0

⎞⎟⎠ .

For x �= y , we find that 〈∇F (s)∧∇Fz (t), T (pi)〉 = 0 (all vectors in a plane perpendicular to y − x). Since
s, t ∈ B, this contradicts the interval test. Therefore, within box B, each plane perpendicular to T (pi)
contains at most one point of the contour generator.

The interval condition I > 1
2

√
2 implies that the angle between T (pi) and T (x) is at most π

4
for all

x ∈ B, and therefore also for x ∈ � ∩ B. The contour generator lies in a cone C around T (x) (Figure 10)
with top angle π

2
, for if it leaves the cone at point a, then 〈T (pi), T (a)〉 would be smaller than 1

2

√
2. It

can only leave the sphere in S ∩ C. In this part of the sphere, the contour generator cannot re-enter
S because this would require an entry point b where 〈T (pi), T (b)〉 < 1

2

√
2. Therefore, there is only a

single connected component of the contour generator within sphere S.
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Fig. 10. The contour generator lies within a cone.

If the interval test succeeds, we can use the same sphere S to remove redundant points from the initial
point list. If there are points in the list that lie within S, they must be part of the component we are
tracing, so they can be discarded.

To test whether the component is fully traced, we test if the current sphere S overlaps the sphere of
the initial point p0. If it does, testing

〈pi+1 − pi, p0 − pi〉 > 0

tells us whether we are done with this component (otherwise, we have just started the trace and are
still moving away from p0).

The interval bound is valid if the center of the cube is on the contour generator. Since pi is (in
general) close to, but not on, the contour generator, in practice we take a slightly larger bound (e.g., by
multiplying the radius by 1.1). Also, D should be slightly larger than ‖pi+1 − pi‖ to prevent pi+1 from
being too close to other parts of the contour generator that are outside of S. Again, multiplying by 1.1
should suffice to prevent rounding errors.

For algorithms on implicit surfaces, it is difficult to derive a complexity bound because timing results
depend not only on the complexity of the surface, but also on the behavior of the function outside the
surface and on the accuracy of the convergent inclusion functions. For algebraic surfaces, it might be
possible to derive the complexity in a similar manner as done by Alberti et al. [2004].

8.4 Evolving Surfaces

Time-dependent surfaces occur, for example, if the viewpoint moves along a fixed path or the surface
changes shape under a continuous deformation (morphing). We assume that the transformation is also
a smooth function, for example, a rotation. For a time-dependent surface F (x, y , z, t) = 0, there is no
need to compute the initial points on the contour generator for each t. Rather, we can trace the initial
points as time evolves. Recall that the initial points are zeroes of the functions R, S : R4 → R3:

R(x, y , z, t) =

⎛⎜⎝ F (x, y , z, t)

Fz (x, y , z, t)

Fy (x, y , z, t)

⎞⎟⎠ and S(x, y , z, t) =
⎛⎝ F (x, y , z, t)

Fz (x, y , z, t)

Fzz(x, y , z, t)

⎞⎠
For time-dependent surfaces, these are 1D curves in R4. These curves can be traced similarly to the
contour generator itself, that is, by stepping along the curve using a step size such that the interval
inequality (I > 1

2

√
2) is satisfied.

The tangent vector to the curve is perpendicular to the gradients of the three components of R and
S. As time evolves, initial points are generically created and destroyed in pairs. This happens when the
tangent vector is perpendicular to the t-axis. Otherwise, according to the Implicit Function Theorem,
there exists a unique solution.
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For R the tangent vector can be found using

Ker

⎡⎢⎣ Fx Fy Fz Ft

Fxz Fyz Fzz Fzt

Fxy Fyy Fyz Fyt

⎤⎥⎦ .

A solution (t1, t2, t3, t4) in the kernel with
∑

ti = 1 can be found by adding a row [1, 1, 1, 1] to the matrix,
resulting in a 4×4 matrix M , provided det(M ) �= 0. Since R(x, y , z, t) = 0, we have Fz = Fy = 0. Using
Cramer’s rule to solve ⎛⎜⎜⎜⎝

Fx Fy Fz Ft

Fxz Fyz Fzz Fzt

Fxy Fyy Fyz Fyt

1 1 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

t1

t2

t3

t4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎠ ,

we find a tangent vector for the curve:⎛⎝∣∣∣∣∣∣
0 0 Ft

Fyz Fzz Fzt

Fyy Fyz Fyt

∣∣∣∣∣∣ , −
∣∣∣∣∣∣
Fx 0 Ft

Fxz Fzz Fzt

Fxy Fyz Fyt

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
Fx 0 Ft

Fxz Fyz Fzt

Fxy Fyy Fyt

∣∣∣∣∣∣ , −
∣∣∣∣∣∣
Fx 0 0
Fxz Fyz Fzz

Fxy Fyy Fyz

∣∣∣∣∣∣
⎞⎠ .

