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The spin precession frequency of muons stored in the (g − 2) storage ring has been analyzed for
evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched

for: a nonzero ∆ωa (=ωµ
+

a − ωµ
−

a ); and a sidereal variation of ωµ
±

a . No significant effect is found,
and several limits on Lorentz and CPT violating parameters for positive and negative muons are
set at the level of ∼ 10−23 − 10−24 GeV.

PACS numbers: 11.30.Cp, 11.30.Er, 13.40.Em, 12.20.Fv, 14.60.Ef

The minimal standard model of particle physics is
Lorentz and CPT invariant. Since the standard model
is expected to be the low-energy limit of a more fun-
damental theory such as string theory that incorporates
gravity, Lorentz and CPT invariances might be broken
spontaneously in the underlying theory [1]. At low ener-
gies, the Lorentz and CPT violation signals are expected
to be small but perhaps observable in precision experi-
ments.

To describe the effects of spontaneous breaking of
Lorentz and CPT invariance, Colladay and Kostelecký [2]
proposed a general standard model extension that can
be viewed as the low-energy limit of a Lorentz covariant
theory. Lorentz and CPT violating terms are introduced
into the Lagrangian as a way of modeling the effect of
spontaneous symmetry breaking in the underlying fun-
damental theory. Other conventional properties of quan-
tum field theory such as gauge invariance, renormaliz-
ability and energy conservation are maintained, and the
effective theory can be quantized by the conventional ap-

proach. In a subsequent paper, Bluhm, Kostelecký and
Lane discussed specific precision experiments with muons
that could be sensitive to the CPT and Lorentz violating
interactions [3].

In this letter we present our analysis for CPT and
Lorentz violating interactions in the anomalous spin pre-
cession frequency, ωa, of the muon moving in a mag-
netic field. In experiment E821 [4] at the Brookhaven
National Laboratory Alternating Gradient Synchrotron,
muons are stored in a magnetic storage ring that uses
electrostatic quadupoles for vertical focusing. The stor-
age ring has a highly uniform magnetic field with a
central value of B0 = 1.45 T, and a central radius of
ρ = 7.112 m. Polarized muons are injected into the stor-
age ring, and the positrons (electrons) from the parity-
violating decay µ+(−) → e+(−) ν̄µ(νµ) νe(ν̄e) carry aver-
age information on the muon spin direction at the time
of the decay. Twenty-four electromagnetic calorimeters
around the ring provide the arrival time and energy of
the decay positrons. As the muon spin precesses rela-
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tive to the momentum with the frequency ωa, which is
the the difference between the spin precession frequency
ωS and the momentum (cyclotron) frequency ωC [4], the
number of high-energy positrons is modulated by ωa. In

the approximation that ~β · ~B = 0,

~ωa = −
q

m

[

aµ
~B −

(

aµ −
1

γ2 − 1

)

~β × ~E

]

. (1)

The dimensionless quantity aµ is related to the spin g-
factor by aµ = (g−2)/2, with the magnetic moment given
by ~µ = g(q/2m)~s, and q = ±e. The ‘magic’ momentum
of pm = 3.09 GeV/c, (γm = 29.3), was used in E821 so
that the second term in Eq. 1 vanishes, and the electric
field does not contribute to ωa.

The magnetic field is measured using nuclear magnetic
resonance (NMR) techniques [4]. The average field is
then expressed as the average frequency of precession for
a free proton, ωp, where the average is over both the
running time of the experiment, as well as the muon dis-
tribution in the storage ring. Thus two frequencies are
measured, ωa and ωp [4].

In the analysis presented here, the muon frequency ωa

is obtained from a fit of the positron (electron) arrival-
time spectrum N(t) to the 5-parameter function

N(t) = N0e
−

t
γτ (1 +A cos(ωat+ φ)) . (2)

The normalization N0, asymmetry A and phase φ de-
pend on the chosen energy threshold E. While more
complicated fitting functions are used in the analysis
for the muon anomaly [4], they represent small devia-
tions from Eq. 2 and are not necessary for the CPT
analysis. The anomalous magnetic moment aµ is cal-
culated from aµ = R/(λ − R), where R ≡ ωa/ωp and
λ ≡ µµ/µp = 3.183 345 39(10) (±30 ppb) is the muon-
proton magnetic moment ratio [5].