This tangent vector is perpendicular to the t-axis if⎛⎜⎜⎜⎝
F

Fz

Fy

Fx

⎞⎟⎟⎟⎠ = 0 or

⎛⎜⎜⎜⎝
F

Fz

Fy

F 2
yz − Fyy Fzz

⎞⎟⎟⎟⎠ = 0.

The first equality has no solutions, since the surface does not contain singularities.
Similarly, for S we have:

Ker

⎡⎣ Fx Fy Fz Ft

Fxz Fyz Fzz Ftz

Fxzz Fyzz Fzzz Ftzz

⎤⎦
For the tangent vector of S, we find⎛⎝∣∣∣∣∣∣

Fy 0 Ft

Fyz 0 Ftz

Ft Ftz Ftzz

∣∣∣∣∣∣ , −
∣∣∣∣∣∣

Fx 0 Ft

Fxz 0 Ftz

Fxzz Fzzz Ftzz

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
Fx Fy Ft

Fxz Fyz Ftz

Fxzz Fyzz Fzzz

∣∣∣∣∣∣ , −
∣∣∣∣∣∣

Fx Fy 0
Fxz Fyz 0
Fxzz Fyzz Fzzz

∣∣∣∣∣∣
⎞⎠ .

This vector is perpendicular to the t-axis if⎛⎜⎜⎜⎝
F

Fz

Fzz

Fzzz

⎞⎟⎟⎟⎠ = 0 or

⎛⎜⎜⎜⎝
F

Fz

Fzz

Fx Fyz − Fy Fxz

⎞⎟⎟⎟⎠ = 0.

The first equality corresponds to swallowtail bifurcations, the second to a singularity of the contour
generator.

For dynamic surfaces that depend on a single parameter, computing the 4D initial points shows us
at which time steps the set of initial points for the contour generator changes. As long as the time
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Table I.

Surface Contours Segments Initial Pts Tracing Total

Tangle cube (0.095, 0.295, 1) 4 4148 3.6 s 2.2 s 5.8 s

Tangle cube (0.09, 0.29, 1) 8 3940 3.4 s 1.5 s 4.9 s

Tangle cube (0.08, 0.25, 1) 8 3184 3.0 s 1.0 s 4.0 s

Nonalg. (0.2, 0.4, 1) 62 11869 22.1 s 3.4 s 25.5 s

Nonalg. (0.8, 0.4, 1) 29 23812 75.3 s 6.8 s 82.1 s

Fig. 11. Surface with contour generator, contour generator alone, and detail of the contour generator of the tangle cube x4 −
5x2 + y4 − 5 y2 + z4 − 5z2 + 10 = 0. The view direction is (0.095, 0.295, 1). The contour generator is plotted as the set of spheres

such that larger spheres indicate a larger step size. The actual contour generator connects the centers of these spheres. The

detail shows the contour generator on the top-left of the tangle cube, shown from above.

parameter t does not pass such a time value, we can adjust the position of the current initial points
to the new value of t by tracing a small part of the 4D curve. For small time steps, this requires only
a small number of 4D tracing steps. The time to compute the new contour generator is therefore only
slightly larger than that required for the tracing phase, removing the time required to find the initial
points. When t does pass one of the precomputed values, generically, a pair of initial points of the
contour generator is created or destroyed. In this case we can adjust the set of initial points by adding
or removing a pair of points.

Doing more preprocessing, we could also precompute the approximation of the entire 4D curve, en-
abling us to find the initial points for any fixed t by intersecting this 4D curve with the t-plane.

For a single parameter function, we can handle evolving surfaces, such as level sets of an implicit
function, or that move along a 1D view path. Arbitrary view directions require two parameters. In
this case we also have other types of bifurcations, such as the butterfly bifurcation. How to handle the
contour generators of surfaces with more than one parameter remains an open problem.

9. RESULTS

We have implemented the computation of the static contour generator using interval classes and the
interval Newton solver from the c-xsc library.

Table I shows the results on a Pentium 2.80 GHz running Linux. The implicit surface was transformed
with a shearing to change the view direction from the default (0, 0, 1). The resulting contour generators
are shown in Figures 11, 12, and 13 for the tangle cube, and in Figures 14 and 15 for the nonalgebraic
surface. The table shows the number of contours, the total number of line segments, and timing results
for the two phases of finding the initial points, and tracing the contour generator.

At the moment, the (inclusion) functions and derivatives are hard-coded into the implementation,
since we do not have an interval Newton implementation working together with automatic differentia-
tion. A solution would be to use a code generator that outputs the inclusion functions of all derivatives.
The lack of such a preprocessor makes experimenting with 4D curves tedious. However, as mentioned
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Fig. 12. Contour generator of the tangle cube, with a view direction of (0.09, 0.29, 1).

Fig. 13. Contour generator of the tangle cube, with a view direction of (0.08, 0.25, 1).

Fig. 14. Contour generator of the nonalgebraic surface 0.4(sin(5x) + sin(5 y) + cos(5z)) + 0.1x2 + 0.3 y2 + 0.2z2 − 0.5, with a view

direction of (0.2, 0.4, 1).

in the previous section, the time required for updating the contour generator for small time steps is
only slightly longer than the results in Table I under “Tracing”.

The preprocessing requires computing initial points of the 4D curve. We have computed these points
for the tangle cube, for the view direction moving along the 1D path (x − tz, y − (0.2 + t)z, z). This
path includes the views shown in Figures 11 and 12. We separately solved the three sets of equations
from the previous section: F = Fz = Fy = F 2

yz − Fyy Fzz = 0, F = Fz = Fzz = Fzzz = 0, and F = Fz

= Fzz = Fx Fyz−Fy Fxz = 0. Table II shows the results for these three sets of equations, as well as the total
time for computing the initial points of the 4D curve. The bounding box used is [−3, 3]×[−3, 3]×[−3, 3].
We solved over the intervals [0, 1] and ten subintervals of width 0.1. The final row gives the sum of
these ten smaller intervals.

The time for solving over the interval [0, 1] is just over three hours, whereas solving over ten intervals
of width 0.1 takes less than 44 minutes. This indicates that the interval Newton implementation in
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Fig. 15. Contour generator of the nonalgebraic surface with a view direction of (0.8, 0.4, 1).

Table II.

t Interval F 2
yz − Fyy Fzz Fzzz Fx Fyz − Fy Fxz Total

[0, 1] 7894 s 977 s 1972 s 10843 s

[0.0, 0.1] 9.0 s 0.2 s 13.5 s 22.7 s

[0.1, 0.2] 23.9 s 0.7 s 21.2 s 45.8 s

[0.2, 0.3] 52.4 s 1.7 s 27.2 s 81.3 s

[0.3, 0.4] 90.8 s 4.6 s 30.8 s 126.2 s

[0.4, 0.5] 132.5 s 7.7 s 34.1 s 174.3 s

[0.5, 0.6] 181.7 s 11.4 s 40.4 s 233.5 s

[0.6, 0.7] 227.6 s 17.4 s 51.6 s 296.6 s

[0.7, 0.8] 298.2 s 33.8 s 67.3 s 399.3 s

[0.8, 0.9] 388.6 s 78.4 s 93.1 s 560.1 s

[0.9, 1.0] 476.2 s 70.7 s 127.9 s 674.8 s

10 intervals 1880.9 s 226.6 s 507.1 s 2614.6

Table III.

Intervals F 2
yz − Fyy Fzz Fzzz Fx Fyz − Fy Fxz Total

Single 7894 s 977 s 1972 s 10843 s

10 time steps 1881 s 227 s 507 s 2615 s

84 1592 s 262 s 412 s 2266 s

164 989 s 161 s 277 s 1427 s

324 1012 s 486 s 655 s 2153 s

the c-xsc library is far from optimal. Results can be greatly improved by first subdividing the search
space. The solver in c-xsc seems to switch to Newton refinement too early in the subdivision process.

To examine the effects of refinement, we split the 4D interval into N 4 subintervals, for N = 8, 16, and
32. These smaller intervals were processed by the c-xcs solver. In Table III, we repeat the results for
the single interval and for splitting the time interval into ten subintervals, together with the results for
the initial N 4 subdivision. An initial subdivision in 164 subintervals reduces the runtime by a factor of
up to eight. For further subdivision, the running time increases again due to the overhead of initializing
the solver. These experiments show that current implementations of the interval Newton method are
far from optimal. However, optimizing generic solvers is beyond the scope of this article.

For algebraic functions such as the tangle cube, of course, other methods for solving systems of
equations are available. In this case it would be much faster to use algebraic methods, instead of the
generic Interval Newton method.

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



Computing Contour Generators of Evolving Implicit Surfaces • 1271

10. CONCLUSION AND FUTURE RESEARCH

We presented a framework for the analysis of an implicit surface near the regular and singular points
of its contour generator and apparent contour, and also derived conditions for detecting changes of
topology of these visibility features in generic one-parameter families of implicit surfaces.