For the muon, the Lorentz and CPT violating terms in
the Lagrangian are [3]

L′ = − aκψ̄γ
κψ − bκψ̄γ5γ

κψ −
1

2
Hκλψ̄σ

κλψ

+
1

2
icκλψ̄γ

κ
↔
Dλ ψ +

1

2
idκλψ̄γ5γ

κ
↔
Dλ ψ,

(3)

where iDλ ≡ i∂λ − qAλ, and the small parameters aκ,
bκ, Hκλ, cκλ dκλ represent the Lorentz and CPT viola-
tion. All terms violate Lorentz invariance with −aκψ̄γ

κψ
and −bκψ̄γ5γ

κψ CPT odd; all the other terms are CPT
even. In this model the conventional figure of merit
rµ
g ≡ |gµ+ − gµ− |/gaverage is zero at leading order; how-

ever effects on the anomalous spin precession frequency
ωa do exist in lowest-order [3]. The frequency ωa is pro-
portional to the magnetic field and therefore to ωp, so
the sidereal variation of R = ωa/ωp is analyzed, rather
than ωa directly.

To compare results from different experiments, it is
convenient to work in the non-rotating standard celestial
equatorial frame {X̂, Ŷ , Ẑ} [6]. The Ẑ axis is along the

earth’s rotational north pole, with the X̂ and Ŷ axes ly-
ing in the plane of the earth’s equator. The precession
of the earth’s rotational axis can be ignored because its
precession period is 26000 years. In this frame the correc-
tion to the (standard model) muon anomalous precession

frequency ωµ±

a in Eq. 1 is calculated to be

δωµ±

a ≈ 2b̌µ
±

Z cosχ+2(b̌µ
±

X cosΩt+ b̌µ
±

Y sin Ωt) sinχ ; (4)

b̌µ
±

J ≡ ±
bJ
γ

+mµdJ0 +
1

2
εJKLHKL. (J=X, Y, Z) , (5)

where χ is the geographic colatitude (= 90◦- latitude)
of the experiment location. For E821, χBNL = 49.1◦.
The sidereal angular frequency is Ω = 2π/Ts, where

Ts ≈ 23 hours 56 minutes and γ = 1/
√

1 − (v/c)2 is the
Lorentz factor. Eq. 4 predicts two signatures of Lorentz
and CPT violation: a difference between the time aver-
ages of ωµ+ and ωµ− , and oscillations in the values of

ωµ+

a and ωµ−

a at the sidereal angular frequency.
The E821 muon (g − 2) data have been analyzed for

these two signatures. Data from the 1999 run (µ+) [7],
2000 (µ+) [8] and 2001 (µ−) [9] were used. Since bounds
on clock comparisons of 199Hg and 133Cs [6, 10] place
limits on the Lorentz-violating energy shifts in the pro-
ton precession frequency (ωp) of ∼ 10−27 GeV, any shifts
in the NMR measurements are at the mHz level, which
is negligible compared to the uncertainty in the ampli-
tude of any sidereal variation in ωa. A feedback system
based on the reading from NMR probes at fixed locations
around the ring keeps the field constant to within 3 ppm.
Both the proton frequency ωp and the muon frequency ωa

are measured relative to a clock stabilized to a LORAN C
10 MHz frequency standard, via a radio signal. The LO-
RAN C frequency standard is based on Cesium hyperfine
transitions with mF = 0, which are insensitive to orienta-
tion of the clock. The Michelson-Morley type experiment
of Brillet and Hall [11] establishes that the fractional fre-
quency shift, ∆f/f of the LORAN radio signals due to
the earth’s rotation is less than 10−14, so at the level of
the precision of this experiment, the measured value of ωp

is independent of sidereal time. Moreover, since LORAN
C is the frequency standard for ωa as well, any sidereal
variation in the LORAN C standard would cancel in R.

A comparison of the time averages over many sidereal
days of ωa for µ+ and µ− (Eq. 4) gives

∆ωa ≡ 〈ωµ+

a 〉 − 〈ωµ−

a 〉 =
4bZ
γ

cosχ. (6)

For measurements made at different χ and/or ωp,

∆R =
2bZ
γ

(

cosχ1

ωp1
+

cosχ2

ωp2

)

+ 2(mµdZ0 +HXY )

(

cosχ1

ωp1
−

cosχ2

ωp2

)

.