We developed an algorithm to compute a topologically correct approximation of curves, in particular,
of the initial contour generator. A dynamic step size, combined with an interval test, guarantees that
no part of the contour generator is skipped.

For further experiments, we require an interval Newton method that works together with automatic
differentiation or a preprocessor that generates inclusion functions for partial derivatives of the implicit
function. More research needs to be done on solving systems of equations. The interval Newton method
used is far from optimal. Faster solvers are required for a practical implementation of dynamic contours.
Particularly, for algebraic surfaces, other methods should be considered. For this class of surfaces, it is
also easier to examine the singularties by using the theory on local models. This information can be
used to construct singular contours.

APPENDIX

A. SINGULARITIES OF FUNCTIONS ON SURFACES

A.1 Nondegenerate Singular Points

Consider an implicit surface S = F −1(0), where F : R3 → R is a C2 function. We assume that 0 is a
regular value of F , so according to the Implicit Function Theorem, S is a regular C2-surface.

Our goal is to determine conditions which guarantee that the restriction of a C2 function G : R3 → R
to the surface S has a nondegenerate singular point.

As for notation, the gradient of a function F : R3 → R at p ∈ R will be denoted by ∇F (p). Furthermore,
the Hessian quadratic form of a function F : R3 → R at p ∈ R will be denoted by HF (p). Usually, we
suppress the dependence on p from our notation, and denote this quadratic form by HF . With respect
to the standard Euclidean inner product, its matrix is the usual symmetric matrix whose entries are
second-order partial derivatives of F . We denote partial derivatives using subscripts, for example, Fx

denotes ∂F
∂x , Fxy denotes ∂2 F

∂x∂ y , etc.

THEOREM A.1. Let F, G : R3 → R be C2 functions, and let 0 be a regular value of F . Let p be a point
on the surface S = F −1(0).

(1) p is a singular point of G|S iff there is a real number λ such that

∇G(p) = λ ∇F (p). (44)

(2) Furthermore, the singular point p is nondegenerate iff

(HG − λHF ) | TpS (45)

is a nondegenerate quadratic form, where λ is as in Eq. (44).

Remark. The scalar λ in Eq. (44) is traditionally called a Lagrange multiplier.

COROLLARY A.2. The singularity p of G|S is nondegenerate iff the 2 × 2 matrix �, defined by Eq. (46),
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is nonsingular:

� = V T ·

⎛⎜⎝
⎛⎜⎝Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

⎞⎟⎠ − λ

⎛⎜⎝Fxx Fxy Fxz

Fxy Fyy Fyz

Fxz Fyz Fzz

⎞⎟⎠
⎞⎟⎠ · V , (46)

where λ is the Lagrange multiplier defined by Eq. (44), and V is a 3 × 2 matrix whose columns span
the tangent space TpS. Here, all first- and second-order derivatives are evaluated at p. Furthermore, for
G|S, the singular point p is a maximum or minimum if det(�) > 0, and a saddle point if det(�) < 0.

In particular, we may take V = X , V = Y , or V = Z if Fx(p) �= 0, Fy(p) �= 0, or Fz(p) �= 0, respectively,
where

X =

⎛⎜⎝ Fy Fz

−Fx 0

0 −Fx

⎞⎟⎠, Y =

⎛⎜⎝−Fy 0

Fx Fz

0 −Fy

⎞⎟⎠, Z =

⎛⎜⎝−Fz 0

0 −Fz

Fx Fy

⎞⎟⎠. (47)

PROOF OF THEOREM A.1. (1) Saying that p is a singular point of G|S is equivalent to dG p(v) = 0 for
all v ∈ TpS. Since TpS = ker d Fp, we see that this is equivalent to the existence of a scalar λ such that
dG p = λ d Fp.
(2) Since 0 is a regular value of F , we have ∇F (p) �= 0. We assume that Fx(p) �= 0, and argue similarly in
case Fy(p) �= 0 or Fz(p) �= 0. Furthermore, assume that p = (0, 0, 0). According to the Implicit Function
Theorem, there is a unique local solution x = f ( y , z), with f (0, 0) = 0, of the equation F (x, y , z) = 0.
Implicit differentiation yields

Fx f y + Fy = 0, (48)

Fx fz + Fz = 0, (49)

where f y and fz are evaluated at ( y , z) and Fx, Fy, and Fz are evaluated at ( f ( y , z), y , z). Similarly,

Fxx f 2
y + 2Fxy f y + Fyy + Fx fyy = 0. (50)

Similar identities are obtained by differentiating Eq. (48) with respect to y , and Eq. (49) with respect
to z.

Using y and z as local coordinates on S, we obtain the following expression of G|S with respect to
these local coordinates:

g ( y , z) = G( f ( y , z), y , z).

Differentiating this identity twice with respect to y , we obtain

gyy = Gxx f 2
y + 2Gxy f y + Gyy + Gx fyy. (51)

Since Fx(p) �= 0, we solve fyy from Eq. (50), and plug the resulting expression into (51) to get

gyy = (Gxx − λFxx) f 2
y + 2(Gxy − λFxy) f y + (Gyy − λFyy), (52)

where

λ = Gx

Fx
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is the Lagrange multiplier (see Eq. (44)). We rewrite (52) as

gyy = ( fy 1 0) (HG − λ HF )

⎛⎜⎝ f y

1

0

⎞⎟⎠
= 1

F 2
x

(
Fy −Fx 0

)
(HG − λ HF )

⎛⎜⎝ Fy

−Fx

0

⎞⎟⎠ .

We similarly derive

gyz = 1

F 2
x

(Fy −Fx 0) (HG − λ HF )

⎛⎜⎝ Fz

0

−Fx

⎞⎟⎠ ,

and

gzz = 1

F 2
x

(Fz 0 −Fx) (HG − λ HF )

⎛⎜⎝ Fz

0

−Fx

⎞⎟⎠ .

Since the vectors (Fy, −Fx, 0) and (Fz, 0, −Fx) span the tangent space TpS, we see that(
gyy gyz

gyz gzz

)
= 1

F 2
x

�.

B. THE MORSE LEMMA WITH PARAMETERS

The Morse Lemma gives a normal form for a smooth function in a neighborhood of a nondegenerate
critical point. We discuss an extension of this result to functions that depend on parameters. We refer
to Arnol’d [1976] for a proof. Let F : Rn × Rk → R be a smooth map, and let the function f : Rn → R,
defined by f (x) = F (x, 0), have a nondegenerate singularity at p ∈ Rn. Then, the function Fμ : Rn → R
has a nondegenerate singularity pμ, which depends smoothly on μ ∈ Rk , and coincides with p for μ = 0.
In fact, the singular point x = pμ is a solution of the system of equations

∂F
∂x1

(x, μ) = · · · = ∂F
∂xn

(x, μ) = 0.

The Jacobian determinant of this system at (x, μ) = (p, 0) is equal to the determinant of the Hessian
matrix of f at 0, which is nonzero. Therefore, the Implicit Function Theorem guarantees the existence
and uniqueness of the local solution pμ.

PROPOSITION B.1. There is a local diffeomorphism � : Rn × Rk → Rn × Rk, defined on a neighborhood
of (p, 0), of the form

�(x, μ) = (ϕ(x, μ), μ),

such that

F ◦ �(x, μ) = σ1x2
1 + · · · + σnx2

n + F (pμ, μ),

where σi = ±1, i = 1, . . . , n, defines the signature of the quadratic part of f at p.
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The proof of the Morse Lemma with parameters is completely similar to the proof of the “regular” Morse
Lemma.

C. NORMAL FORM OF A WHITNEY FOLD

C.1 Fold Points of Good Mappings

A celebrated theorem by Whitney [1955] states that generic mappings of the plane into the plane have
only two types of singular points, namely, folds or cusps. In this section we discuss a normal form for
such a mapping in the neighborhood of a fold point, and sketch a method for actually computing such
a normal form.

Let f : R2 → R2 be a mapping, and let J : R2 → R be its Jacobian determinant. More precisely, if
f (x, y) = (u(x, y), v(x, y)), then

J = uxvy − uyvx .

The mapping f is called good if J (p) �= 0 or ∇ J (p) �= 0, at every point p ∈ R2. In other words, the
system of equations

J (x, y) = Jx(x, y) = Jy (x, y) = 0 (53)

has no solutions in R2. It can be proven that this condition is independent of the choice of coordinates.
Whitney proves that generically, a map from plane into plane is good. Intuitively, this may seem to

follow from the observation that generic systems of three equations in two unknowns do not have a
solution. However, it is not obvious that Eq. (53) is a generic system. A proof can be given using Thom’s
transversality theorem.

Consequently, the singular set S1( f ) = J−1(0) of a good map consists of a number of disjoint regular
curves in the plane. This is a straightforward consequence of the Implicit Function Theorem, since the
gradient of J is nonzero at every point of S1( f ).