(7)

The colatitudes for the E821 µ+ and µ− measurements
were identical, and the slightly different values of ωp [4]
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FIG. 1: Values of ωa(t), ωp(t) and R(t) ≡ ωa

ωp
(t) from the

2001 µ− run. The uncertainty on each ωa point is about
20 ppm.

can be neglected. The E821 result [4] is ∆R = −(3.6 ±
3.7) × 10−9, which corresponds to

bZ = −(8.7 ± 8.9) × 10−24 GeV or

r∆ωa
≡

∆ωa

mµ

= −(1.0 ± 1.1) × 10−23 ,
(8)

a factor of 22 improvement over the limit that can be
obtained from the CERN muon (g − 2) experiment [13].

The second signature of Lorentz and CPT violation
would be a variation of R(t) with a period of one sidereal
day. The data are collected in ‘runs’ of approximately 60-
minute duration, each with a time stamp at the beginning
and end of run. Data from each of these different time
intervals are fitted to the 5-parameter function (Eq. 2) to
obtain ωa, with the center of the time interval assigned as
the time of that interval. The average magnetic field, ωp,
for that time interval is used to determine R(t). Fig. 1
shows ωa(t), ωp(t) and R(t) as a function of time for the
2001 data collection period.

A sidereal variation of ωa can be written as
ωa(ωp(ti), ti) = Kωp(ti) + AΩ cos(Ωti + φ). Dividing by
ωp gives

R(ti) = K +
AΩ

ωp(ti)
cos(Ωti + φ) , (9)

where K = λaµ/(1+aµ) is a constant, and AΩ is the am-
plitude of the sidereal variation with the sidereal period
2π/Ω. Two analysis techniques were used to search for an

oscillation at the sidereal frequency: a multi-parameter
fit to Eq. 9, and the Lomb-Scargle test [12], a spectral
analysis technique developed for unevenly sampled data
such as those displayed in Fig. 1. With evenly sampled
data it reduces to the usual Fourier analysis. For the
time series {hi} with i = 1, . . . N , the normalized Lomb
power at frequency ω is defined as

PN (ω) ≡
1

2σ2
{

[

∑N
i=1(hi − h̄) cos[ω(ti − τ)]

]2

∑N
i=1 cos2[ω(ti − τ)]

+

[

∑N
i=1(hi − h̄) sin[ω(ti − τ)]

]2

∑N
i=1 sin2[ω(ti − τ)]

},

(10)

where h̄, σ and τ are defined as:

h̄ ≡

∑N
i=1 hi

N
, σ2 ≡

1

N − 1

N
∑

i=1

(hi − h̄)2,

tan(2ωτ) ≡

(

N
∑

i=1

sin 2ωti/

N
∑

i=1

cos 2ωti

)

.

(11)

In searching for a periodic signal, the Lomb power is cal-
culated over a set of frequencies. For a single frequency,
with no corresponding periodic signal, the Lomb power
is distributed exponentially with unit mean. If M in-

dependent frequencies are scanned, the probability that
none of them are characterized by a Lomb power greater
than z is (1−e−z)M , assuming there is no signal present.
The significance (confidence) level of any peak in PN (ω)
is 1− (1−e−z)M , which is the probability of the frequen-
cies being scanned giving a Lomb power greater than z
due to a statistical fluctuation. A small value of this
probability therefore indicates the presence of a signif-
icant periodic signal. In the case of equally separated
points, the number of independent frequencies is almost
equal to the number of time values. The lowest indepen-
dent frequency, f0, is the inverse of the data’s time span
and the highest is roughly (N/2)f0, but, because of the
uneven time sampling, may be somewhat greater. More
generally, the number of independent frequencies, which
depends on the number and spacing of the points, as well
as the number of frequencies scanned, can be determined
by Monte Carlo simulation, using Eq. 10 to fit for M.

The frequency spectrum for the 2001 data is shown
in Fig. 2. The Lomb power at the sidereal frequency is
3.4. The probability that this is inconsistent with the
null hypothesis is negligible. The Lomb power distribu-
tion of scanned frequencies (for M = 3144) shown in the
lower half of Fig. 2 is consistent with an exponential dis-
tribution, indicating there is no significant time-varying
signal in the data. The Lomb power spectrum reaches
only a modest maximum of 9.93 at fmax = 8.4 × 10−5:
if there were no signal at fmax, then 14% of the time the
measured power is expected to be that large. Moreover,
only a few of the Lomb power spectra taken from data
subsets reveal a peak at that frequency.
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FIG. 2: The Lomb-Scargle test on the 2001 data (top plot).
The horizontal lines show the confidence level associated with
each Lomb power. At the sidereal frequency the Lomb power
is 3.4, corresponding confidence level less than 10−3%. The
Distribution of the Lomb power of the scanned frequencies
(bottom plot) is consistent with an exponential distribution,
indicating there is no time varying signal in the real data.