Furthermore, at a singular point p, at least one of the partial derivatives of the component functions
of f is nonzero, that is

(ux(p), uy (p), vx(p), vy (p)) �= (0, 0, 0, 0). (54)

In particular, the rank of the derivative dfp at a singular point is one, or equivalently, the kernel of dfp
is 1D. A singular point p of a good map f is called a fold point Golubitsky and Guillemin [1973] if

TpS1( f ) ⊕ Kerdfp = R2. (55)

Note that the tangent space TpS1( f ) is well-defined, since S1( f ) is a regular curve. Whitney’s [1955]
version of Eq. (55) is slightly different: if w is a nonzero tangent vector at p to S1( f ), then the directional
derivative of f in direction w is nonzero, that is, ∇w f (p) �= 0. Obviously, the two versions are equivalent,
and, more importantly, neither depends on a particular choice of coordinates. The latter observation
follows from Lemma C.1.

LEMMA C.1. Let f be a good map, ϕ : R2 → R2 an invertible nonsingular map, and g = f ◦ ϕ. Then,

(i) S1(g ) = ϕ−1(S1( f ));

(ii) g (S1(g )) = f (S1( f ));

(iii) g is a good map; and

(iv) p is a fold point of g iff ϕ(p) is a fold point of f .
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PROOF. Let J and J̃ be the Jacobian determinants of f and g , respectively. Since

dgp = dfϕ(p) ◦ dϕp, (56)

we see that

J̃ (p) = J (ϕ(p)) · det dϕp. (57)

Therefore, ϕ( J̃−1(0)) = J−1(0), which is equivalent to the first claim. The second claim is an immediate
consequence of the first. To prove the third claim, let p ∈ S1(g ), that is, J̃ (p) = 0. Then Eq. (57) implies
J (ϕ(p)) = 0. Thus, applying the product rule to (57) yields

dJ̃ p = detdϕp ◦ dJϕ(p) ◦ dϕp. (58)

Since dϕp is invertible, we see that the scalar detdϕp is nonzero, hence that

d J̃ p �= 0 iff dJϕ(p) �= 0.

This proves the third claim. Finally, observe that Eq. (56) implies

dϕp(Kerdgp) = Kerdfϕ(p), (59)

and that Eq. (58) implies

dϕp(Kerd J̃ p) = Kerd Jϕ(p). (60)

Since Kerd J̃ p = TpS1(g ) and KerdJϕ(p) = Tϕ(p)S1( f ), we conclude from Eqs. (59) and (60) that

TpS1(g ) ⊕ Kerdgp = R2 iff Tϕ(p)S1( f ) ⊕ Kerdfϕ(p) = R2.

In other words, p is a fold point of g iff ϕ(p) is a fold point of f . This concludes the proof of the fourth
claim.

For later use, we isolate the following result.

LEMMA C.2. Let f : R2 → R2 be a good map with component functions u, v : R2 → R and Jacobian
determinant J : R2 → R. The following statements are equivalent:

(i) p is a fold point of f ;
(ii) Wp �= (0, 0), where

Wp = (〈∇u(p), ∇ J (p)⊥〉, 〈∇v(p), ∇ J (p)⊥〉).
In either case, Wp is a tangent vector of the regular curve f (S1( f )) at p.

PROOF. Since f is good, J−1(0) = S1( f ) is a regular curve containing p. Its tangent vector at p is
∇ J (p)⊥.

Since dfp has rank one, we have ∇u(p) �= (0, 0) or ∇v(p) �= (0, 0). Assume the former inequality holds.
Then, there is a real constant c such that

∇v(p) = c∇u(p).

Now

dfp(W ) = (〈∇u(p), W 〉, 〈∇v(p), W 〉) (61)

for W ∈ R2, so dfp(∇u(p)⊥) = (0, 0). Hence Kerdfp = R∇u(p)⊥.
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It now follows that Eq. (55) holds iff ∇u(p)⊥ is not parallel to ∇ J (p)⊥ or iff 〈∇u(p), ∇ J (p)⊥〉 �= 0.
Similarly, if ∇v(p) �= 0, then (55) is equivalent to 〈∇v(p), ∇ J (p)⊥〉 �= 0. In either case, Wp �= 0. This
proves the equivalence of (i) and (ii).

To prove that Wp is tangent to f (S1( f )) at p, let s 	→ (x(s), y(s)) be a regular parametrization of
J−1(0), with (x(0), y(0)) = p and (x ′(0), y ′(0)) = ∇ J (p)⊥. Then, α(s) = f (x(s), y(s)) is a parametrization
of f (J−1(0)), and, in view of Eq. (61), we have

α′(0) = dfp(∇ J (p)⊥) = Wp. (62)

C.2 Normal Form of a Good Map Near a Fold Point

Our goal is to obtain a simple form of a good map near a fold point. Such a normal form can be obtained
by applying a change of coordinates on the domain of the map, its range, or both. We start by applying
only changes of coordinates on the domain of the map.