The significance of a possible sidereal signal in the
power spectrum was carefully studied with a Monte Carlo
simulation. First, a large number of artificial time spec-
tra were generated. The distribution of times of the data
points is chosen to be the same as for the real data. The
value of each data point was distributed randomly with a
central value equal to an average over all the actual data
values, while having a standard deviation equal to that of
each individual data point. The Lomb-Scargle test was
then applied to 10000 simulated data groups. The distri-
bution of maximum Lomb power and the corresponding
frequencies are shown in Fig. 3.

Next, sidereal oscillation signals of different amplitudes
AΩ were introduced into the simulated data, and the
resulting spectra were analyzed with both the multi-
parameter fit and Lomb Scargle test. Table I lists the
signal amplitude required so that 95% of the simulated
data sets yield a larger AΩ or P (ω) than the real data.
The two analysis methods give consistent results.

Several potential systematic effects were studied. Since
the sidereal period is very close to one solar day, the
Lomb-Scargle test was applied to the ωp data to check
for false sidereal variations that might be produced by
diurnal temperature changes. The upper limits on the
amplitude of a sidereal variation in ωp were 0.04, 0.03
and 0.08 ppm for the 1999, 2000 and 2001 data sets
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FIG. 3: The Lomb-Scargle test on the simulated 2001 data
with no signal. The shaded area shows the maximum Lomb
powers greater than that of the real data. The locations of
the maximum Lomb powers are randomly distributed (bottom
plot).

data set MPF amplitude L-S amplitude

(ppm) (ppm)

1999 µ+ 5.5 5.2

2000 µ+ 2.2 2.0

1999/2000 µ+ 2.2 2.0

2001 µ− 4.2 4.2

TABLE I: The signal amplitude in ppm needed for 95% of
the simulated data to have larger AΩ, or P (Ω), than that of
the real data. MPF means multi-parameter fit, L-S stands for
Lomb-Scargle.

respectively, significantly smaller than the limit on AΩ

presented above. Additional studies were carried out on
the 2001 data set. The data were folded back over a
four sidereal day time period, (i.e. modulo four sidereal
days), and then analyzed. To search for systematic ef-
fects, other sub-window time periods, where no variation
was expected, were also used, e.g. 24 hours (solar day),
or an arbitrary number of minutes.

No significant sidereal variation in R, and hence in ωa,
is found in the E821 muon (g−2) data. Taking the limits
on AΩ from the last two rows of Table I, we obtain at
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the 95% confidence level:

b̌µ
+

⊥
=

√

(b̌µ
+

X )2 + (b̌µ
+

Y )2 < 1.3 × 10−24 GeV,

b̌µ
−

⊥
=

√

(b̌µ
−

X )2 + (b̌µ
−

Y )2 < 2.5 × 10−24 GeV.

(12)

For the dimensionless figure of merit obtained by di-

viding by mµ [3], we obtain rµ+

AΩ
< 2.2 × 10−23 and

rµ−

AΩ
< 3.8 × 10−23, which can be compared with the ra-

tio of the muon to Planck mass, mµ/MP = 8.7 × 10−21.
Using our result for bz in Eq. 8, along with the CERN
result [13] for ∆ω and Eq. 7, we find (mµdZ0 +HXY ) ≃
(1.6 ± 5.6 × 10−23) GeV.

An experiment that searched for sidereal variation
in transitions between muonium hyperfine energy lev-
els [14], obtained rµ ≤ 5.0 × 10−22. Penning trap ex-
periments with a single trapped electron obtained re ≤
1.6 × 10−21 [15].

In conclusion, we do not find significant Lorentz and

CPT violation signatures in the E821 muon (g−2) data,
which we interpret in the framework of the standard
model extension [3]. Limits on the parameters are of the
order 10−23 to 10−24 GeV, with the dimensionless figures
of merit ∼ 10−23. These results represent the best test of
this model for leptons. Both rµ

∆ωa
and rµ

AΩ
are much less

than mµ/mP , so E821 probes Lorentz and CPT violation
signatures beyond the Planck scale.
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