PROPOSITION C.3. Let f : R2 → R2 be a good map with component functions u, v : R2 → R and
Jacobian determinant J : R2 → R. Let p = (0, 0) be a fold point of f with f (p) = (0, 0). The following
properties are equivalent:

(i) f (J−1(0)) is transversal to the y-axis at f (p);
(ii) ∇u(p) �= (0, 0); and
(iii) there is a local change of coordinates ϕ : R2 → R2, with ϕ(0, 0) = p such that

f ◦ ϕ(x, y) = (x, σy2 + α(x)), (63)

where σ = sign(〈∇u(p), ∇ J (p)⊥〉) = ±1, and α : R → R is a smooth function with α(0) = 0.

Remark C.4. If g = f ◦ϕ, we shall say that ϕ brings f into the form g . The righthand-side of Eq. (63)
will be considered normal form. The transformations bringing the mapping into normal form should be
computationally feasible. Therefore, we shall be very precise about each and every step we take.

PROOF OF PROPOSITION C.3. The equivalence of conditions (i) and (ii) follows from Lemma C.2. To see
that (iii) implies (i), let g = f ◦ ϕ. Then f (S1( f )) = g (S1(g )), according to Lemma C.1(ii). Since
g (S1(g )) = {(x, α(x)) | x ∈ R2}, the first claim follows.
So it remains to prove that (ii) implies (iii). The proof follows in two steps. We assume that p = (0, 0).

Step 1. There is a local change of coordinates, bringing f into one of the forms g (x, y) = (x, V (x, y)).
To see this, we first consider the case

u0
x �= 0, (64)

where the notation is as in Section C.1. Here the superscript 0 indicates that the corresponding function
has to be evaluated at p = (0, 0) ∈ R2. In view of Eq. (64), the change of coordinates ψ : R2 → R2,
defined by

ψ(x, y) = (u(x, y), y),

is nonsingular. Let ϕ be the inverse of ψ , thus ϕ(x, y) = (ξ, η) iff η = y and

u(ξ, y) − x = 0. (65)

Let ξ = ξ (x, y) be the locally unique solution of Eq. (65) with ξ (0, 0) = 0. Then

ϕ(x, y) = (ξ (x, y), y),

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



Computing Contour Generators of Evolving Implicit Surfaces • 1277

and

f ◦ ϕ(x, y) = (x, V (x, y)) with V (x, y) = v(ξ (x, y), y).

If u0
x = 0, then condition (ii) implies that u0

y �= 0. This case is reduced to Eq. (64) by first applying the
transformation (x, y) 	→ ( y , x).

Step 2. If f (x, y) = (x, V (x, y)) is a good map with a fold point at (0, 0), then there is a local change of
coordinates, bringing g into the form g (x, y) = (x, ± y2 + α(x)), where α : R → R is a smooth function
with α(0) = 0.

Since

df(x, y) =
(

1 0

Vx Vy

)
,

we see that (0, 0) is a singular point of f iff

V 0
y = 0. (66)

In this case, Kerdf(0,0) is the span of vector (0, 1). Furthermore, J = Vy , so the fact that f is a good

mapping implies in particular that ∇ J (0, 0) = (V 0
x y , V 0

yy) �= (0, 0). A nonzero tangent vector to S1( f ) =
J−1(0) at (0, 0) is ∇ J (0, 0)⊥ = (−V 0

yy, V 0
x y ). It is now easy to see that condition (55) is equivalent to

V 0
yy �= 0. (67)

Since also V (0, 0) = 0, we apply the Morse Lemma with parameters to bring the function V into normal
form. More precisely, there is a local change of parameters ϕ : R2 → R2 of the form ϕ(x, y) = (x, �(x, y))
such that

V ◦ ϕ(x, y) = ± y2 + α(x),

where α is a smooth function with α(0) = 0. It is now obvious that f ◦ ϕ is the desired normal form.
Concatenating Steps 1 and 2 concludes the proof.

COROLLARY C.5. If f : R2 → R2 is a good mapping with a fold point at p, then there is a local change
of coordinates ϕ : R2 → R2, near (0, 0), with ϕ(0, 0) = p, and a local change of coordinates ψ : R2 → R2

with ψ( f (p)) = (0, 0) such that

ψ ◦ f ◦ ϕ(x, y) = (x, y2).

PROOF. Applying Proposition C.3, we may assume that f (x, y) = (x, ± y2 + α(x)) or f (x, y) = (±x2 +
α( y), y). In the first case, take ψ(x, y) = (x, ±( y − α(x))). Then ψ ◦ f (x, y) = (x, y2). The second case
is treated similarly.

Remark C.6. In Step 1 of the proof of Proposition C.3, in case ux �= 0, near p = (0, 0) we define the
function V by V (x, y) = v(ξ (x, y), y), where ξ = ξ (x, y) is the solution of u(ξ, y)−x = 0. The derivatives
Vy and Vyy can be computed from this definition in a straightforward way:

Vy = vxξ y + vy = vx

(
−uy

ux

)
+ vy = J

ux
,
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where all functions in the righthand-sides are evaluated at (ξ (x, y), y). Since J (0, 0) = 0, we obtain

Vyy(0, 0) =
(
J0

x ξ0
y + J0

y

)
u0

x(
u0

x

)2
= −u0

y J0
x + u0

x J0
y(

u0
x

)2
.

Therefore, Vyy(0, 0) �= 0 iff 〈∇u(0, 0), ∇ J (0, 0)⊥〉 �= 0 iff the vectors ∇u(0, 0)⊥ and ∇ J (0, 0)⊥ are not
parallel.

We claim that ∇u(0, 0)⊥ = (−u0
y , u0

x) is a nonzero vector in Kerdf0. Indeed, since df0 has rank one, we
see that ∇v(0, 0) = c∇u(0, 0) for some real constant c. Therefore(

u0
x u0

y

v0
x v0

y

) (
−u0

y

u0
x

)
=

(
0

0

)
,

which proves our claim. Since ∇ J (0, 0)⊥ is tangent to J−1(0) = S1( f ), we see that the latter condition
is equivalent to Eq. (55). In other words, Vyy(0, 0) �= 0 iff condition (55) holds. This is what we also
observed in Step 2 of the proof of Proposition C.3.

C.3 Introducing Parameters

If f depends on an additional parameter t, we can still obtain a normal form like that of Eq. (63),
provided we let both the transformation ϕ and function α depend on this new parameter. More precisely,
consider a family of maps ft : R2 → R2 that depends smoothly on the parameter t ∈ R such that f0

satisfies any of the conditions (i), (ii), or (iii) of Proposition C.3. With this family we associate the map
F : R2 × R → R2 defined by F (x, t) = ft(x). Then, there is a one-parameter family � : R2 × R → R2 × R
of local coordinate transformations of the form

�(x, y , t) = (ϕt(x, y), t)

such that

F ◦ �(x, y , t) = (x, σy2 + α(x, t)). (68)

The latter identity may be rephrased as

ft ◦ ϕt(x, y) = (x, σy2 + α(x, t)).

The image of the fold curve of ft is ft(S1( ft)) = {(x, α(x, t)) | x ∈ R}. The point of intersection of this
curve with the y-axis, namely, (0, α(0, t)), passes through the origin with speed α0

t (Here we consider t
as time). To express this velocity in terms of ft , let u(x, y , t) and v(x, y , t) be the component functions
of F (x, y , t).

LEMMA C.7. If ux(p, 0) �= 0, then

α0
t = 1

ux(p, 0)

∂(u, v)

∂(x, t)
(p, 0),

and if uy (p, 0) �= 0, then

α0
t = 1

uy (p, 0)

∂(u, v)

∂( y , t)
(p, 0).

PROOF. Let �(x, y , t) = (ξ (x, y , t), η(x, y , t)). Then, Eq. (68) reduces to

u(ξ (x, y , t), η(x, y , t), t) = x,

v(ξ (x, y , t), η(x, y , t), t) = σy2 + α(x, t).
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Differentiating the latter identity with respect to t and evaluating at (p, 0) yields

u0
xξ

0
t + u0

yη0
t + u0

t = 0,

v0
xξ

0
t + v0

yη0
t + v0

t = α0
t .

(69)

Since the second condition of Proposition C.3 holds, that is, (u0
x , u0

y ) �= (0, 0), there is a scalar constant

c such that (u0
x , u0

y ) = c(v0
x , v0

y ). Therefore, Eq. (69) implies that

α0
t = v0

t − cu0
t = 1

u0
x

(
u0

xv0
t − v0

xu0
t

)
.

If u0
y �= 0, the second identity is derived similarly.

Remark C.8. Lemma C.7 implies that α0
t �= 0 iff the matrix(

u0
x u0

y u0
t

v0
x v0

y v0
t

)
has rank two. Furthermore, since u0

xv0
y − u0

yv0
x = 0, it follows that

u0
y

∣∣∣∣∣u0
x u0

t

v0
x v0

t

∣∣∣∣∣ = u0
x

∣∣∣∣∣u0
y u0

t

v0
y v0

t

∣∣∣∣∣ .
In view of Lemma C.7, both sides of this equality are equal to u0

xu0
yα0

t .
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